
Decidable Call-by-Need Computations

in Term Rewriting

Irène Durand

Laboratoire Bordelais de Recherche en Informatique
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Abstract

The theorem of Huet and Lévy stating that for orthogonal rewrite systems (i) every
reducible term contains a needed redex and (ii) repeated contraction of needed
redexes results in a normal form if the term under consideration has a normal form,
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systems. However, needed redexes are not computable in general.

In the paper we show how the use of approximations and elementary tree au-
tomata techniques allows one to obtain decidable conditions in a simple and elegant
way. Surprisingly, by avoiding complicated concepts like index and sequentiality we
are able to cover much larger classes of rewrite systems.

We also study modularity aspects of the classes in our hierarchy. It turns out
that none of the classes is preserved under signature extension. By imposing vari-
ous conditions we recover the preservation under signature extension. By imposing
some more conditions we are able to strengthen the signature extension results to
modularity for disjoint and constructor-sharing combinations.
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1 Introduction

The following theorem of Huet and Lévy [12] forms the basis of all results on
optimal normalizing rewrite strategies for orthogonal term rewrite systems:
Every reducible term contains a needed redex, i.e., a redex which is contracted
in every rewrite sequence to normal form, and repeated contraction of needed
redexes results in a normal form, if the term under consideration has a normal
form. Unfortunately, needed redexes are not computable in general. Hence,
in order to obtain a computable optimal rewrite strategy, we are left to find
(1) decidable approximations of neededness and (2) decidable properties of
rewrite systems which ensure that every reducible term has a needed redex
identified by (1). Starting with the seminal work of Huet and Lévy [12] on
strong sequentiality, these issues have been extensively investigated in the
literature [2,13,14,17,21,25,29]. In all these works Huet and Lévy’s notions of
index, ω-reduction, and sequentiality figure prominently.

In this paper we present an approach to decidable call-by-need computations
in which issues (1) and (2) above are addressed directly. Besides facilitating
understanding this enables us to cover much larger classes of rewrite systems.
For instance, a trivial consequence of our work is that every orthogonal right-
ground rewrite system admits a computable call-by-need strategy whereas
none of the sequentiality-based approaches cover all such systems. Our ap-
proach is based on the easy but fundamental observation that needed redexes
are uniform but not independent of other redexes in the same term. Unifor-
mity means that only the position of a redex in a term counts for determining
neededness.

From [12,25,2] we extract the important concept of approximation mapping,
which is used to parameterize our framework. An approximation mapping
transforms a rewrite system into a simpler one such that every rewrite step in
the former can be simulated in the latter. We identify regularity preservingness
as the key property that an approximation mapping α must have in order to
obtain a decidable class CBNα consisting of all rewrite systems that have
the property that at least one of the needed redexes in every reducible term
can be computed by α. Consequently, every rewrite system in CBNα admits
a computable call-by-need strategy. Inspired by Comon [2], our decidability
results heavily rely on tree automata techniques. However, by assigning a
greater role to ground tree transducers we do not need to rely on weak second-
order monadic logic.

Not much is known about the complexity of the problem of deciding member-
ship in one of the classes that guarantees a computable call-by-need strategy
to normal form. Comon [2] showed that strong sequentiality of a left-linear
rewrite system can be decided in exponential time. Moreover, for left-linear
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rewrite systems satisfying the additional syntactic condition that whenever
two proper subterms of left-hand sides are unifiable one of them matches the
other, strong sequentiality can be decided in polynomial time. The class of
forward-branching systems (Strandh [27]), a proper subclass of the class of
orthogonal strongly sequential systems, coincides with the class of transitive
systems (Toyama et al. [30]) and can be decided in quadratic time (Durand [7]).
For classes higher in the hierarchy only double exponential upper bounds are
known ([10]). Consequently, it is of obvious importance to have results avail-
able that enable to split a rewrite system into smaller components such that
membership in CBNα of the components implies membership of the original
system in CBNα.

Such modularity results have been extensively studied for basic properties
like confluence and termination, see [24] for a recent overview. The simplest
kind of modularity results are concerned with enriching the signature. Most
properties of rewrite systems are preserved under signature extension. Two
notable exceptions are the normal form property and the unique normal form
property (with respect to reduction), see Kennaway et al. [15]. Also some prop-
erties dealing with ground terms are not preserved under signature extension.
Consider for instance the property that every ground term is innermost termi-
nating, the rewrite system consisting of the two rewrite rules f(f(x)) → f(f(x))
and f(a) → a, and add a new constant b. It turns out that for no α, membership
in CBNα is preserved under signature extension. We present several sufficient
conditions which guarantee the preservation under signature extension.

Since preservation under signature extension does not give rise to a very use-
ful technique for splitting a system into smaller components, we also con-
sider combinations of systems without common function symbols as well as
constructor-sharing combinations.

The remainder of this paper is organized as follows. In the next section we
recall the necessary background of term rewriting and tree automata. In Sec-
tion 3 we give a brief introduction to call-by-need strategies. In Section 4
we present sufficient conditions for neededness in terms of approximations.
Several approximations are defined in Section 5. In Section 6 we present our
framework for decidable call-by-need computations to normal form. Section 7
contains a comparison with the sequentiality-based approach. In Section 8 we
present our signature extension results and in Section 9 these results are ex-
tended to modularity. The proofs of most of the results in these two sections
are given in the appendix. We make some concluding remarks in Section 10.

Many of the results presented in this paper were first announced in [9,11].
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2 Preliminaries

Familiarity with the basic notions of term rewriting (see e.g. [1,16]) will be
helpful in the sequel. A term rewrite system (TRS for short) R over a signature
F consists of rewrite rules l → r between terms in T (F ,V) that satisfy l /∈
V and Var(r) ⊆ Var(l). Here V is a countably infinite set of variables. If
the second condition is not imposed we find it useful to speak of extended
TRSs (eTRSs). Such systems arise naturally when we approximate TRSs, as
explained in Section 5. When applying a rewrite rule l → r of an eTRS,
variables in Var(r) \ Var(l) may be instantiated by arbitrary terms.

A ground term does not contain variables. A linear term does not contain
multiple occurrences of the same variable. A redex is an instance of the left-
hand side of a rewrite rule. The set of all ground redexes of a TRS R is denoted
by REDEX(R). A normal form is a term without redexes. The set of all ground
normal forms of a TRS R is denoted by NF(R). The root symbol of a term
t is denoted by root(t). A term is root-stable if it cannot be rewritten to a
redex. An eTRS is left-linear (right-linear, linear) if the left-hand sides (right-
hand sides, both left and right-hand sides) of its rewrite rules are linear terms.
An eTRS is right-ground (ground) if the right-hand sides (left and right-hand
sides) of its rewrite rules are ground terms. A left-linear TRS without critical
pairs is orthogonal. Orthogonal TRSs have the property that every term has
at most one normal form.

We write s→‖ t if t can be obtained from s by contracting a, possibly zero,
number of redexes at pairwise disjoint positions in s. In other words, s =
C[s1, . . . , sn] and t = C[t1, . . . , tn] for some context C and terms s1, . . . , sn,
t1, . . . , tn with si → ti for all 1 6 i 6 n. The relation →‖ is called parallel
rewriting.

A rewrite rule l → r is collapsing if r is a variable. A redex with respect to a
collapsing rewrite rule is also called collapsing and so is an eTRS that contains
a collapsing rewrite rule. A redex is innermost if it does not contain smaller
redexes. A redex in a term is outermost if it is not a proper subterm of another
redex in the same term. 1 Let R be a TRS over the signature F . A function
symbol in F is called defined if it is the root symbol of a left-hand side of a
rewrite rule in R. All other function symbols in F are called constructors. We
use FD and FC to denote the set of defined symbols and the set of constructors.
Terms in T (FC,V) are called constructor terms.

In the remainder of this section we recall some basic definitions and results
concerning tree automata. Much more information can be found in [3]. A (finite

1 Here the position of the redex is important. Depending on the context, by redex
we either mean the subterm or its position.
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bottom-up) tree automaton is a quadruple A = (F , Q, Qf , ∆) consisting of a
finite signature F , a finite set Q of states, disjoint from F , a subset Qf ⊆ Q
of final states, and a set of transition rules ∆. Every transition rule is of
the form f(q1, . . . , qn) → q with f ∈ F and q1, . . . , qn, q ∈ Q or q → q′

with q, q′ ∈ Q. The latter rules are called ε-transitions. So a tree automaton
A = (F , Q, Qf , ∆) is simply a finite ground TRS ∆ over the signature F ∪ Q
whose rewrite rules have a special shape, together with a subset Qf of Q.
The induced rewrite relation on T (F ∪Q) is denoted by →A. A ground term
t ∈ T (F) is accepted by A if t →+

A q for some q ∈ Qf . The set of all such
terms is denoted by L(A). A subset L ⊆ T (F) is called regular if there exists
a tree automaton A = (F , Q, Qf , ∆) such that L = L(A). It is well-known
that the set T (F) of all ground terms is regular. Other well-known properties
are stated in the following two lemmata.

Lemma 1

(1) Regular languages are effectively closed under Boolean operations.
(2) Membership and emptiness are decidable for regular languages.

2

Lemma 2 If R is a finite left-linear TRS then REDEX(R) and NF(R) are
regular. 2

A ground tree transducer is a pair G = (A,B) of tree automata over the same
signature F . Let s, t ∈ T (F). We say that the pair (s, t) is accepted by G
if s →∗

A u and t →∗
B u for some term u ∈ T (F ∪ Q) where Q is the set

of common states of A and B. The set of all such pairs is denoted by L(G).
Observe that L(G) is a binary relation on T (F). A binary relation on ground
terms is called regular if there exists a ground tree transducer that accepts it.
Every regular relation R is parallel, i.e., C[s1, . . . , sn] R C[t1, . . . , tn] whenever
s1 R t1, . . . , sn R tn, for all contexts C and terms s1, . . . , sn, t1, . . . , tn. (The
parallel rewrite relation →‖ defined above is parallel. Actually, →‖ is the smallest
parallel relation that contains →, i.e., the parallel closure of →.) Ground tree
transducers were introduced by Dauchet and Tison [6] in order to prove that
confluence is a decidable property of ground TRSs. In this paper we make use
of the following closure properties. They can be proved by adding appropriate
ε-transitions. Part (2) originates from [4].

Lemma 3 Let R be a regular relation on T (F).

(1) The transitive closure R+ of R is regular.
(2) If L ⊆ T (F) is regular then R[L] 2 = {s | s R t for some t ∈ L} is

2 In the literature R[L] often denotes the different set {t | s R t for some s ∈ L}.
We find our choice more convenient.
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regular.

2

We would like to emphasize that there are other notions of regularity for binary
relations in the literature. The one defined above suffices for our purposes. (In
[5] regular relations are called GTT-relations.)

3 Call-by-Need Strategies

Given a TRS and a term, a rewrite strategy specifies which part(s) of the term
to evaluate. If a TRS admits infinite computations, certain rewrite strategies
may fail to reduce terms to their normal forms.

