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Abstract This article presents three new approaches to prove termination of rewrite systems
with the Knuth-Bendix order efficiently. The constraints for the weight function and for the
precedence are encoded in (pseudo-)propositional logic or linear arithmetic and the result-
ing formula is tested for satisfiability using dedicated solvers. Any satisfying assignment
represents a weight function and a precedence such that the induced Knuth-Bendix order
orients the rules of the encoded rewrite system from left to right. This means that in contrast
to the dedicated methods our approach does not directly solve the problem but transforms
it to equivalent formulations for which sophisticated back-ends exist. In order to make all
approaches complete we present a method to compute upper bounds on the weights. Fur-
thermore, our encodings take dependency pairs into account to increase the applicability of
the order.

Keywords Knuth-Bendix order · Term rewriting · Termination

1 Introduction

This article is concerned with proving termination of term rewrite systems (TRSs) with the
Knuth-Bendix order (KBO), a method invented by Knuth and Bendix in [25] well before
termination research in term rewriting became a very popular and competitive endeavor (as
witnessed by the annual termination competition).1 We know of only two termination tools
that contain an implementation of KBO, AProVE [16] and TTT [21], but neither of these
tools used KBO in the competition for the TRS category. This is perhaps due to the fact that
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the algorithms known for deciding KBO orientability [7,28] are not easy to implement effi-
ciently, despite the fact that the problem is known to be decidable in polynomial time [28].
The aim of this article is to make KBO a more attractive choice for termination tools by pre-
senting three simple2 encodings of KBO orientability into propositional satisfiability (SAT),
pseudo boolean satisfiability (PB), and satisfiability modulo theories (SMT where the theory
of choice is linear arithmetic), such that checking satisfiability of the resulting constraints
amounts to proving KBO orientation.

Kurihara and Kondo [29] were the first to encode a termination method for term rewrit-
ing into propositional logic. They showed how to encode orientability with respect to the
lexicographic path order as a satisfaction problem. In the recent past a vast number of SAT
encodings has been proposed for various termination methods. Codish et al. [3] presented
a more efficient formulation for the properties of a precedence. In [4, 41] encodings of ar-
gument filterings are presented which can be combined with propositional encodings of re-
duction pairs in order to obtain logic-based implementations of the dependency pair method.
Encodings of other termination methods are described in [12–15,26,27,36,43,44]. We show
that in the case of KBO one can improve upon pure SAT encodings in two ways; on the one
hand the implementation effort can be reduced by applying a more expressive constraint
language, on the other hand performance can be improved by choosing the right back-end.

In Section 2 the necessary definitions for KBO are presented. Section 3 shows that
weights can be bound from above. Then Section 4 introduces a purely propositional encod-
ing of KBO. In Section 5 an alternative encoding is given using pseudo-boolean constraints
whereas Section 6 addresses the SMT approach using linear arithmetic which combines the
simplicity of the pure SAT encoding with the benefits of PB. Extensions to the dependency
pair setting [1, 17, 19, 20] are described in Section 7 before we compare the power and run
times of our implementations with the ones of AProVE and TTT in Section 8 and show the
enormous gain in efficiency. We draw some conclusions and summarize the main contribu-
tions of this article in Section 9.

Some of the results appeared in earlier conference papers: the SAT and PB encod-
ings [42] and the SAT encoding within the dependency pair setting [41]. Section 3 and
the results for SMT are new.

2 Preliminaries

We assume familiarity with the basics of term rewriting (e.g. [2]). Below we recall some im-
portant definitions needed in the remainder of the article. A signature F consists of function
symbols equipped with fixed arities. The set of terms constructed from a signature F and a
set of variables V is denoted by T (F ,V). For a term t ∈ T (F ,V), |t| denotes its size and |t|a
for a ∈ F ∪V denotes how often the symbol a occurs in t. We have root( f (t1, . . . , tn)) = f .
A quasi-order % is a reflexive and transitive relation with strict part � (a � b if and only if
a % b and b 6% a) and equivalence part ∼ (a ∼ b if and only if a % b and b % a).

Next we recall the definition of KBO. A quasi-precedence % (strict precedence �) is a
quasi-order (strict part of a quasi-order) on a signature F . Sometimes we find it convenient
to call a quasi-precedence simply precedence. A weight function for a signature F is a pair
(w,w0) consisting of a mapping w : F → N and a constant w0 > 0 such that w(c) > w0 for
every constant c ∈ F . Let F be a signature and (w,w0) a weight function for F . The weight

2 Here, simple should be understood in the sense of “easy to implement” and not as “easy to find”.
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of a term t ∈ T (F ,V) is defined as follows:

w(t) =

{
w0 if t is a variable,
w( f )+∑

n
i=1 w(ti) if t = f (t1, . . . , tn).

A weight function (w,w0) is admissible for a quasi-precedence % if f % g for all function
symbols g whenever f is a unary function symbol with w( f ) = 0.