Example 4 Consider the TRS R consisting of the rewrite rules

0 + y → y fib → f(0, s(0))

s(x) + y → s(x + y) f(x, y) → x : f(y, x + y)

nth(0, y : z) → y nth(s(x), y : z) → nth(x, z)

for computing Fibonacci numbers. The term t = nth(s(s(s(0))), fib) admits the
normal form s(s(0)): 3

t → nth(3, f(0, 1)) → nth(3, 0 : f(1, 0 + 1)) → nth(2, f(1, 0 + 1))

→ nth(2, f(1, 1)) → nth(2, 1 : f(1, 1 + 1)) → nth(1, f(1, 1 + 1))

→ nth(1, f(1, s(0 + 1))) → nth(1, f(1, 2)) → nth(1, 1 : f(2, 1 + 2))

→ nth(0, f(2, 1 + 2)) → nth(0, f(2, s(0 + 2))) → nth(0, f(2, 3))

→ nth(0, 2 : f(3, 2 + 3)) → 2

but an eager (innermost) strategy will produce an infinite rewrite sequence:

t → nth(3, f(0, 1)) → nth(3, 0 : f(1, 0 + 1)) → nth(3, 0 : f(1, 1))

→ nth(3, 0 : (1 : f(1, 1 + 1))) →2 nth(3, 0 : (1 : f(1, 2)))

→ nth(3, 0 : (1 : (1 : f(2, 1 + 2)))) →2 nth(3, 0 : (1 : (1 : f(2, 3))))

→ nth(3, 0 : (1 : (1 : (2 : f(3, 2 + 3))))) →3 nth(3, 0 : (1 : (1 : (2 : f(3, 5)))))

→ · · ·

If a term t has a normal form then we can always compute a normal form of
t by computing the reducts of t in a breadth-first manner until we encounter
a normal form. However, this is a highly inefficient way to compute normal

3 In the rewrite sequences we denote sn(0) by n for n = 1, 2, 3, 5.
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forms. In practice, normal forms are computed by adopting a suitable strategy
for selecting the redexes which are to be contracted in each step. A strategy is
called normalizing if it succeeds in computing normal forms for all terms that
admit a normal form. For the class of orthogonal TRSs several normalization
results are known (see e.g. Klop [16]). For instance, O’Donnell [23] proved that
the parallel-outermost strategy (which contracts in a single step all outermost
redexes in parallel) is normalizing for all orthogonal TRSs. However, parallel-
outermost is not an optimal 4 strategy as it may perform useless steps.

Example 5 Consider the TRS R consisting of the rewrite rules

0 + y → y 0 × y → 0

s(x) + y → s(x + y) s(x) × y → (x × y) + y

Faced with the term t = (0× s(0))× (0 + s(0)), the parallel-outermost strategy
computes its normal form 0 by contracting three redexes in two steps:

(0 × s(0)) × (0 + s(0)) →‖ 0 × s(0) → 0

The normal form 0 can also be reached by contracting just two redexes:

(0 × s(0)) × (0 + s(0)) → 0 × (0 + s(0)) → 0

So redex 0 + s(0) in t is not needed to reach the normal form.

An optimal strategy selects only needed redexes. Formally, a redex ∆ in a term
t is needed if in every rewrite sequence from t to normal form a descendant of
∆ is contracted. The latter concept is defined as follows. Let A : s = s[lσ]p →
s[rσ]p = t be a rewrite step in an eTRS and let q ∈ Pos(s). The set q\A of
descendants of q in t is defined as follows:

q\A =







{q} if q < p or q ‖ p,

{pp3p2 | r|p3
= l|p1

} if q = pp1p2 with p1 ∈ PosV(l),

∅ otherwise.

The notion of descendant extends naturally to rewrite sequences. Orthogonal
(e)TRSs have the property that descendants of redex positions are again redex
positions.

Example 6 In the displayed rewrite sequence nth(3, fib) →∗ 2 in Example 4
non-needed redexes are contracted. For instance, redex 1 + 2 in the term
nth(0, f(2, 1 + 2)) is non-needed:

nth(0, f(2, 1 + 2)) → nth(0, 2 : f(1 + 2, 2 + (1 + 2))) → 2

4 An optimal strategy uses the least number of redex contractions to normalize
terms.
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The following theorem of Huet and Lévy [12] forms the basis of all results on
optimal normalizing reduction strategies for orthogonal TRSs.

Theorem 7 Let R be an orthogonal TRS.

(1) Every reducible term contains a needed redex.
(2) Repeated contraction of needed redexes results in a normal form, whenever

the term under consideration has a normal form.

2

So, for orthogonal TRSs, the strategy that always selects a needed redex for
contraction is normalizing and optimal. 5 Unfortunately, needed redexes are
not computable in general. Hence, in order to obtain a computable optimal
strategy, we need to find (1) decidable approximations of neededness and (2)
(decidable) classes of rewrite systems which ensure that every reducible term
has a needed redex identified by (1).

In the sequentiality-based approach (see Section 7) issue (1) is addressed as
follows. Basically, to determine whether an outermost redex ∆ in a term t =
C[∆] is needed, ∆ is replaced by a fresh symbol • and all other outermost
redexes in t are replaced by Ω which represents an unknown term. It is then
investigated whether • can disappear from the resulting Ω-term t′ by using
some computable notion of partial reduction. If this is not the case, then we
may conclude that redex ∆ in t is needed. Since neededness of redex ∆ in t
is solely determined by its position in t (cf. Lemma 9), replacing redex ∆ in
t by • incurs no loss of generality. However, by replacing all other outermost
redexes by Ω, essential information may be lost for determining the neededness
of ∆. This is illustrated in the following example, which shows that needed
redexes are not independent of other redexes.

Example 8 Consider again the TRS of Example 5. An arbitrary redex ∆ is
needed in the term (0 + s(0)) × ∆ but not in the term (0 × s(0)) × ∆:

(0 × s(0)) × ∆ → 0 × ∆ → 0

In the next section we present a new approach to the problem of determining
neededness of a given redex in a term which does not abstract from the other
redexes in the term.

5 We ignore here the problem of duplication of (needed) redexes, which can be
solved if common subterms are shared.
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4 Decidable Approximations of Neededness

In the remaining part of the paper we are dealing with finite TRSs only.
Moreover, we consider rewriting on ground terms only, except in Section 7
for reasons explained there. So we assume that the set of ground terms is
non-empty. It is undecidable whether a redex in a term is needed with respect
to a given (orthogonal) TRS. In this section we present decidable sufficient
conditions for a redex to be needed.

We start with an easy lemma that provides an alternative definition of need-
edness, not depending on the notion of descendant. Let R be a TRS over a
signature F . We assume the existence of a constant • not appearing in F and
we view R as a TRS over the extended signature F• = F ∪ {•}. So NF(R)
consists of all terms in T (F•) that are in normal form. Let R• be the TRS
R ∪ {• → •}. Note that NF(R•) coincides with NF(R) ∩ T (F).

Lemma 9 Let R be an orthogonal TRS over a signature F . Redex ∆ in term
C[∆] ∈ T (F) is needed if and only if there is no term t ∈ NF(R•) such that
C[•] →∗

R t.

PROOF. Let A : s →∗ t be a rewrite sequence and ∆ a redex in s. We write
∆ ⊥ A if no descendant of ∆ is contracted in A. So a redex ∆ in a term s is
needed if and only if A : s →∗ t with ∆ ⊥ A implies that t is not a normal
form.

For the “only if” direction we suppose there is a term t ∈ NF(R•) such
that C[•] →∗

R t. Replacing every occurrence of • by ∆ yields a sequence
A : C[∆] →∗

R t with ∆ ⊥ A. Hence ∆ is not needed.

For the “if” direction we suppose that ∆ is not needed. So there exists a
rewrite sequence A : C[∆] →∗

R t with t ∈ NF(R•) and ∆ ⊥ A. Replacing
every descendant of ∆ in A by • yields a sequence C[•] →∗

R t. (Here we use
orthogonality. Note that because t is a normal form there are no descendants
of ∆ in t left.) 2

An immediate consequence of this lemma is the folklore result that only the
position of a redex in a term is important for determining neededness. So if
redex ∆ in term C[∆] is needed then so is redex ∆′ in C[∆′].

Using the notation introduced in Section 2, the preceding lemma can be
rephrased as follows: Redex ∆ in C[∆] ∈ T (F) is needed if and only if
C[•] /∈ (→∗

R)[NF(R•)]. Since membership for regular languages is decidable
but neededness undecidable, it follows that (→∗

R)[NF(R•)] is not regular in
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general. The key to decidability is to extend →∗
R to →∗

S for some suitable
eTRS S such that (→∗

S)[NF(R)] becomes regular.

Definition 10 Let R and S be eTRSs over the same signature. We say that
S approximates R if →R ⊆ →∗

S and NF(R) = NF(S).

Definition 11 An approximation mapping is a mapping α from eTRSs to
eTRSs with the property that α(R) approximates R for all eTRSs R. We write
Rα for α(R). We say that α is regularity preserving if (→∗

Rα

)[L] is regular
for all eTRSs R and regular L. We define a partial order 6 on approximation
mappings as follows: α 6 β if and only if Rβ approximates Rα, for every
eTRS R. Note that the identity mapping is the minimum element of this partial
order.

Needless to say, we are only interested in computable approximation mappings
that are effectively regularity preserving. This means that there is an algorithm
which, given a tree automaton for L, constructs a tree automaton for (→∗

Rα

)[L]. The regularity preserving approximation mappings that we introduce in
the next section have this property.

Definition 12 Let R be a TRS over a signature F and α an approxima-
tion mapping. We say that redex ∆ in C[∆] ∈ T (F) is α-needed if C[•] /∈
(→∗

Rα

)[NF(R•)]. The set of all such terms C[•] is denoted by NEED(Rα).

In the following we abbreviate →Rα
to →α when the R can be inferred from

the context.

Lemma 13 Let R be an orthogonal TRS and α an approximation mapping.
Every α-needed redex is needed.

PROOF. Let ∆ be an α-needed redex in C[∆]. So C[•] /∈ (→∗
Rα

)[NF(R•)].
Since Rα approximates R, we have →R ⊆ →∗

Rα

by definition and thus also
→∗

R ⊆ →∗
Rα

. Hence C[•] /∈ (→∗
R)[NF(R•)]. Because R is orthogonal, we obtain

the neededness of ∆ from Lemma 9. 2

Only in Lemma 13 do we require orthogonality. For decidability issues, left-
linearity suffices. The following example shows that both left-linearity and
non-overlappingness are required for Lemmata 9 and 13.

Example 14 First of all, consider the left-linear overlapping TRS consisting
of the single rewrite rule

f(f(x)) → a
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and the term f(f(f(a))). Since contracting either of the two redexes immedi-
ately gives a normal form, neither of the two redexes is needed. On the other
hand, for any approximation mapping α, including the identity mapping, redex
f(f(f(a))) is α-needed since • is an Rα-normal form which does not belong to
NF(R•).

Next consider the non-left-linear non-overlapping TRS consisting of the three
rewrite rules

f(x, x) → a b → c c → b

and the term f(b, c). Again, it is easy to see that neither of the two redexes
is needed. Replacing either of them by • yields a term which, for two of the
three approximation mappings α defined in the next section as well as for the
identity mapping, does not Rα-rewrite to a normal form in NF(R•).

Lemma 15 Let R be a left-linear TRS and α an approximation mapping. If
α is regularity preserving then NEED(Rα) is regular.

PROOF. We have

NEED(Rα) = (→∗
Rα

)[NF(R•)]
c ∩ M•

6

where M• is the subset of T (F•) consisting of all terms that contain exactly
one occurrence of •. The regularity of M• is easily shown. Hence the regularity
of NEED(Rα) is a consequence of Lemmata 1 and 2. 2

Since membership for regular tree languages is decidable, we obtain the fol-
lowing result.

Corollary 16 Let R be a left-linear TRS and α a regularity preserving ap-
proximation mapping. It is decidable whether a redex in a term is α-needed. 2

Naturally, a better approximation can identify more needed redexes.

Lemma 17 Let α and β be approximation mappings. If α 6 β then NEED(Rβ)
⊆ NEED(Rα), for every TRS R. 2

6 Here (→∗
Rα

)[NF(R•)]
c denotes the complement of (→∗

Rα

)[NF(R•)] (with respect
to T (F•)).
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5 Approximations

In this section we define three approximation mappings that are known to
be regularity preserving. We give new proofs for two of these results. The
approximations differ in the way they treat the right-hand sides of the rewrite
rules of the original TRS. The left-hand sides are not affected, and hence the
second requirement in the definition of approximation is trivially satisfied. 7

Definition 18 Let R be a TRS. The strong approximation Rs is obtained
from R by replacing the right-hand side of every rewrite rule by a fresh vari-
able.

Example 19 For the TRS R of Example 5, the eTRS Rs consists of the
following rules:

0 + y → z 0 × y → z

s(x) + y → z s(x) × y → z

The idea of approximating a TRS by ignoring the right-hand sides of its rewrite
rules is due to Huet and Lévy [12]. A better approximation is obtained by
preserving the non-variable parts of the right-hand sides of the rewrite rules.

Definition 20 Let R be a TRS. The nv approximation Rnv is obtained from
R by replacing all occurrences of variables in the right-hand side of every
rewrite rule by distinct fresh variables.

Example 21 For the TRS R of Example 5, the eTRS Rnv consists of the
following rules:

0 + y → y′ 0 × y → 0

s(x) + y → s(x′ + y′) s(x) × y → (x′ × y′) + y′′

The idea of approximating a TRS by ignoring the variables in the right-hand
sides of the rewrite rules is due to Oyamaguchi [25]. Note that Rnv = R
whenever R is right-ground. Hence for every orthogonal right-ground TRS R,
a redex is needed if and only if it is nv-needed.

Definition 22 An eTRS is called growing if for every rewrite rule l → r the

7 Since we deal exclusively with left-linear TRSs in this paper, there is no need to
modify the left-hand sides. In [20] the definitions are adapted such that the resulting
TRSs are left-linear. This is useful for automated termination analysis, but violates
the second requirement in Definition 10. This requirement, however, plays no role
in [20].
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variables in Var(l)∩Var(r) occur at depth 1 in l. Let R be a TRS. The growing
approximation Rg is defined as the growing eTRS that is obtained from R by
renaming the variables in the right-hand sides that occur at a depth greater
than 1 in the corresponding left-hand sides.

Example 23 For the TRS R of Example 5, the eTRS Rg consists of the
following rules:

0 + y → y 0 × y → 0

s(x) + y → s(x′ + y) s(x) × y → (x′ × y) + y

Note that the occurrences of y in the right-hand sides of the rules of R are not
renamed since they occur at depth 1 in the corresponding left-hand sides.

Growing TRSs, introduced by Jacquemard [13], are a proper extension of the
shallow TRSs considered by Comon [2]. The growing approximation defined
above stems from Nagaya and Toyama [22]. It extends the growing approxi-
mation in [13] in that the right-linearity requirement is dropped.

The mapping s that assigns to every eTRS R the eTRS Rs is an approximation
mapping. In the same fashion, Definitions 20 and 22 define approximation
mappings nv and g. We clearly have g 6 nv 6 s.

Example 24 Consider again the TRS R of Example 5. Let ∆1 and ∆2 be
arbitrary redexes and consider the term

t = (0 + s(∆1)
︸ ︷︷ ︸

∆3

) + ∆2

All three redexes are needed (since R is non-erasing). The following rewrite
sequences show that ∆1 and ∆2 are not s-needed:

(0 + s(•)) + ∆2 →s 0 + ∆2 →s 0

(0 + s(∆1)) + • →s 0 + • →s 0

Redex ∆3 is s-needed since all s-reducts of • + ∆2 are of the form • + t′. For
the nv approximation the situation is the same. Redexes ∆1 and ∆2 are not
nv-needed—the above s-rewrite sequences are also nv-rewrite sequences—but
∆3 is. With respect to the growing approximation, ∆1 is not g-needed:

(0 + s(•)) + ∆2 →g s(•) + ∆2 →g s(0 + ∆2) →g s(∆2) →
∗
g

t′

for some normal form t′ (which depends on redex ∆2). However, ∆2 is g-
needed. The reason is that we cannot get rid of • in the term (0 + s(∆1)) + •
since the second argument of + is never erased by the rules in Rg.
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Theorem 25 The approximation mappings s, nv, and g are regularity pre-
serving. 2

Nagaya and Toyama [22] proved the above result for the growing approxi-
mation; the tree automaton that recognizes (→∗

g
)[L] is defined as the limit

of a finite saturation process. This saturation process is similar to the ones
defined in Comon [2] and Jacquemard [13], but by working exclusively with
deterministic tree automata, non-right-linear rewrite rules can be handled.

Below we give a very simple proof of Theorem 25 for the strong and nv ap-
proximations, using ground tree transducers.

Lemma 26 Let R be a left-linear TRS. The relations →∗
s
and →∗

nv
are regular.

PROOF. According to Lemma 3(1) regular relations are closed under transi-
tive closure. Since →‖ + = →∗ it therefore suffices to show that →‖ s and →‖ nv are
regular. First we show the regularity of →‖ nv. Let Rnv = {li → ri | 1 6 i 6 n}.
Define the ground tree transducer Gnv as the pair of tree automata A and B
that accept in state i all instances of li and ri, respectively. Moreover, we may
assume that the two tree automata share no other states. Hence L(Gnv) = →‖ nv.
The regularity of →‖ s is obtained by replacing B by the tree automaton C that
accepts in state i all terms. 2

We illustrate the construction of Gnv and Gs in the proof of the above lemma
on a small example.

Example 27 Table 1 shows the tree automata A, B, and C used in the proof
of the above lemma for the following TRS R:

1: f(g(x), a) → f(h(h(x)), x)

2 : h(a) → h(b)

3 : h(f(x, b)) → x

Note that only states 1, 2, and 3 are shared between A and B and between A
and C. Consider the tree automaton A. Its states are ∗, [a], [b], [g(∗)], and
[f(∗, b)]. In state ∗ all ground terms are accepted. The purpose of the second
group of transition rules is to recognize all ground instances of proper non-
variable subterms of the left-hand sides of R. So in state [a] only the term a

is accepted, whereas in state [f(∗, b)] all ground terms of the form f(t, b) are
accepted. The third group of transition rules corresponds to the left-hand sides
of R.

14



Table 1
The tree automata A, B, and C in the proof of Lemma 26.

a → ∗ a → 〈∗〉 a → 〈∗〉

b → ∗ b → 〈∗〉 b → 〈∗〉

f(∗, ∗) → ∗ f(〈∗〉, 〈∗〉) → 〈∗〉 f(〈∗〉, 〈∗〉) → 〈∗〉

g(∗) → ∗ g(〈∗〉) → 〈∗〉 g(〈∗〉) → 〈∗〉

h(∗) → ∗ h(〈∗〉) → 〈∗〉 h(〈∗〉) → 〈∗〉

• → ∗ • → 〈∗〉 • → 〈∗〉

a → [a] b → 〈b〉

b → [b] h(〈∗〉) → 〈h(∗)〉

g(∗) → [g(∗)] h(〈h(∗)〉) → 〈h(h(∗))〉

f(∗, [b]) → [f(∗, b)]

f([g(∗)], [a]) → 1 f(〈h(h(∗))〉, 〈∗〉) → 1 〈∗〉 → 1

h([a]) → 2 h(〈b〉) → 2 〈∗〉 → 2

h([f(∗, b)]) → 3 〈∗〉 → 3 〈∗〉 → 3

The regularity preservingness of s and nv is an immediate consequence of
Lemmata 26 and 3(2). (Since →∗

g
need not be a regular relation, 8 ground tree

transducers are not useful for obtaining the regularity preservingness of g.)

It is easy to see that s-needed redexes in a term are always outermost. The
same is true for nv-needed redexes in terms that have a normal form. However,
g-needed redexes in normalizing terms need not be outermost. For instance,
the TRS R:

f(x) → g(x) a → b

is growing and hence Rg = R. Innermost redex a in the term f(a) is g-needed
because there is no term t ∈ NF(R•) such that f(•) →∗

R t. Note that a is not
nv-needed as f(•) →nv g(b) with g(b) ∈ NF(R•).

Takai et al. [28] introduced the class of left-linear inverse finite path overlap-
ping rewrite systems and showed that Theorem 25 is true for the corresponding
approximation mapping. Growing rewrite systems constitute a proper subclass
of the class of inverse finite path overlapping rewrite systems. Since the defi-

8 It is not difficult to show that →∗
g

is not regular for the TRS R = {f(x) → x}
over the signature consisting of unary function symbols f and g, and a constant a.
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nition of this class is rather difficult, we do not consider the inverse finite path
overlapping approximation here. We note however that our results easily ex-
tend. Another complicated regularity preserving approximation mapping can
be extracted from the recent paper by Seki et al. [26].

6 Call-by-Need Computations to Normal Form

A TRS R admits decidable call-by-need computations to normal form if there
exists an approximation mapping α such that α-needed redexes are com-
putable and, moreover, every reducible term has an α-needed redex. In Sec-
tion 4 we addressed the first issue. This section is devoted to the second issue.
The following definition is readily understood.

Definition 28 Let α be an approximation mapping. The class of TRSs R
such that every reducible term in T (F) has an α-needed redex is denoted by
CBNα. Here F denotes the signature of R.

Lemma 29 Let R be an orthogonal TRS.

(1) If R is right-ground then R ∈ CBNnv.
(2) If R is growing then R ∈ CBNg.

PROOF. According to Theorem 7(1) every reducible term contains a needed
redex. If R is right-ground then R = Rnv and thus all needed redexes are nv-
needed. Hence R ∈ CBNnv. If R is growing then R = Rg and thus all needed
redexes are g-needed. Hence R ∈ CBNg. 2

The next lemma is an easy consequence of Lemma 17.

Lemma 30 Let α and β be approximation mappings. If α 6 β then CBNβ ⊆
CBNα.