Definition 1 ([25, 7, 37]) Let % be a quasi-precedence and (w,w0) a weight function. We
define the Knuth-Bendix order >kbo on terms inductively as follows: s >kbo t if |s|x > |t|x
for all variables x ∈ V and either

(a) w(s) > w(t), or
(b) w(s) = w(t) and one of the following alternatives holds:

(1) t ∈ V , s ∈ T (F (1),{t}), and s 6= t, or
(2) s = f (s1, . . . ,sn), t = g(t1, . . . , tm), f ∼ g, and there exists an 1 6 i 6 min{n,m} such

that si >kbo ti and s j = t j for all 1 6 j < i, or
(3) s = f (s1, . . . ,sn), t = g(t1, . . . , tm), and f � g.

where F (n) denotes the set of all function symbols f ∈ F of arity n. Thus in case (b)(1) the
term s consists of a nonempty sequence of unary function symbols applied to the variable t
(since s 6= t and |s|x > |t|x for all x ∈ V).

Specializing the above definition to (the reflexive closure of) a strict precedence, one
obtains the definition of KBO in [2], except that we restrict weight functions to have range
N instead of R>0. According to results in [28, 31] this does not decrease the power of the
order for finite TRSs.

Lemma 1 A TRS R is terminating whenever there exist a quasi-precedence % and an ad-
missible weight function (w,w0) such that R⊆>kbo. ut

Example 1 The TRS SK90/2.423 consisting of the rules

flatten(nil)→ nil rev(nil)→ nil

flatten(unit(x))→ flatten(x) rev(unit(x))→ unit(x)

flatten(x++y)→ flatten(x)++flatten(y) rev(x++y)→ rev(y)++ rev(x)

flatten(unit(x)++y)→ flatten(x)++flatten(y) rev(rev(x))→ x

flatten(flatten(x))→ flatten(x) (x++y)++z → x++(y++z)

x++nil→ x nil++y → y

can be proved terminating by KBO. The weight function (w,w0) with w(flatten) = w(rev) =
w(++) = 0 and w(unit) = w(nil) = w0 = 1 together with the quasi-precedence flatten ∼
rev� unit�++� nil ensures that l >kbo r for all rules l → r. The use of a quasi-precedence
is essential here since the rules flatten(x++y)→ flatten(x)++flatten(y) and rev(x++y)→
rev(y)++ rev(x) demand w(flatten) = w(rev) = 0 but KBO with strict precedence does not
allow different unary functions to have weight zero.

3 Labels in sans-serif font refer to TRSs in the Termination Problems Data Base [32] which is a collection
of rewrite systems used for the termination competition.
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One can imagine a more general definition of KBO. For instance, in case (b)(2) we
could demand that s j ∼kbo t j for all 1 6 j < i where s ∼kbo t if and only if s ∼ t and w(s) =
w(t). Here s ∼ t denotes syntactic equality with respect to equivalent function symbols of
the same arity. Another obvious extension would be to compare the arguments according
to an arbitrary permutation [35, 36] or as multisets [40, 36]. To keep the discussion and
implementation simple, we do not consider such refinements in the sequel.

3 A Bound on Weights

We give a bound on weights to finitely characterize KBO orientability. While there are at
most finitely many precedences on a finite signature, the following example demonstrates
that there exist TRSs which need arbitrarily large weights.

Example 2 Consider the parametrized TRS consisting of the three rules

f(g(x,y))→ g(f(x), f(y)) h(x)→ f(f(x)) i(x)→ hk(x)

Since the first rule duplicates the function symbol f we must assign weight zero to it. The
admissibility condition for the weight function demands that f is a maximal element in the
precedence. The second rule ensures that the weight of h is strictly larger than zero. It follows
that the minimum weight of hk(x) is k + 1, which at the same time is the minimum weight
of i(x). Thus w(i) is at least k.

Throughout this section we do not distinguish vectors from matrices. We write ei for
the unit column vector whose i-th position is 1 and all other positions are 0 (the length of
the vector is usually clear from the context). Let A = (ai j)i j be an m×n matrix. We define
‖A‖ = maxi, j |ai j|. The i-th row vector of A is denoted by ai. We say that a vector x is a
solution of A if Ax > 0 and x > 0. A solution x that maximizes {i | aix > 0} with respect to
set inclusion is called principal. Unless stated otherwise, matrix entries are integers.

Lemma 2 Let A be an m× n matrix. There exists a principal solution x of A with ‖x‖ 6
n2m

(2n‖A‖)2m−1. ut

Before proving the lemma we recall the idea from [7] and mention its consequences.

Example 3 Below on the left we give the inequations that the algorithm in [7] starts with
(corresponding to a KBO proof attempt with empty precedence) for the TRS from Exam-
ple 2 where we fix the parameter k = 2. The first four equations ensure that every weight
is non-negative, the fifth equation captures w0 and the last three equations express that for
every rule l → r we have w(l) > w(r):

w(f) > 0
w(g) > 0
w(h) > 0
w(i) > 0

w0 > 0
w(f)+w(g)+2w0 > w(g)+2w(f)+2w0

w(h)+w0 > 2w(f)+w0
w(i)+w0 > 2w(h)+w0



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

−1 0 0 0 0
−2 0 1 0 0

0 0 −2 1 0




w(f)
w(g)
w(h)
w(i)
w0

 > 0
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To solve the inequations on the left, the algorithm in [7] starts with the slightly generalized
equational system Ax > 0 on the right, which clearly has a (principal) solution. But for a
principal solution the algorithm must test if every strict inequation w(s) > w(t) for corre-
sponding terms s and t is indeed satisfied. If this is not the case then it replaces the inequation
w(s) > w(t) by w(s) > w(t), and
(a) fails, if s ∈ V , t ∈ V , or s = t,
(b) adds the inequation w(si) > w(ti) for the least i with si 6= ti if s = f (s1, . . . ,sn) and

t = f (t1, . . . , tn), or
(c) extends the strict precedence ([7] only supports strict precedences) if possible by

– root(s)� f for all f ∈ F \{root(s)} if root(s) is unary or
– root(s)� root(t) otherwise

and again tries to solve the inequations. In the example no principal solution satisfies the con-
straint w(f(g(x,y))) > w(g(f(x), f(y))) (since it reduces to 0 > w(f) contradicting w(f) > 0)
but case (c) applies and the corresponding rule is oriented by extending the precedence with
f � g,h, i. Since now there exists a principal solution satisfying the current constraints (e.g.
w(f) = w(g) = 0, w(h) = w0 = 1, and w(i) = 3) the algorithm successfully terminates.

The question remains which A to take for Lemma 2. The example above demonstrates
that the matrix A changes during the algorithm. Unfortunately not even the dimension of A
stays constant; the columns of A are fixed by the number of unknowns but the rows may
increase (cf. case (b)). It is easy to see that the largest dimension of a matrix can be m× n
where n = |F |+1 and m = n+∑l→r∈Rmin{depth(l),depth(r)}where depth(x) = 1 if x∈ V
and depth( f (t1, . . . , tq)) = 1 + max{depth(ti) | 1 6 i 6 q}. Furthermore for every occurring
A we have ‖A‖ 6 max{|l|a, |r|a | l → r ∈R,a ∈ F ∪V}. According to the lemma one can
find a principal solution in [0,n2m

(2n‖A‖)2m−1]n. Hence we get n2m
(2n‖A‖)2m−1 as an upper

bound on the weights. Later this number will be referred to as BR. For Example 3 we get
n = 5, m = 5+7 = 12, ‖A‖6 2, and consequently BR = 5212

20212−1. Section 8 shows that
in practice much smaller weights suffice. Expressed in terms of the size of the TRS R, the
inequality BR 6 N4N+1

can be easily shown for N = 1+∑l→r∈R(|l|+ |r|), provided that all
symbols from F appear in R.

In order to prove Lemma 2 we first recall the method of complete description (MCD)
introduced by Dick et al. [7].

Definition 2 For a row vector (a1, . . . ,an) we define the matrix (a1, . . . ,an)κ as

(ei | ai > 0)++(a jei−aie j | ai < 0,a j > 0)

with unit vectors ei, e j of length n. The operator ++ merges vectors into a matrix. Let A be
an m× n matrix. For each 0 6 i 6 m we inductively define SA

i as follows: SA
0 is the n× n

identity matrix and SA
i+1 = SA

i (ai+1SA
i )κ . The sum of all column vectors of SA

m is denoted
by sA.

Proposition 1 ([7]) Let Ax > 0. Then sA is a principal solution of A. ut
The next example demonstrates how to compute (·)κ , ++, and sA.

Example 4 For the matrix A =
(
−2 0 1 3 −1

)
we have

SA
1 = SA

0 (a1SA
0 )κ = aκ

1 =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

++


1 3 0 0
0 0 0 0
2 0 1 0
0 2 0 1
0 0 1 3

 =


0 0 0 1 3 0 0
1 0 0 0 0 0 0
0 1 0 2 0 1 0
0 0 1 0 2 0 1
0 0 0 0 0 1 3

 and sA =


4
1
4
4
4
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We show that sA fulfills the condition of Lemma 2.

Lemma 3 Let B be a p× q matrix, C a q× r matrix and a a 1× q row vector. Then the
following holds:
1. ‖BC‖6 q‖B‖‖C‖,
2. ‖Baκ‖6 2‖B‖‖aκ‖,
3. ‖aκ‖= ‖a‖,
4. the number of rows of aκ is q and the number of columns is bounded from above by q2.