PROOF. Let R be a TRS over a signature F that belongs to CBNβ. So every
reducible term t in T (F) has a β-needed redex. So t = C[∆] with ∆ a β-needed
redex. By definition C[•] ∈ NEED(Rβ). Lemma 17 yields C[•] ∈ NEED(Rα).
Hence redex ∆ is α-needed in t. It follows that R belongs to CBNα. 2

Below we show that membership of a left-linear TRS in CBNα is decidable for
any regularity preserving approximation mapping α. The proof is a straight-
forward consequence of the following result.
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Theorem 31 Let R be a left-linear TRS and let α be a regularity preserv-
ing approximation mapping. The set of terms that have an α-needed redex is
regular.

PROOF. Let F be the signature of R. Define the relation mark•R on T (F•)
as the parallel closure of {(∆, •) | ∆ ∈ T (F) is a redex}. The set of terms that
have an α-needed redex coincides with

mark•R[NEED(Rα)] ∩ T (F)

If we can show that the relation mark•R is regular then the result follows from
Lemmata 1, 3(2), and 15. Let A be a tree automaton with a unique final state
! that accepts REDEX(R)∩T (F) and let • → ! be the single transition rule of
the tree automaton B. It is not difficult to see that the ground tree transducer
(A,B) accepts mark•R. 2

Theorem 32 Let R be a left-linear TRS and let α be a regularity preserving
approximation mapping. It is decidable whether R ∈ CBNα.

PROOF. Let F be the signature of R. The TRS R belongs to CBNα if and
only if the set

A = NF(R)c \ {t ∈ T (F) | t has an α-needed redex}

is empty. According to Lemmata 1, 2 and Theorem 31, A is regular. Hence
the emptiness of A is decidable by Lemma 1. 2

Because Rα-needed redexes need not be needed for a left-linear TRS R (Exam-
ple 14), membership in CBNα does not guarantee that R admits a computable
call-by-need strategy; orthogonality is needed to draw that conclusion.

It should not come as a surprise that a better approximation covers a larger
class of TRSs. This is expressed formally in the next lemma.

Lemma 33 We have CBNs ( CBNnv ( CBNg, even when these classes are
restricted to orthogonal TRSs.

PROOF. From Lemma 30 we obtain CBNs ⊆ CBNnv ⊆ CBNg. Consider the
orthogonal TRSs

R1 : f(a, b, x) → a f(b, x, a) → b f(x, a, b) → c

R2 : f(a, b, x) → a f(b, x, a) → b f(x, a, b) → x
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According to Lemma 29 R1 ∈ CBNnv and R2 ∈ CBNg. So it remains to show
that R1 /∈ CBNs and R2 /∈ CBNnv. We have

(R1)s : f(a, b, x) → y f(b, x, a) → y f(x, a, b) → y

(R2)nv : f(a, b, x) → a f(b, x, a) → b f(x, a, b) → y

Let ∆ be the redex f(a, a, b). In (R1)s and (R2)nv we have ∆ → t for every
term t. The following rewrite sequences in (R1)s show that none of the redexes
in f(∆, ∆, ∆) is s-needed:

f(•, ∆, ∆) → f(•, a, ∆) → f(•, a, b) → a

f(∆, •, ∆) → f(b, •, ∆) → f(b, •, a) → a

f(∆, ∆, •) → f(a, ∆, •) → f(a, b, •) → a

Hence R1 /∈ CBNs. The following rewrite sequences in (R2)nv show that none
of the redexes in f(∆, ∆, ∆) is nv-needed:

f(•, ∆, ∆) → f(•, a, ∆) → f(•, a, b) → a

f(∆, •, ∆) → f(b, •, ∆) → f(b, •, a) → b

f(∆, ∆, •) → f(a, ∆, •) → f(a, b, •) → a

Consequently, R2 /∈ CBNnv. 2

7 Sequentiality

In this section we relate our classes CBNα to the ones based on the sequentiality
concept of Huet and Lévy. The following definitions originate from [12].

Definition 34 Let R be a TRS over a signature F . Let FΩ = F∪{Ω} with Ω
a fresh constant. The prefix order 6 on T (FΩ,V) is defined as follows: s 6 t if
t can be obtained from s by replacing some Ωs by terms in T (FΩ,V). A term
in T (FΩ,V) \ T (F ,V) that is in normal form with respect to R is called an
Ω-normal form. Let P be a predicate on T (FΩ,V).

• An Ω-position p in a term t ∈ T (FΩ,V) is called an index with respect to
P if s|p 6= Ω for all terms s > t such that P (s) holds.

• The predicate P is called sequential if every Ω-normal form has an index.

Definition 35 Let R be a TRS over a signature F . The predicate nf is defined
on T (FΩ,V) as follows: nf(t) if and only if t →∗

R u for some normal form
u ∈ T (F ,V). We say that R is sequential if nf is a sequential predicate.

The explanation for not restricting the above definitions to ground terms will
be given after Example 41.
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Huet and Lévy remarked that sequentiality is undecidable and that sequential-
ity indices are not computable in general. They identified a decidable subclass,
the class of strongly sequential TRSs, in which every Ω-normal form admits at
least one computable index. This subclass, as well as several later extensions,
is defined below using the concept of approximation mapping.

Definition 36 Let R be a TRS over a signature F and let α be an approxi-
mation mapping. The predicate nfα is defined on T (FΩ,V) as follows: nfα(t)
if and only if t →∗

α u for some normal form u ∈ T (F ,V). We say that R is
α-sequential if nfα is a sequential predicate.

The class of s-sequential TRSs coincides with the class of strongly sequential
TRSs of Huet and Lévy. The class of nv-sequential TRSs coincides with the
class of NVNF-sequential TRSs of Nagaya et al. [21], which is an extension
of the class of NV-sequential TRSs of Oyamaguchi [25]. The latter class is
defined using the nv approximation mapping but with a different predicate
termnv: termnv(t) if and only if t →∗

nv
u for some term u ∈ T (F ,V). The

class of g-sequential TRSs properly contains all growing sequential TRSs of
Jacquemard [13], cf. the paragraph following Example 23.

Below we compare the classes defined in Definition 36 with our CBNα classes.
The following lemma connects nfα-indices with α-needed redexes.

Lemma 37 Let R be a left-linear TRS over a signature F and let α be an
approximation mapping. If a position p in a term t ∈ T (FΩ) is an nfα-index
then redex ∆ in the term s[∆]p is α-needed, for all terms s > t and redexes ∆.

PROOF. Suppose ∆ is not an α-needed redex in the term s[∆]p. Then there
exists a normal form u ∈ T (F) such that s[•]p →∗

α u. Since Rα is left-linear and
• does not appear in its rewrite rules, we obtain s[Ω]p →∗

α u from s[•]p →∗
α u

by replacing all occurrences of • by Ω. It follows that nfα(s[Ω]p) holds. We
have s[Ω]p > t as t|p = Ω. Hence p is not an nfα-index position. 2

Corollary 38 Let α be an approximation mapping. Every left-linear α-se-
quential TRS belongs to CBNα.

PROOF. Let R be a left-linear α-sequential TRS. We show that every re-
ducible term s has an α-needed redex. Let t be the Ω-normal form obtained
from s by replacing all outermost redexes by Ω. Because R is α-sequential,
t has an nfα-index, say at Ω-position p. We obviously have s > t. According
to the previous lemma the redex at position p in s is α-needed. We conclude
that R ∈ CBNα. 2
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The reverse directions do not hold in general. For the strong approximation
this is kind of surprising since redexes carry the same information as Ω because
the former can reduce to any term.

Example 39 Consider the TRS R

f(x, g(y), h(z)) → x f(h(z), x, g(y)) → x f(g(y), h(z), x) → x a → a

over the signature F consisting of all symbols appearing in the rewrite rules.
As NF(R) = ∅, R trivially belongs to CBNs. However, R is not strongly
sequential since the Ω-normal form f(Ω, Ω, Ω) does not have an nf

s
-index:

f(Ω, g(a), h(a)) →s x f(h(a), Ω, g(a)) →s x f(g(a), h(a), Ω) →s x

The following lemma states that for orthogonal TRSs the discrepancy between
strong sequentiality and CBNs can only occur if there are no ground normal
forms.

Lemma 40 Let R be an orthogonal TRS over a signature F such that NF(R)
6= ∅. If R ∈ CBNs then R is strongly sequential.

PROOF. Suppose that R is not strongly sequential. So there exists an Ω-
normal form t ∈ T (FΩ,V) without nfs-indices. Let u ∈ T (F) be the term
obtained from t by replacing all occurrences of Ω by a ground redex. (Since
the empty TRS is trivially strongly sequential, R contains at least one rule.)
We claim that u has no s-needed redexes. Let P be the set of Ω-positions in t,
which coincides with the set of redex positions in u because of orthogonality.
Let p ∈ P . We show that the redex in u at position p is not s-needed. Since p is
not an nfs-index position in t, we have nfs(s) for some term s ∈ T (FΩ,V) with
s > t and s|p = Ω. Without loss of generality we assume that p is the only
Ω-position in s. There exists a rewrite sequence A : s →∗

s
s′ with s′ ∈ T (F ,V)

a normal form. Since there is no Ω in s′, A must contain a rewrite step at a
position q < p. Let s1 →s s2 be the first such step. By simply replacing every
occurrence of Ω by a variable, we may assume that the remainder s2 →∗

s
s′

of A does not contain any occurrences of Ω. We will now transform A into a
sequence B : u[•]p →∗

s
u′ with u′ ∈ NF(R•), which implies that redex u|p is

not s-needed. By replacing every variable in A by some constant we obtain
the sequence Â : ŝ →∗

s
ŝ1 →s ŝ2 →∗

s
ŝ′, where ŝ′ need not be in normal form.

Next we replace all occurrences of Ω in ŝ →∗
s

ŝ1 by •, yielding û →∗
s

û1.
Because redexes s-rewrite to all possible terms and û|p = •, we clearly have
u[•]p →

∗
s

û. Note that û1 contains a single occurrence of •, at position p, and a
redex at position q. We obtain û1 →s ŝ2 by contracting this redex. Combining
the various parts yields u[•]p →

∗
s

ŝ′. If we can s-rewrite ŝ′ to a ground normal
form then we obtain the desired rewrite sequence B. It is easy to see that
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repeatedly replacing redexes by any ground normal form, whose existence is
guaranteed by the assumption NF(R) 6= ∅, will terminate in a ground normal
form. 2

The following example shows that Lemma 40 need not be true for left-linear
TRSs.

Example 41 Consider the left-linear TRS R

g(f(x, a)) → a f(g(x), g(y)) → a f(g(x), f(y, z)) → a

g(f(a, x)) → a f(f(x, y), f(z, u)) → a f(f(x, y), g(z)) → a

The Ω-normal form g(f(Ω, Ω)) has no nf
s
-indices:

g(f(Ω, a)) →s a g(f(a, Ω)) →s a

and hence R is not strongly sequential. Membership in CBNs is not hard to
prove. 9

The reader may wonder why the definitions in this section are not restricted
to ground terms. The reason is that the standard decision procedure for nfs-
indices requires the existence of variables. To see this, let us recall the details
of this procedure [12,17].