Proof Claims 1 and 3 are trivial. Claim 2 follows from the fact that all columns in aκ have
at most two non-zero entries. For Claim 4 we reason as follows. The vector a is partitioned
into three sets {ai > 0}, {ai = 0}, and {ai < 0} with cardinalities c, d, and e. We have
q = c+d + e and by construction aκ has c+d + ce columns. Let ÷ denote integer division.
One easily verifies that c = (q+1)÷2, d = 0, and e = q÷2 maximizes this number. Since
((q+1)÷2)((q+2)÷2) 6 q2, this gives the desired result. ut

Lemma 4 If A is an m×n matrix then SA
i is an n× k matrix for some k 6 n2i

.

Proof Straightforward induction on i. ut

Lemma 5 ‖SA
i ‖6 (2n‖A‖)2i−1.

Proof We perform induction on i. The base case is trivial, because SA
0 is the identity matrix

and thus ‖SA
0‖ = 1 = (2n‖A‖)20−1. We show the inductive step. Since SA

i+1 = SA
i (ai+1SA

i )κ ,
we get ‖SA

i+1‖6 2‖SA
i ‖‖(ai+1SA

i )κ‖= 2‖SA
i ‖‖ai+1SA

i ‖6 2n‖ai+1‖‖SA
i ‖2 6 2n‖A‖‖SA

i ‖2 6

2n‖A‖((2n‖A‖)2i−1)2 = (2n‖A‖)2i+1−1. Here we used the (in)equalities from Lemma 3, the
trivial observation ‖ai+1‖6 ‖A‖ in the fourth step, and the induction hypothesis in the fifth
step. ut

Now Lemma 2 is an easy consequence of Proposition 1 and Lemmata 4 and 5. Con-
sidering that sA is an integer vector whenever A is an integer matrix, we obtain a finite
characterization of KBO orientability.

Theorem 1 Termination of R can be shown by KBO if and only if termination of R can be
shown by KBO whose weights belong to {0,1, . . . ,BR}. ut

We conclude this section by showing that a principal solution of A can be computed in
polynomial time and mention its consequences.

Lemma 6 Let si (1 6 i 6 m) be a solution of Ax > ei if such a solution exists and si = 0
otherwise. Then s1 + · · ·+ sm is a principal solution of A.

Proof Straightforward. ut
Therefore finding a principal solution of A boils down to solving Ax > ei for 1 6 i 6 m.

The latter can be handled in polynomial time due to the following known result.

Proposition 2 ([24, 23]) Ax > b can be solved in polynomial time. ut
Note that a (possibly rational) solution s satisfying As > ei can be transformed into the

desired integer solution by multiplication with a sufficiently large scalar since ei > 0.
Hence [7] can solve KBO in polynomial time (if MCD is replaced by linear program-

ming) due to a similar argumentation as in [28]: The algorithm performs polynomially many
steps, all matrices A that might appear during the algorithm are of polynomial size (cf. the
discussion before Definition 2), a principal solution of A can be computed in polynomial
time, and testing a finite precedence for well-foundedness (by computing its transitive clo-
sure and testing for irreflexivity) is polynomial.
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4 A Pure SAT Encoding of KBO

In order to give a propositional encoding of KBO orientability, we must take care of repre-
senting a precedence and a weight function. For the former we introduce two sets of proposi-
tional variables X = {X f g | f ,g ∈ F} and Y = {Yf g | f ,g ∈ F} depending on the underlying
signature F [29, 3]. The intended semantics of these variables is that an assignment which
satisfies a variable X f g corresponds to a precedence with f � g and similarly Yf g suggests
f ∼ g. When dealing with strict precedences it is safe to assign false to all Yf g variables.
For the weight function, weights of function symbols are represented by numbers in binary
representation and the operations >, =, >, and + must be redefined accordingly. The propo-
sitional encodings of > and = given below are similar to the ones in [3] (apart from some
slight optimizations). To save parentheses we employ the binding hierarchy for the connec-
tives where + binds strongest, followed by the relation symbols >, =, and >. The logical
connective ¬ is next in the hierarchy, followed by ∨ and ∧. The operators → and ↔ bind
weakest.

We fix the number k of bits that is available for representing natural numbers in binary.
Let a < 2k. We denote by ak = 〈ak, . . . ,a1〉 the binary representation of a where ak is the
most significant bit. Whenever k is not essential we abbreviate ak to a.

Definition 3 For natural numbers given in binary representation, the operations >, =, and
> are defined as follows (for all 1 6 j 6 k):

f > j g =

{
f1∧¬g1 if j = 1
( f j ∧¬g j)∨

(
(g j → f j)∧ f > j−1 g

)
if j > 1

f > g = f >k g

f = g =
k∧

i=1

( fi ↔ gi)

f > g = f > g∨ f = g

Next we define a formula which is satisfiable if and only if the encoded weight function
is admissible for the encoded precedence.

Definition 4 For a weight function (w,w0), let ADM-SATk(w,w0) be the formula

(w0)k > 0k ∧
∧

c∈F (0)

ck > (w0)k ∧
∧

f∈F (1)

(
fk = 0k →

∧
g∈F

(X f g∨Yf g)
)

For addition one has to take overflows into account. Since two k-bit integers might sum
up to a k + 1-bit number an additional bit is needed for the result. Consequently the case
arises when two summands are not of equal bit width. Thus, before adding ak and bk′ the
shorter one is padded with |k− k′| zeros. To keep the presentation simple we assume that
zero-padding is implicitly performed before the operations +, >, >, and =. To carry out
addition we employ pairs. The first component represents the bit representation and the
second component is a propositional formula which encodes the constraints for each bit.

Definition 5 We define (fk,ϕ)+(gk,ψ) as (sk+1,ϕ ∧ψ ∧ γ ∧σ) with

γ = ¬c0∧
k∧

i=1

(
ci ↔ ( fi∧gi)∨ ( fi∧ ci−1)∨ (gi∧ ci−1)

)
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and

σ = (sk+1 ↔ ck)∧
k∧

i=1

(
si ↔ ( fi⊕gi⊕ ci−1)

)
where ci (0 6 i 6 k) and si (1 6 i 6 k + 1) are fresh variables that represent the carry and
the sum of the addition and ⊕ denotes exclusive or.

Note that although theoretically not necessary, it is a good idea to introduce new vari-
ables for the sum. The reason is that in consecutive additions each bit fi and gi is duplicated
(twice for the carry and once for the sum) and consequently using fresh variables for the sum
prevents an exponential blowup of the resulting formula. A further method to keep formulas
small is to give an upper bound on the bit width when representing naturals. This can be
accomplished after addition by fixing a maximal number m of bits and transforming (sk,ϕ)
into

(sm,ϕ ∧
k∧

i=m+1

¬si)

which just demands that all overflow bits must be zero.

Definition 6 We define (f,ϕ)◦ (g,ψ) as f◦g∧ϕ ∧ψ for ◦ ∈ {>,>,=}.

In the next definition we show how the weight of terms is computed propositionally.

Definition 7 Let t be a term and (w,w0) a weight function. The weight of a term is encoded
as follows:

W t
k =

{
((w0)k,>) if t ∈ V ,
(fk,>)+∑

n
i=1 W ti

k if t = f (t1, . . . , tn).

We are now ready to define a propositional formula that reflects the definition of >kbo.

Definition 8 Let s and t be terms. We define the formula SATk(s >kbo t) as follows. If s∈ V
or s = t or |s|x < |t|x for some x ∈ V then SATk(s >kbo t) =⊥. Otherwise

SATk(s >kbo t) = W s
k > W t

k ∨
(
W s

k = W t
k ∧SATk(s >′

kbo t)
)

with

SATk(s >′
kbo t) =

{
> if t ∈ V , s ∈ T (F (1),{t}), and s 6= t
X f g∨

(
Yf g∧SATk(si >kbo ti)

)
if s = f (s1, . . . ,sn), t = g(t1, . . . , tm)

where in the second clause i denotes the least 1 6 j 6 min{n,m} with s j 6= t j. Here the
first case corresponds to (b)(1) in the definition of KBO, the constraint X f g to (b)(3) and the
variable Yf g together with the recursive call to (b)(2).

To ensure the properties of a precedence we follow the approach of Codish et al. [3]
who propose to interpret function symbols as natural numbers. The “greater than or equal
to” relation then ensures that the function symbols are quasi-ordered. Let |F | = n. We are
looking for a mapping m : F→{1, . . . ,n} such that for every satisfied propositional variable
X f g ∈ X we have m( f ) > m(g) and Yf g ∈ Y implies m( f ) = m(g). To uniquely encode one
of the n function symbols, l := dlog2(n)e fresh propositional variables are needed. The l-bit
representation of f is f′ = 〈 f ′l , . . . , f ′1〉 with f ′l the most significant bit. Note that the variables
f ′i (1 6 i 6 l) are different from fi (1 6 i 6 k) which are used to represent weights.
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Definition 9 Let R be a TRS. The formula KBO-SATk(R) is defined as

ADM-SATk(w,w0) ∧
∧

l→r∈R
SATk(l >kbo r) ∧

∧
f ,g∈F

(X f g → f′ > g′)∧ (Yf g → f′ = g′)

Theorem 2 Termination of R can be shown by KBO whenever the propositional formula
KBO-SATk(R) is satisfiable. ut

According to Theorem 1, the reverse does hold for all k > dlog2(BR+1)e. However, in
Section 8 we will see that in practice rather small weights suffice.

5 A Pseudo-Boolean Encoding of KBO

A pseudo-boolean constraint (PBC) is of the form

( n

∑
i=1

ai ∗ xi
)
◦m

where a1, . . . ,an,m are fixed integers, x1, . . . ,xn boolean variables that range over {0,1},
and ◦ ∈ {>,=,6}. We separate PBCs that are written on a single line by semicolons. A
sequence of PBCs is satisfiable if there exists an assignment which satisfies every PBC
in the sequence. This means that PB can easily encode conjunctions of linear arithmetic
expressions whereas disjunctions are tricky. In the sequel we show that nevertheless PBCs
allow to encode KBO concisely. Since 2005 pseudo-boolean evaluation4 is a track of the
international SAT competition.5 The next definition captures the admissibility condition of
a weight function for a signature F .