A term t ∈ T (FΩ,V) is redex-compatible if t 6 u for some redex u. The
relation →Ω is defined as follows: C[t] →Ω C[Ω] for every context C and
redex-compatible term t 6= Ω. The relation →Ω is confluent and terminating,
and hence every term t admits a unique normal form with respect to →Ω,
which is denoted by ω(t). Now, an Ω-position p in t is an nfs-index if and only
if p ∈ Pos(ω(t[•]p)). The proof of this equivalence (see [17, Lemma 4.8]) relies
on the existence of variables.

Returning to Example 39, we have ω(f(•, Ω, Ω)) = ω(f(Ω, •, Ω)) = ω(f(Ω, Ω, •))
= Ω, confirming that the term f(Ω, Ω, Ω) indeed lacks nfs-indices. If we would
restrict the above sequentiality definitions to ground terms, then all Ω-positions
would become nfs-indices; because of the rewrite rule a → a there are no
ground normal forms without Ω and hence nfs(t) fails as soon as t contains an
occurrence of Ω. 10

After this digression we return to the comparison between CBNα and α-
sequentiality. It is easy to show that CBNnv properly includes the class of

9 Membership can also be verified by the Autowrite tool; see the description pre-
ceding Definition 44.
10 It follows that the suggestion made in the footnote 2 in [2] to simulate variables
by enriching the signature is mandatory rather than optional.
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nv-sequential TRSs (and hence also the class of NV-sequential TRSs intro-
duced by Oyamaguchi [25]).

Example 42 Consider the TRS R1 defined in the proof of Lemma 33. The
following rewrite steps show that the Ω-normal form f(Ω, Ω, Ω) does not have
an index with respect to nf

nv
:

f(Ω, a, b) →nv c f(b, Ω, a) →nv b f(a, b, Ω) →nv a

Since R1 ∈ CBNnv, it follows that the class of nv-sequential TRSs is a proper
subclass of CBNnv.

It is interesting to note that the same example illustrates that Huet and Lévy’s
sequentiality concept does not capture the class of (orthogonal) TRSs that
admit a (computable or otherwise) call-by-need strategy. Since R1 is right-
ground, we have →nv = →R1

and thus nfnv = nf. Hence R1 is not sequen-
tial. Because R1 is orthogonal and belongs to CBNnv, it obviously admits a
computable call-by-need strategy. Since R1 is not g-sequential but belongs to
CBNg, it is clear that CBNg properly includes the class of g-sequential TRSs
(and thus the class of growing sequential TRSs).

Figure 1 summarizes the findings of this section. Concerning the placement
of CBNs, the TRS R in Example 39 is not nv-sequential. To show that CBNs

contains TRSs that are not g-sequential, we need to slightly modify the ex-
ample.
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Example 43 Consider the TRS R

f(x, g(y), h(z)) → i(g(x)) i(g(x)) → x

f(h(z), x, g(y)) → i(g(x)) a → a

f(g(y), h(z), x) → i(g(x))

over the signature F consisting of all symbols appearing in the rewrite rules.
We have R ∈ CBNs because NF(R) = ∅. The TRS R is not g-sequential since
the Ω-normal form f(Ω, Ω, Ω) does not have an nf

g
-index:

f(Ω, g(a), h(a)) →g i(g(Ω)) →g x

f(h(a), Ω, g(a)) →g i(g(Ω)) →g x

f(g(a), h(a), Ω) →g i(g(Ω)) →g x

8 Signature Extension

In this section we study the question whether membership in CBNα is pre-
served after adding new function symbols. This entails that we need to be a
bit more precise about the underlying signature in our notation. From now on
we write NF(R,F) for the set of ground normal forms of an eTRS R over a
signature F . Furthermore, an α-needed redex with respect to a TRS R over
the signature F will often be called (Rα,F)-needed in the sequel.

Many of the examples presented in this and the next section have been verified
by Autowrite. This tool, described in Durand [8], checks membership in CBNα

for α ∈ {s, nv, g} by using the direct (as opposed to the ground tree transducer
constructions of Sections 5 and 6) tree automata constructions described in
[10].

Definition 44 We say that a class C of TRSs is preserved under signature
extension if (R,G) ∈ C for all (R,F) ∈ C and F ⊆ G.

Our first example shows that CBNs is not preserved under signature extension.

Example 45 Consider the TRS (R,F) of Example 39. Let G = F ∪{b} with
b a constant. We have (R,G) /∈ CBNs as the term f(a, a, a) has no (Rs,G)-
needed redex:

f(•, a, a) →s f(•, g(a), a) →s f(•, g(a), h(a)) →s b

f(a, •, a) →s f(h(a), •, a) →s f(h(a), •, g(a)) →s b

f(a, a, •) →s f(g(a), a, •) →s f(g(a), h(a), •) →s b

One may wonder whether there are any nontrivial counterexamples, where

23



nontrivial means that the set of ground normal forms is non-empty. Surpris-
ingly, the answer is yes, provided we consider an approximation mapping α
that is at least as good as nv.

Example 46 Consider the TRS R

f(x, a, b) → g(x) f(a, a, a) → g(a) g(a) → g(a)

f(b, x, a) → g(x) f(b, b, b) → g(a) g(b) → g(b)

f(a, b, x) → g(x) e(x) → x

over the signature F consisting of all symbols appearing in the rewrite rules.
First we show that (R,F) ∈ CBNnv. It is not difficult to show that the only
(Rnv,F)-normalizable terms are a, b, and e(t) for every t ∈ T (F). Since a

and b are normal forms, we only have to show that every e(t) contains an
(Rnv,F)-needed redex, which is easy since e(t) itself is an (Rnv,F)-needed
redex. Let G = F ∪ {c} with c a constant. We have (R,G) /∈ CBNnv as the
term f(e(a), e(a), e(a)) has no (Rnv,G)-needed redex:

f(•, e(a), e(a)) →nv f(•, a, e(a)) →nv f(•, a, b) →nv g(c)

f(e(a), •, e(a)) →nv f(b, •, e(a)) →nv f(b, •, a) →nv g(c)

f(e(a), e(a), •) →nv f(a, e(a), •) →nv f(a, b, •) →nv g(c)

For α = s there is no nontrivial counterexample.

Theorem 47 The subclass of CBNs consisting of all orthogonal TRSs (R,F)
such that NF(R,F) 6= ∅ is preserved under signature extension. 2

We refrain from giving the proof at this point since the statement easily follows
from Theorem 52 below, whose proof is presented in detail in the appendix.
(See also the discussion following Corollary 60). We just show the necessity of
the orthogonality condition.

Example 48 Consider the left-linear TRS R

f(x, a) → a g(f(a, x), y) → a

g(x, a) → a g(x, f(y, z)) → a

g(x, g(y, z)) → a

over the signature F = {a, f, g}. Autowrite is able to verify that (R,F) ∈ CBNs.
Let G = F ∪ {c} with c a constant. The TRS (R,G) does not belong to CBNs

because the term g(f(f(a, a), f(a, a)), c) lacks (Rs,G)-needed redexes:

g(f(•, f(a, a)), c) →s g(f(•, a), c) →s g(a, c)

g(f(f(a, a), •), c) →s g(f(a, •), c) →s a
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Note that here only the rewrite rules f(x, a) → a and g(f(a, x), y) → a are
used. The remaining rules of R are needed to ensure that (R,F) ∈ CBNs.

Our second result states that for any approximation mapping α the subclass
of CBNα consisting of all left-linear TRSs R with the property defined below
is preserved under signature extension.

Definition 49 We say that a TRS R has external normal forms if there
exists a ground normal form which is not an instance of a proper non-variable
subterm of a left-hand sides of a rewrite rule in R.

Note that the TRS of Example 46 lacks external normal forms as both ground
normal forms a and b appear in the left-hand sides of the rewrite rules. Fur-
ther note that it is decidable whether a left-linear TRS has external normal
forms by straightforward tree automata techniques. Finally note that the ex-
ternal normal form property is satisfied whenever there exists a constant not
occurring in the left-hand sides of the rewrite rules.

Theorem 50 Let α be an approximation mapping. The subclass of CBNα con-
sisting of all left-linear TRSs with external normal forms is preserved under
signature extension. 2

The proof is given in the appendix. Note that for α = s the above theorem is
a special case of Theorem 47 since the existence of an external normal form
implies the existence of a ground normal form.

Our final signature extension result is about TRSs without external normal
form. Such TRSs are quite common.

Example 51 Consider the TRS R of Example 5 over the signature F consist-
ing of all symbols appearing in the rewrite rules. Since every ground normal
form is of the form sn(0) for some n > 0, it follows that R lacks external
normal forms.

We denote by WN(R,F) the set of all ground terms in T (F) that rewrite
in R to a normal form in NF(R,F). If no confusion can arise, we just write
WN(R). Let F ⊆ G. We denote by WN(R,G,F) the set of terms in T (F) that
have a normal form with respect to (R,G).

The condition WN(Rα,F) = WN(Rα,G,F) in Theorem 52 expresses that the
set of Rα-normalizable terms in T (F) is not enlarged by allowing terms in
T (G) to be substituted for the variables in the rewrite rules. We stress that
this condition is decidable for left-linear R and regularity preserving α by
standard tree automata techniques.

Theorem 52 Let R be an orthogonal TRS over a signature F , α ∈ {s, nv},
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and F ⊆ G such that WN(Rα,F) = WN(Rα,G,F). If (R,F) ∈ CBNα and
Rα is collapsing then (R,G) ∈ CBNα. 2

The necessity of the WN(Rα,F) = WN(Rα,G,F) condition for collapsing Rα

is a consequence of Example 46. The TRS R in that example is a collapsing
orthogonal TRS with (R,F) ∈ CBNnv, (R,G) /∈ CBNnv, and WN(Rnv,F) 6=
WN(Rnv,G,F) as witnessed by the term f(a, a, b). The following example
shows the necessity of the collapsing condition.

Example 53 Consider TRS R

f(x, a, b(y, z)) → c(∞) g(x) → b(x,∞)

f(x, a, c(y)) → ∞ h(a) → ∞

f(a, a, a) → ∞ h(b(a, x)) → a

f(a, b(x, y), z) → a h(b(b(x, y), z)) → b(∞,∞)

f(a, c(x), y) → ∞ h(b(c(x), y)) → ∞

f(b(x, y), z, a) → a h(c(x)) → ∞

f(b(x, y), b(z, u), b(v, w)) → ∞ i(a, a) → ∞

f(b(x, y), b(z, u), c(v)) → ∞ i(a, b(x, y)) → ∞

f(b(x, y), c(z), b(u, v)) → ∞ i(a, c(x)) → ∞

f(b(x, y), c(z), c(u)) → ∞ i(b(x, y), z) → ∞

f(c(x), a, a) → ∞ i(c(x), y) → a

f(c(x), b(y, z), a) → ∞ ∞ → ∞

f(c(x), b(y, z), c(u)) → ∞

f(c(x), b(y, z), b(u, v)) → ∞

f(c(x), c(y), z) → ∞

over the signature F consisting of all symbols appearing in the rewrite rules
and let G = F ∪ {d} with d a constant. One easily checks that the term
i(f(∆, ∆, ∆), d) with ∆ = h(g(d)) lacks (Rnv,G)-needed redexes and hence
(R,G) /∈ CBNnv. Autowrite is able to verify (R,F) ∈ CBNnv and WN(Rnv,F)
= WN(Rnv,G,F).