Definition 10 For a weight function (w,w0) let ADM-PBk(w,w0) be the collection of PBCs

– w0 k > 1
– wk(c)−w0 k > 0 for all c ∈ F (0)

– n∗wk( f )+∑ f ,g∈F (X f g +Yf g) > n for all f ∈ F (1)

where n = |F |, wk( f ) = 2k−1 ∗ fk + · · ·+ 20 ∗ f1 denotes the weight of f in N using k bits,
and w0 k denotes the value of (w0)k.

In the definition above the first two PBCs express that w0 is strictly larger than zero and
that every constant has weight at least w0. Whenever the considered function symbol f has
weight larger than zero the third constraint is trivially satisfied. In the case that the unary
function symbol f has weight zero the constraints on the precedence add up to n if and only
if f is a maximal element. Note that X f g and Yf g are mutual exclusive (which is ensured
when encoding the constraints on a quasi-precedence, cf. Definition 12).

For the encoding of s >kbo t and s >′
kbo t (case (b) in Definition 1) auxiliary propo-

sitional variables KBOk(s, t) and KBO′
k(s, t) are introduced. The intended meaning is that

if KBOk(s, t) (KBO′
k(s, t)) evaluates to true under a satisfying assignment then s >kbo t

(s >′
kbo t). The general idea of the encoding is very similar to the pure SAT case. As we

do not know anything about weights and the precedence at the time of encoding we have to

4 http://www.cril.univ-artois.fr/PB07/
5 http://www.satcompetition.org/

http://www.cril.univ-artois.fr/PB07/
http://www.satcompetition.org/
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consider the cases w(s) > w(t) and w(s) = w(t) at the same time. That is why KBO′
k(s, t)

and the recursive call to PBk(s >′
kbo t) must be considered in any case.

The weight w(t) of a term t is defined similarly as in Section 2 with the only difference
that the weight w( f ) of the function symbol f ∈ F is represented in k bits as described in
Definition 10.

Definition 11 Let s, t be terms. The encoding of PBk(s >kbo t) amounts to KBOk(s, t) = 0
if s ∈ V or s = t or |s|x < |t|x for some x ∈ V . In all other cases PBk(s >kbo t) is

−(m+1)∗KBOk(s, t)+w(s)−w(t)+KBO′
k(s, t) >−m; PBk(s >′

kbo t) (1)

where m = 2k ∗ |t|. Here PBk(s >′
kbo t) is the empty constraint when t ∈ V , s ∈ T (F (1),{t}),

and s 6= t. In the remaining case s = f (s1, . . . ,sn), t = g(t1, . . . , tm), and PBk(s >′
kbo t) is the

combination of PBk(si >kbo ti) and

−2∗KBO′
k(s, t)+2∗X f g +Yf g +KBOk(si, ti) > 0

where i denotes the least 1 6 j 6 min{n,m} with si 6= ti.

Since the encoding of PBk(s >kbo t) is explained in the example below here we just
explain the intended semantics of PBk(s >′

kbo t). In the first case where t is a variable there
are no constraints on the weights and the precedence which means that the empty constraint
is returned. In the other case the constraint expresses that whenever KBO′

k(s, t) is satisfied
then either f � g or both f ∼ g and KBOk(si, ti) must hold.

To get familiar with the encoding and to see why the definitions are a bit tricky consider
the example below. For reasons of readability symbols occurring both in s and in t are
removed immediately. This entails that the multiplication factor m should be lowered to

m = ∑
a∈F∪V

max{0,2k ∗ (|t|a−|s|a)},

which again is a lower bound on the left-hand side of constraint (1) if KBOk(s, t) is false
because w(s)−w(t) >−m.

Example 5 Consider the TRS consisting of the rule

s = f(g(x),g(g(x)))→ f(g(g(x)),x) = t

The PB encoding PBk(s >kbo t) then looks as follows:

−KBOk(s, t)+w(g)+KBO′
k(s, t) > 0 (2)

−2∗KBO′
k(s, t)+2∗Xff +Yff +KBOk(g(x),g(g(x))) > 0 (3)

−(2k +1)∗KBOk(g(x),g(g(x)))−w(g)+KBO′
k(g(x),g(g(x))) >−2k (4)

−2∗KBO′
k(g(x),g(g(x)))+2∗Xgg +Ygg +KBOk(x,g(x)) > 0 (5)

KBOk(x,g(x)) = 0 (6)

Constraint (2) states that if s >kbo t then either w(g) > 0 or s >′
kbo t. Note that here the mul-

tiplication factor m is 0. Clearly the attentive reader would assign w(g) = 1 and termination
of the TRS is shown. The encoding however is not so smart and performs the full recur-
sive translation to PB. In (4) it is not possible to satisfy s1 = g(x) >kbo g(g(x)) = t1 since
the former is embedded in the latter. Nevertheless the constraint (4) must remain satisfiable
because the TRS is KBO orientable. The trick is to introduce a hidden case analysis. The
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multiplication factor in front of the KBOk(s1, t1) variable does that job. Whenever s1 >kbo t1
is needed then KBOk(s1, t1) must evaluate to true. Then implicitly the constraint demands
that w(s1) > w(t1) or w(s1) = w(t1) and s1 >′

kbo t1 which reflects the definition of KBO.
If s1 >kbo t1 need not be satisfied (e.g., because already s >kbo t in (2)) then the constraint
holds in any case since the left-hand side in (4) never becomes smaller than −2k because
w(g) < 2k.

To encode a precedence in PB we again interpret function symbols in N. For this ap-
proach an additional set of propositional variables Z = {Z f g | f ,g ∈ F} is used. The in-
tended semantics is that Z f g evaluates to true whenever g � f or f and g are incomparable.
We remark that the Z f g variables are not necessary as far as termination proving power
is concerned (because total precedences suffice as KBO is incremental with respect to the
precedence) but they are essential to encode partial precedences which are sometimes handy
(as explained in Section 9).

Definition 12 For a signature F we define PREC-PB(F) using the PBCs below. Let l =
dlog2(|F |)e. For all f ,g ∈ F

2∗X f g +Yf g +Yg f +2∗Z f g = 2

−X f g +2l ∗Yf g +2l ∗Z f g + p( f )− p(g) > 0

2l ∗X f g +Yf g +2l ∗Z f g + p( f )− p(g) > 1

where p( f ) = 2l−1 ∗ f ′l + · · ·+ 20 ∗ f ′1 denotes the position of f in the precedence by inter-
preting f in N using l bits.

The above definition expresses all requirements of a quasi-precedence. The symmetry of
∼ and the mutual exclusion of the X , Y , and Z variables is mimicked by the first constraint.
The second constraint encodes the conditions that are put on the X variables. Whenever
a system needs f � g in the precedence to be terminating then X f g must evaluate to true
and (because they are mutually exclusive) Yf g and Z f g to false. Hence in order to remain
satisfiable p( f ) > p(g) must hold. In a case where f � g is not needed (but the TRS is
KBO orientable) the constraint must remain satisfiable. Thus Yf g or Z f g evaluate to one
and because p(g) is bound by 2l −1 the constraint does no harm. Summing up, the second
constraint encodes a proper order on the symbols in F . The third constraint forms an equiv-
alence relation on F using the Yf g variables. Whenever f ∼ g is demanded somewhere in
the encoding, then X f g and Z f g evaluate to false by the first constraint. Satisfiability of the
third constraint implies p( f ) > p(g) but at the same time symmetry demands that Yg f also
evaluates to true which leads to p(g) > p( f ) and thus to p( f ) = p(g).

The next definition expresses KBO in PB. The constraint PBk(s >kbo t) demands that if
KBOk(s, t) = 1 then s >kbo t. To ensure KBO orientation, for every rule l → r the constraint
KBOk(l,r) = 1 is added. Note that without these additional constraints, the encoding would
always be satisfiable, so also for TRSs that are not KBO terminating.

Definition 13 Let R be a TRS. The pseudo-boolean encoding KBO-PBk(R) is defined as
the combination of ADM-PBk(w,w0), PREC-PB(F), and

PBk(l >kbo r); KBOk(l,r) = 1

for all l → r ∈R.

Theorem 3 Termination of R can be shown by KBO whenever the PBCs KBO-PBk(R) are
satisfiable. ut

Again the reverse holds for all k > dlog2(BR+1)e (cf. Theorem 1).
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6 An SMT Encoding of KBO

Due to the rich input format for SMT solvers one can directly translate orientability of
KBO into constraints of linear arithmetic. A further advantage is that in this setting integer
(and even real) variables are allowed and consequently encoding integers in binary becomes
superfluous. This fact also allows us to get rid of parametrizing the formula by the number
of bits used to represent natural numbers.

Thus we employ for every function symbol f ∈F non-negative integer variables w f and
p f indicating the weight of f and its position in the precedence, respectively. Consequently
an assignment satisfying p f > pg indicates f � g. Together with an integer variable w0 the
definition of ADM-SMT(w,w0) becomes trivial as can be seen in the next definition.

Definition 14 For a weight function (w,w0), let ADM-SMT(w,w0) be the constraint

w0 > 0 ∧
∧

c∈F (0)

wc > w0 ∧
∧

f∈F (1)

(
w f = 0 →

∧
g∈F

(p f > pg)
)

Similarly, computing the weight of a term simplifies tremendously.

Definition 15 Let t be a term and (w,w0) a weight function. The weight of a term is encoded
as follows:

Wt =


w0 if t ∈ V ,

w f +
n

∑
i=1

Wti if t = f (t1, . . . , tn).