The next example shows the necessity of the restriction to α ∈ {s, nv}.

Example 54 Consider the orthogonal TRS R

f(x, a, b(y), z) → h(z) h(a) → ∞

f(b(x), y, a, z) → h(z) h(b(x)) → ∞

f(a, b(x), y, z) → h(z) i(b(x)) → j(∞, x)

f(a, a, a, z) → ∞ i(a) → ∞

f(b(x), b(y), b(z), u) → ∞ j(x, a) → a

∞ → ∞ j(x, b(y)) → b(a)
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over the signature F consisting of all symbols appearing in the rewrite rules.
Note that the growing approximation only modifies the rule i(b(x)) → j(∞, x)
into i(b(x)) → j(∞, y). Let G = F ∪ {c} with c a constant. As the term
f(i(b(c)), i(b(c)), i(b(c))), c) lacks (Rg,G)-needed redexes, (R,G) /∈ CBNg. Au-

towrite is able to verify (R,F) ∈ CBNg and WN(Rg,F) = WN(Rg,G,F).
Note that R is not collapsing. This is not essential, since adding the single
collapsing rule k(x) → x to R does not affect any of the above properties.

We show that Theorem 47 is a special case of Theorem 52 by proving that
for α = s the condition WN(Rα,F) = WN(Rα,G,F) is a consequence of
NF(R,F) 6= ∅.

Lemma 55 Let R be a TRS over a signature F . If NF(R,F) 6= ∅ then
WN(Rs,F) = T (F).

PROOF. If NF(R,F) 6= ∅ then there must be a constant c ∈ NF(R,F).
Define the TRS R′ = {l → c | l → r ∈ R} over the signature F . Clearly
→R′ ⊆ →s. The TRS R′ is terminating since every rewrite step reduces the
number of function symbols in F \{c}. Since Rs and R′ have the same normal
forms, it follows that Rs is weakly normalizing. 2

PROOF of Theorem 47. Let R be an orthogonal TRS over a signature F
such that (R,F) ∈ CBNs. Let F ⊆ G. We have to show that (R,G) ∈ CBNs.
If R = ∅, this is trivial. Otherwise Rs is collapsing and the result follows
from Theorem 52 provided that WN(Rs,F) = WN(Rs,G,F). From Lemma 55
we obtain WN(Rs,F) = T (F) and WN(Rs,G,F) = WN(Rs,G) ∩ T (F) =
T (G) ∩ T (F) = T (F). 2

We conclude this section by remarking that we have to use Theorem 52 only
once. After adding a single new function symbol we obtain an external normal
form and hence we can apply Theorem 50 for the remaining new function
symbols.

9 Modularity

The results obtained in the previous section form the basis for the modularity
results presented in this section. We first consider disjoint combinations.

Definition 56 We say that a class C of TRSs is modular (for disjoint com-
binations) if (R ∪ R′,F ∪ F ′) ∈ C for all (R,F), (R′,F ′) ∈ C such that
F ∩ F ′ = ∅.
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To simplify notation, in the remainder of this section we write S for R ∪ R′

and G for F ∪ F ′.

The condition in Theorem 50 is insufficient for modularity as shown by the
following example.

Example 57 Consider the TRS R

f(x, a, b) → a f(b, x, a) → a f(a, b, x) → a

over the signature F consisting of all symbols appearing in the rewrite rules
and the TRS R′ = {g(x) → x} over the signature F ′ consisting of a con-
stant c in addition to g. Both TRSs have external normal forms and belong
to CBNnv, as one easily shows. Their union does not belong to CBNnv as the
term f(g(a), g(a), g(a)) has no (Snv,G)-needed redex:

f(•, g(a), g(a)) →nv f(•, a, g(a)) →nv f(•, a, b) →nv a

f(g(a), •, g(a)) →nv f(b, •, g(a)) →nv f(b, •, a) →nv a

f(g(a), g(a), •) →nv f(a, g(a), •) →nv f(a, b, •) →nv a

If we forbid collapsing rules like g(x) → x, modularity holds. The following
theorem is proved along the lines of the proof of Theorem 50; because there
are no collapsing rules and the eTRSs are left-linear, aliens (see the appendix)
cannot influence the possibility to perform a rewrite step in the non-alien part
of a term.

Theorem 58 Let α be an arbitrary approximation mapping. The subclass of
CBNα consisting of all left-linear TRSs R with external normal forms such
that Rα is non-collapsing is modular. 2

The following result is the modularity counterpart of Theorem 52. The proof
is given in the appendix.

Theorem 59 Let (R,F) and (R′,F ′) be disjoint orthogonal TRSs and α ∈
{s, nv} such that both WN(Rα,G,F) = WN(Rα,F) and WN(R′

α,G,F ′) =
WN(R′

α,F ′). If (R,F), (R′,F ′) ∈ CBNα and both Rα and R′
α are collapsing

then (S,G) ∈ CBNα. 2

It is rather surprising that the presence of collapsing rules helps to achieve
modularity; for most properties of TRSs collapsing rules are an obstacle for
modularity (see e.g. Middeldorp [18]).

The next result is the modularity counterpart of Theorem 47. It is an easy
corollary of the preceding theorem.

Corollary 60 The subclass of CBNs consisting of all orthogonal TRSs (R,F)
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such that NF(R,F) 6= ∅ is modular.

Using Huet and Lévy’s characterization of strong sequentiality by means of
increasing indices, Klop and Middeldorp [17] showed that strong sequentiality
is a modular property of orthogonal TRSs. Since membership in CBNs coin-
cides with strong sequentiality for orthogonal TRSs with ground normal forms
(Lemma 40), this provides another proof of Corollary 60. Actually, in [17] it
is remarked that it is sufficient that the left-hand sides of the two strongly
sequential rewrite systems do not share function symbols. One easily verifies
that for our modularity results it is sufficient that Rα and R′

α do not share
function symbols. Actually, we can go a step further by considering so-called
constructor-sharing combinations. In such combinations the participating sys-
tems may share constructors but not defined symbols.

Definition 61 Two TRSs (R,F) and (R′,F ′) share constructors if FD∩F
′ =

F ′
D∩F = ∅. We say that a class C of TRSs is constructor-sharing modular if

(R∪R′,F∪F ′) ∈ C for all TRSs (R,F), (R′,F ′) ∈ C that share constructors.

It can be shown that the results obtained in this section extend to constructor-
sharing combinations, provided we strengthen the requirements in Theorems 58
and 59 by forbidding the presence of constructor-lifting rules. A rewrite rule
l → r is called constructor-lifting if root(r) is a shared constructor. In the ap-
pendix we give a detailed proof of the extension of Theorem 58. The proof of
Theorem 59 is easily extended to constructor-sharing combinations and hence
omitted.

Theorem 62 Let (R,F) and (R′,F ′) be left-linear constructor-sharing TRSs
with external normal forms and without constructor-lifting rules and let α
be an approximation mapping such that Rα and R′

α are non-collapsing. If
(R,F), (R′,F ′) ∈ CBNα then (S,G) ∈ CBNα.

The reason for excluding constructor-lifting rules in Theorem 62 is shown in
the following example.

Example 63 Consider the TRS R

f(x, c(a), c(b)) → a f(c(b), x, c(a)) → a f(c(a), c(b), x) → a

over the signature F consisting of all symbols appearing in the rewrite rules and
the TRS R′ = {g(x) → c(x)} over the signature F ′ consisting of a constant d

in addition to g and c. Both TRSs have external normal forms, lack collapsing
rules, and belong to CBNnv. Their union does not belong to CBNnv as the term
f(g(a), g(a), g(a)) has no (Snv,G)-needed redex. Note that R and R′ share the
constructor c and hence g(x) → c(x) is constructor-lifting.

Theorem 64 Let (R,F) and (R′,F ′) be orthogonal constructor-sharing TRSs
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without constructor-lifting rules and α ∈ {s, nv} such that WN(Rα,G,F) =
WN(Rα,F) and WN(R′

α,G,F ′) = WN(R′
α,F ′). If (R,F), (R′,F ′) ∈ CBNα

and both Rα and R′
α are collapsing then (S,G) ∈ CBNα. 2

Again, it is essential that constructor-lifting rules are excluded.

Example 65 Consider the TRSs R

f(x, a, b) → c(g(x)) g(x) → g(a)

f(b, x, a) → c(g(x)) h(x) → x

f(a, b, x) → c(g(x))

and R′ = {i(a) → a, i(c(x)) → x} over the signatures F and F ′ consisting of
function symbols that appear in their respective rewrite rules. The two TRSs
are obviously collapsing and share the constructors a and c. One easily verifies
that both TRSs belong to CBNnv and that WN(Rnv,G,F) = WN(Rnv,F) and
WN(Rnv,G,F ′) = T (F ′) = WN(R′

nv
,F ′). However, the union of the two TRSs

does not belong to CBNnv as the term i(f(h(a), h(a), h(a))) has no (Snv,G)-
needed redex.

For the strong approximation we need of course not exclude constructor-
sharing rules. Moreover, the two conditions WN(Rs,G,F) = WN(Rα,F) and
WN(R′

s
,G,F ′) = WN(R′

α,F ′) are always satisfied (cf. the proof of Theo-
rem 47). Hence we can state the final result of the paper.

Corollary 66 Let (R,F) and (R′,F ′) be orthogonal constructor-sharing TRSs
with ground normal forms. If (R,F), (R′,F ′) ∈ CBNs then (S,G) ∈ CBNs. 2

10 Conclusion

In this paper we introduced a new framework for the study of call-by-need
computations in term rewriting. Our framework is parameterized by the con-
cept of approximation mapping and we showed that regularity preservingness
is the key to decidability, which is obtained by applying simple tree automata
techniques. We performed a detailed study of the modularity aspects of our
framework and we showed that our framework provides a better approxima-
tion to neededness than the sequentiality notions originating from the seminal
paper of Huet and Lévy [12].

What we did not address in this paper is the important issue of compiling
call-by-need strategies. The knowledge that every reducible term has at least
one computable needed redex is clearly insufficient to obtain an efficient call-
by-need strategy. Testing the redexes in a reducible term one by one until a
needed redex is encountered is unattractive. Moreover, after a needed redex
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is identified and contracted, the search for a needed redex in the obtained
term has to start from scratch. Huet and Lévy showed that every strongly
sequential orthogonal TRS admits a so-called matching dag, which implements
an efficient call-by-need strategy. Since in our framework neededness of a redex
may depend on other redexes in a term, it is highly unlikely that a similar
data structure exists for the efficient compilation of call-by-need strategies for
the TRSs in CBNα for α ∈ {nv, g}.

Another issue we did not address is call-by-need strategies to root-stable forms.
In [19] it is shown that root-neededness is more fundamental than neededness
when it comes to infinitary normalization. However, root-stability is undecid-
able and, unlike neededness, root-neededness of a redex is not determined by
its position. This considerably complicates the quest for a computable call-
by-need strategy to root-stable forms. The interested reader is referred to [9,
Sections 6 and 7] for some preliminary results in this direction.
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A Proofs for Sections 8 and 9

A reducible term without (Rα,F)-needed redexes is called (Rα,F)-free. A
minimal free term has the property that none of its proper subterms is free.

The proofs of our signature extension results follow the same strategy. We
consider a TRS R over a signature F such that (R,F) ∈ CBNα. Let G be
an extension of F . Assuming that (R,G) /∈ CBNα, we consider a minimal
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(Rα,G)-free term t in T (G). By replacing the maximal subterms of t that
start with a function symbol in G\F—such subterms will be called aliens
or more precisely G\F -aliens in the sequel—by a suitable term in T (F), we
obtain an (Rα,F)-free term t′ in T (F). Hence (R,F) /∈ CBNα, contradicting
the assumption.

We start with a useful lemma which is used repeatedly in the sequel.

The subset of WN(R,G,F) consisting of those terms that admit a normal-
izing rewrite sequence in (R,G) containing a root rewrite step is denoted by
WNR(R,G,F). If F = G then we just write WNR(R,F) or even WNR(R) if
the signature is clear from the context. We also find it convenient to write
WN•(R,G,F) for WN(R•,G•,F•) and WNR•(R,G,F) for WNR(R•,G•,F•).

Lemma 67 Let R be a left-linear TRS and α an approximation mapping.
Every minimal Rα-free term belongs to WNR(Rα).

PROOF. Let F be the signature of R and let t ∈ T (F) be a minimal free
term. For every redex position p in t we have t[•]p ∈ WN•(Rα). Let p′ be
the minimum position above p at which a contraction takes place in any
rewrite sequence from t[•]p to a normal form in T (F) and define P = {p′ |
p is a redex position in t}. Let p∗ be a minimal position in P . We show that
p∗ = ε. If p∗ > ε then we consider the term t|p∗. Let q be a redex posi-
tion in t|p∗. There exists a redex position p in t such that p = p∗q. We have
t|p∗[•]q = (t[•]p)|p∗ ∈ WN•(Rα) by the definition of p∗. Since t|p∗ has at least
one redex, it follows that t|p∗ is free. As t|p∗ is a proper subterm of t we obtain
a contradiction to the minimality of t. Hence p∗ = ε. So there exists a redex
position p in t and a rewrite sequence A : t[•]p →+

Rα,F•
u ∈ NF(R,F) that

contains a root rewrite step. Because Rα is left-linear and • does not occur in
the rewrite rules of Rα, • cannot contribute to this sequence. It follows that
if we replace in A every occurrence of • by t|p we obtain an (Rα,F)-rewrite
sequence from t to u with a root rewrite step. 2

In particular, minimal free terms are not root-stable.

PROOF of Theorem 50. Let (R,F) ∈ CBNα and let c ∈ NF(R,F) be
an external normal form. Let F ⊆ G. We have to show that (R,G) ∈ CBNα.
Suppose to the contrary that (R,G) /∈ CBNα. According to Lemma 67 there
exists a term t ∈ WNR(Rα,G) without (Rα,G)-needed redex. Let t′ be the
term in T (F) obtained from t by replacing every G\F -alien by c. Because t is
not root-stable, we have t →∗

Rα,G lσ for some left-hand side l. Replacing in this
sequence every G \ F -alien by c, yields a sequence t′ →∗

Rα,F lσ′. So t′ cannot
be a normal form. Since (R,F) ∈ CBNα, t′ contains an (Rα,F)-needed redex
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∆, say at position p. Because c is an external normal form, ∆ is also a redex
in t. Since t has no (Rα,G)-needed redexes, there exists a rewrite sequence
t[•]p →+

Rα,G•
u with u ∈ NF(R•,G). If we replace in this rewrite sequence every

G\F -alien by c, we obtain a rewrite sequence t′[•]p →+
Rα,F•

u′. Because c does
not unify with a proper non-variable subterm of a left-hand side of a rewrite
rule, it follows that u′ ∈ NF(R•,F). Hence ∆ is not an (Rα,F)-needed redex
in t′, yielding the desired contradiction. 2

Before we can prove Theorem 52, we need a few preliminary results.

Definition 68 Let R be a TRS. Two redexes ∆1, ∆2 are called pattern equal,
denoted by ∆1 ≈ ∆2, if they have the same redex pattern, i.e., they are redexes
with respect to the same rewrite rule.

Lemma 69 Let R be an orthogonal TRS, α ∈ {s, nv}, and suppose that ∆ ≈
∆′. If C[∆] ∈ WN(Rα) then C[∆′] ∈ WN(Rα).

PROOF. Let C[∆] →∗ t be a normalizing rewrite sequence in Rα. If we
replace every descendant of ∆ by ∆′ then we obtain a (possibly shorter) nor-
malizing rewrite sequence C[∆′] →∗ t. The reason is that every descendant
∆′′ of ∆ satisfies ∆′′ ≈ ∆ due to orthogonality and hence if ∆′′ is contracted
to some term u then ∆ rewrites to the same term because the variables in the
right-hand sides of the rewrite rules in Rα are fresh, due to the assumption
α ∈ {s, nv}. Moreover, as t is a normal form, there are no descendants of ∆
left. Note that the resulting sequence can be shorter since rewrite steps below
a descendant of ∆ are not mimicked. 2

The above lemma does not hold for the growing approximation, as shown by
the following example.

Example 70 Consider the TRS R

f(x) → x a → b c → c

We have Rg = R. Consider the redexes ∆ = f(a) and ∆′ = f(c). Clearly
∆ ≈ ∆′. Redex ∆ admits the normal form b, but ∆′ has no normal form.

Orthogonality is also necessary for Lemma 69.

Example 71 Consider the TRS R

f(a) → b f(g(a)) → a g(x) → a b → b
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We have Rnv = R. Consider the context C = f(2) and the pattern equivalent
redexes ∆ = g(a) and ∆′ = g(b). The term C[∆] admits the normal form a,
but C[∆′] has no normal form.

Lemma 72 Let R be an orthogonal TRS over a signature F , α ∈ {s, nv}, and
F ⊆ G. If WN(Rα,F) = WN(Rα,G,F) then WN•(Rα,F) =
WN•(Rα,G,F).

PROOF. The inclusion WN•(Rα,F) ⊆ WN•(Rα,G,F) is obvious. For the
reverse inclusion we reason as follows. Let t ∈ WN•(Rα,G,F) and consider a
rewrite sequence A in (Rα,G•) that normalizes t. We may write t = C[t1, . . . , tn]
such that t1, . . . , tn are the maximal subterms of t that are rewritten in A at
their root positions. Hence A can be rearranged into A′:

t →∗
Rα,G•

C[∆1, . . . , ∆n] →∗
Rα,G•

C[u1, . . . , un]

for some redexes ∆1, . . . , ∆n and normal form C[u1, . . . , un] ∈ T (G). Since
the context C cannot contain •, all occurrences of • are in the substitution
parts of the redexes ∆1, . . . , ∆n. If we replace in C[∆1, . . . , ∆n] every G•\F -
alien by some ground term c ∈ T (F), we obtain a term t′ = C[∆′

1, . . . , ∆
′
n]

with ∆′
i ∈ T (F) and ∆i ≈ ∆′

i for every i. Repeated application of Lemma 69
yields t′ ∈ WN•(Rα,G). Because • cannot contribute to the creation of a
normal form, we actually have t′ ∈ WN(Rα,G) and thus t′ ∈ WN(Rα,G,F)
as t′ ∈ T (F). The assumption yields t′ ∈ WN(Rα,F). Since WN(Rα,F) ⊆
WN•(Rα,F) clearly holds, we obtain t′ ∈ WN•(Rα,F). Now, if we replace in
the first part of A′ every G\F -alien by c then we obtain a (possibly shorter)
rewrite sequence t →∗

Rα,F•
C[∆′′

1, . . . , ∆
′′
n] ∈ T (F•) with ∆i ≈ ∆′′

i and thus also
∆′

i ≈ ∆′′
i for every i. Repeated application of Lemma 69 yields C[∆′′

1, . . . , ∆
′′
n] ∈

WN•(Rα,F) and therefore t ∈ WN•(Rα,F) as desired. 2

We note that for α = s the preceding lemma is a simple consequence of
Lemma 55 below. The following example shows that the restriction to α ∈
{s, nv} is essential.

Example 73 Consider TRS R

f(x, a) → a h(x, a, a) → i

f(a, b(x)) → i h(x, a, b(y)) → i

f(b(x), b(y)) → i h(x, b(y), a) → i

g(a, a) → i h(x, b(y), b(z)) → b(g(y, f(x, z)))

g(b(x), a) → i i → b(i)

g(x, b(y)) → a
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over the signature F consisting of all symbols appearing in the rewrite rules
and let G = F ∪ {c} with c a constant. The term t = h(•, i, i) belongs to
WN•(Rg,G,F):

t →+
Rg,G•

h(•, b(i), b(i)) →Rg,G•
b(g(c, f(•, a))) →Rg,G•

b(g(c, a))

However, one easily verifies that there is no normal form u ∈ NF(Rg,F) such
that t →∗

Rg,F•
u. Hence WN•(Rg,F) 6= WN•(Rg,G,F). Using the observations

that (i) every term t ∈ T (F) rewrites to a or a term of the form b(u) and
(ii) the only rewrite rule of Rg where c can be introduced is h(x, b(y), b(z)) →
b(g(y′, f(x, z′))) but every redex in T (F) of the form h(s, b(t), b(u)) rewrites
to b(a) without using c:

h(s, b(t), b(u)) →Rg,F b(g(a, f(s, b(a))))

→+
Rg,F

b(g(a, i)) because s →∗ a or s →∗ b(s′)

→Rg,F b(g(a, b(i))) →Rg,F b(a)

it can be readily checked that WN(Rg,F) = WN(Rg,G,F). (Autowrite is able
to check this equality automatically.)

A redex is called flat if it does not contain smaller redexes.

Lemma 74 Let (R,F) and (S,G) be orthogonal TRSs and α ∈ {s, nv} such
that (R,F) ⊆ (S,G) and WN(Sα,G,F) = WN(Rα,F). If t ∈
WNR(Sα,G) and root(t) ∈ F then there exists a flat R-redex Θ in T (F).
Moreover, if Rα is collapsing then we may assume that Θ is Rα-collapsing.

PROOF. From t ∈ WNR(Sα,G) we infer that t →∗
Sα,G ∆ for some redex

∆ ∈ WN(Sα,G). By considering the first such redex it follows that ∆ is a
redex with respect to (Rα,G). If we replace in ∆ the subterms below the
redex pattern by an arbitrary ground term in T (F) then we obtain a redex
∆′ ∈ T (F) with ∆ ≈ ∆′. Lemma 69 yields ∆′ ∈ WN(Sα,G) and thus ∆′ ∈
WN(Sα,G,F) = WN(Rα,F). Hence NF(R,F) = NF(Rα,F) 6= ∅. Therefore,
using orthogonality, we obtain a flat redex Θ ∈ T (F) by replacing the variables
in the left-hand side of any rewrite rule in R by terms in NF(R,F). If Rα is
collapsing then we take any Rα-collapsing rewrite rule. 2

PROOF of Theorem 52 If (R,F) has external normal forms then the result
follows from Theorem 50. So we assume that (R,F) lacks external normal
forms. We also assume that R 6= ∅ for otherwise the result is trivial. Suppose
to the contrary that (R,G) /∈ CBNα. According to Lemma 67 there exists a
term t ∈ WNR(Rα,G) without (Rα,G)-needed redex. Lemma 74 (with S = R)
yields a flat redex Θ ∈ T (F). Since Rα is collapsing, we may assume that Θ
is Rα-collapsing. Let t′ be the term in T (F) obtained from t by replacing
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every G\F -alien by Θ. Let P be the set of positions of those aliens. Since t′

is reducible, it contains an (Rα,F)-needed redex, say at position q. We show
that t′[•]q ∈ WN•(Rα,G). We consider two cases.

(1) Suppose that q ∈ P . Since t ∈ WNR(Rα,G), t →∗
Rα,G ∆ for some redex

∆ ∈ WN(Rα,G) ⊆ WN•(Rα,G). Since the root symbol of every alien
belongs to G\F , aliens cannot contribute to the creation of ∆ and hence
we may replace them by arbitrary terms in T (G•) and still obtain a
redex that is pattern equal to ∆. We replace in t the alien at position
q by • and every alien at position p ∈ P \ {q} by t′|p = Θ. This gives
t′[•]q →∗

Rα,G•
∆′ with ∆′ ≈ ∆. Lemma 69 yields ∆′ ∈ WN•(Rα,G) and

hence t′[•]q ∈ WN•(Rα,G).
(2) Suppose that q /∈ P . Since Θ is flat, it follows by orthogonality that

q is also a redex position in t. Since t is an (Rα,G)-free term, t[•]q ∈
WN•(Rα,G). Because Θ is a collapsing redex and α ∈ {s, nv}, we have
Θ →Rα,G t|p for all p ∈ P . Hence t′[•]q →∗

Rα,G•
t[•]q and thus t′[•]q ∈

WN•(Rα,G).

As t′ ∈ T (F), we have t′[•]q ∈ WN•(Rα,G,F) and thus t′[•]q /∈ WN•(Rα,F)
by Lemma 72, contradicting the assumption that q is the position of an
(Rα,F)-needed redex in t′. 2

For the proof of Theorem 59, the counterpart of Theorem 52, we need the
following preliminary lemma. In the remainder of the appendix we have S =
R ∪R′ and G = F ∪ F ′.

Lemma 75 Let (R,F) and (R′,F ′) be disjoint TRSs. If α ∈ {s, nv} then
WN(Sα,G,F) ⊆ WN(Rα,G,F).

PROOF. We consider here the more complicated case α = nv. Let s ∈
WN(Snv,G,F), so s →∗

Snv,G
t for some normal form t ∈ NF(Snv,G). By in-

duction on the length n of s →∗
Snv,G

t we show that s →∗
Rnv,G

t. In order to
make the induction work we prove this statement for all s ∈ T (G) such that
in s →∗

Snv,G
t no redex inside an G\F -alien of s is contracted. If n = 0 then

the statement is trivial. If n > 0 then there exists a term s′ ∈ T (G) such
that s →Rnv ,G s′ →∗

Snv,G
t. Note that the rewrite rule l → r applied in the

step from s to s′ must come from Rnv because redexes inside G\F -aliens of
s are not contracted. We have s = C[lσ] and s′ = C[rσ] for some context C
and substitution σ. If σ(x) ∈ T (F) for all x ∈ Var(r) then we can apply the
induction hypothesis to s′ →∗

Snv,G
t. This yields s′ →∗

Rnv ,G
t and thus s →∗

Rnv,G
t

as desired. If σ(x) ∈ T (G)\T (F) for some x ∈ Var(r) then s′ contains new
G\F -aliens. If no redexes are contracted in these aliens in the (Snv,G)-rewrite
sequence to t then we can again apply the induction hypothesis. Otherwise
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we have to modify s′ →∗
Snv,G

t first. Let p be the position of a G\F -alien in
s′ such that a redex in s′|p is contracted in s′ →∗

Snv,G
t. We distinguish two

cases. If in s′ →∗
Snv,G

t no step takes place at a position strictly above p, then
we replace s′|p by t|p. Otherwise, let u →Snv,G u′ be the first step in s′ →∗

Snv,G
t

in which a redex is contracted at a position strictly above p. In this case we
replace s′|p by u|p. It is easy to see that we end up with a rewrite sequence
s′′ →∗

Snv,G
t whose length is less than n− 1 and with the property that redexes

inside G\F -aliens of s′′ are not contracted. Hence we can apply the induc-
tion hypothesis, which yields s′′ →∗

Rnv,G
t. Because r is a linear term, we may

write s′′ = C[rσ′] for some substitution σ′. Since we are dealing with the nv

approximation, s →Rnv ,G s′′ and therefore s →∗
Rnv ,G

t as desired. 2

Let us illustrate the construction in the above proof on a small example.

Example 76 Consider the TRSs R

f(x) → g(x, x) g(a, a) → g(a, a)

g(a, b) → c g(b, b) → g(b, b)

and R′ = {h(x) → x} over the signatures F and F ′ consisting of function
symbols that appear in their respective rewrite rules. The (Snv,G)-rewrite se-
quence

f(a) →Rnv
g(h(a), h(a)) →R′

nv
g(a, h(a)) →R′

nv
g(a, b) →Rnv

c

is transformed into
f(a) →Rnv

g(a, b) →Rnv
c

Note that simply replacing all G\F-aliens by some constant in F does not
work.

The reverse inclusion does not hold in general.

Example 77 Consider the TRSs R = {f(a) → f(a), g(x) → f(x)} and R′ =
{b → b} over the signatures F and F ′ consisting of function symbols that
appear in their respective rewrite rules. The term f(b) is a normal form with
respect to (Rnv,G) and hence g(a) ∈ WN(Rnv,G,F). One easily verifies that
g(a) /∈ WN(Snv,G,F).

PROOF of Theorem 59. We assume that both R and R′ are non-empty,
for otherwise the result follows from Theorem 52. Suppose to the contrary that
(S,G) /∈ CBNα. According to Lemma 67 there exists a term t ∈ WNR(Sα,G)
without (Sα,G)-needed redex. Assume without loss of generality that root(t) ∈
F ′. Lemma 74 yields a flat R′

α-collapsing redex Θ ∈ T (F ′). Let t′ be the term
in T (F ′) obtained from t by replacing every G\F ′-alien by Θ. Let P be the
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set of positions of those aliens. Since t′ is reducible, it contains an (R′
α,F ′)-

needed redex, say at position q. We show that t′[•]q ∈ WN•(Sα,G). Because
Θ is a collapsing redex, we have Θ →Rα,G t|p for all p ∈ P . Hence t′ →∗

Rα,G•
t

and thus, by orthogonality, t′[•]q →∗
Rα,G•

t[•]q. Hence it suffices to show that
t[•]q ∈ WN•(Sα,G). We distinguish two cases.

(1) Suppose that q ∈ P . Since t ∈ WNR(Sα,G), t →∗
Sα,G ∆ for some redex

∆ ∈ WN(Sα,G) ⊆ WN•(Sα,G). We distinguish two further cases.
(a) If t|q is a normal form then it cannot contribute to the creation of ∆

and hence by replacing it by • we obtain t[•]q →
∗
Sα,G ∆′ with ∆ ≈ ∆′.

Lemma 69 yields ∆′ ∈ WN•(Sα,G) and thus t[•]q ∈ WN•(Sα,G).
(b) Suppose t|q is reducible. Because t is a minimal free term, t|q contains

an (Sα,G)-needed redex, say at position q′. So t|q[•]q′ /∈ WN•(Sα,G).
In particular, t|q[•]q′ does not (Sα,G)-rewrite to a collapsing redex,
for otherwise it would rewrite to a normal form in one extra step.
Hence the root symbol of every reduct of t|q[•]q′ belongs to F . Since
qq′ is not the position of an (Sα,G)-needed redex in t, t[•]qq′ ∈
WN•(Sα,G). Since any normalizing (Sα,G)-rewrite sequence must
contain a rewrite step at a position above q, we may write t[•]qq′ →

∗
Sα,G

C[∆′] ∈ WN•(Sα,G) such that ∆′ is the first redex above position q.
Since root(∆′) ∈ F ′, the subterm t|q[•]q′ of t[•]qq′ does not contribute
to the creation of ∆′ and hence t[•]q →∗

Sα,G C[∆′′] with ∆′′ ≈ ∆′.
Lemma 69 yields C[∆′′] ∈ WN•(Sα,G) and thus t[•]q ∈ WN•(Sα,G).

(2) Suppose that q /∈ P . Since Θ is flat, q cannot be below a position in P .
It follows by orthogonality that q is also a redex position in t. Since t is
an (Sα,G)-free term, t[•]q ∈ WN•(Sα,G).

As t′ ∈ T (F ′), we have t′[•]q ∈ WN•(Sα,G,F ′). Since WN•(Sα,G,F ′) ⊆
WN•(R

′
α,G,F ′) = WN•(R

′
α,F ′) by Lemmata 75 and 72, we obtain t′[•]q ∈

WN•(R
′
α,F ′), contradicting the assumption that q is the position of an

(R′
α,F ′)-needed redex in t′. 2

PROOF of Theorem 62. Let C = FC ∩ F ′
C be the set of common con-

structors. Let H = F ∪ C and H′ = F ′ ∪ C. According to Theorem 50 the
TRSs (R,H) and (R′,H′) belong to CBNα. Suppose to the contrary that
(S,G) /∈ CBNα. (As before, S = R ∪ R′ and G = F ∪ F ′.) According to
Lemma 67 there exists a term t ∈ WNR(Sα,G) without (Sα,G)-needed redex.
We assume without loss of generality that root(t) ∈ FD. Let c be an external
normal form of (R,F). Let t′ be the term obtained from t by replacing every
G \H-alien by c. Note that t′ ∈ T (H). Because Rα is left-linear and R′

α lacks
both collapsing and constructor-lifting rules, contractions in the G \ H-aliens
of t cannot create a redex in the non-alien part of t. Since t is not root-stable,
the latter exists and thus t′ contains a redex as well. Because (R,H) ∈ CBNα,
t′ must contain an (Rα,H)-needed redex ∆, say at position p. Because c is an
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external normal form, ∆ is also a redex in t and hence there exists a rewrite
sequence t[•]p →+

Sα,G•
u with u ∈ NF(R•,G). If we replace in this rewrite se-

quence every G \ H-alien by c, we obtain a rewrite sequence t′[•]p →+
Rα,H•

u′.
Because c does not unify with a proper non-variable subterm of a left-hand
side of a rewrite rule, it follows that u′ ∈ NF(R•,H). Hence ∆ is not an
(Rα,H)-needed redex in t′, yielding the desired contradiction. 2
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