We are now ready to define an SMT formula that reflects the definition of >kbo.

Definition 16 Let s and t be terms. We define the formula SMT(s >kbo t) as follows. If
s ∈ V or s = t or |s|x < |t|x for some x ∈ V then SMT(s >kbo t) =⊥. Otherwise

SMT(s >kbo t) = Ws > Wt ∨
(
Ws = Wt ∧SMT(s >′

kbo t)
)

with SMT(s >′
kbo t) => if t ∈ V , s ∈ T (F (1),{t}), and s 6= t, and

SMT(s >′
kbo t) = p f > pg∨

(
p f = pg∧SMT(si >kbo ti)

)
if s = f (s1, . . . ,sn) and t = g(t1, . . . , tm) where i denotes the least 1 6 j 6 min{n,m} with
s j 6= t j.

Due to the richer input format the X f g and Yf g variables for abbreviating precedence
comparisons are superfluous which allows to present the full SMT encoding for KBO con-
cisely as follows.

Definition 17 Let R be a TRS. The formula KBO-SMT(R) is defined as

ADM-SMT(w,w0) ∧
∧

l→r∈R
SMT(l >kbo r)

Theorem 4 Termination ofR can be shown by KBO if and only if the SMT constraint KBO-
SMT(R) is satisfiable. ut

Note that the SMT approach is always complete and hence is not parametrized by any
constant k indicating the number of bits for weights, in contrast to Theorems 2 and 3.
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7 Extensions

One obvious and powerful extension of KBO is to integrate it in the dependency pair
method [1, 17, 19, 20]. We shortly recapitulate its key features that are essential for a proper
understanding of this section. Let R be a TRS over a signature F . The defined symbols are
the root symbols of the left-hand sides of the rewrite rules in R. The original signature F is
extended to a signature F ] by adding for every defined symbol f a fresh symbol f ] with the
same arity as f . For a term t = f (t1, . . . , tn) with defined symbol f we denote f ](t1, . . . , tn)
by t]. In examples one often uses capitalization, i.e., one writes F for f ]. If l → r ∈R and t
is a subterm of r with defined root symbol, then the rule l] → t] is a dependency pair of R.
We write DP(R) for the set of all dependency pairs of R. The nodes of the dependency
graph DG(R) are the dependency pairs of R and there is an edge from node s → t to node
u → v if there exist substitutions σ and τ such that tσ →∗

R uτ . An argument filtering for
a signature F is a mapping π that assigns to every n-ary function symbol f ∈ F an argu-
ment position i ∈ {1, . . . ,n} or a (possibly empty) list [i1, . . . , im] of argument positions with
1 6 i1 < · · · < im 6 n. The signature Fπ consists of all function symbols f such that π( f )
is some list [i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering π induces
a mapping from T (F ,V) to T (Fπ ,V), also denoted by π: π(t) = t if t ∈ V , π(t) = π(ti)
if t = f (t1, . . . , tn) with π( f ) = i, and π(t) = f (π(ti1), . . . ,π(tim)) if t = f (t1, . . . , tn) with
π( f ) = [i1, . . . , im]. We further abuse notation and define π(l → r) for rewrite rules and
π(R) for TRSs in an obvious manner. The usable rules for a set C of dependency pairs
are denoted by U(C) where a rule f (. . .) → r ∈ R is usable if f occurs in the right-hand
side of a rule in C or in U(C). Argument filterings can be used to reduce the number of us-
able rules (see [19]), i.e., U(C,π) computes the usable rules of π(C) on the basis of π(R).
A reduction pair (>,>) satisfies that > is reflexive, transitive, closed under contexts and
substitutions, > is a well-founded order closed under substitutions, and additionally the in-
clusion > ·> ·>⊆> holds. If reduction pairs are combined with usable rules, additionally
CE -compatibility [19,21] must be ensured, i.e., for a fresh function symbol g the constraints
g(x,y) > x and g(x,y) > y must hold.

In this article we reformulate the main theorem as a satisfiability problem in proposi-
tional logic for specific reduction pairs. In Subsection 7.2 we address the embedding order
and in Subsection 7.3 we address KBO, but first (Subsection 7.1) we explain how to repre-
sent argument filterings in propositional logic. The encoding for SMT is then a straightfor-
ward adaption of the pure propositional logic encoding. We note that for PB this approach
does not seem so suitable since the resulting formula contains many disjunctions. The main
motivation for using pseudo-boolean in the direct encoding (Section 5) was that it allows a
concise implementation because the KBO constraints can easily be expressed in PB. This is
no longer true when combining KBO with dependency pairs. One could of course perform a
Tseitin-like [38] transformation to PB but that would destroy the elegance of the approach.
Why PB can still be advantageous is outlined in Section 9. The rest of this section aims at
formulating the theorem below in propositional logic.

Theorem 5 ([19]) A TRS R is terminating if and only if for every cycle C in the dependency
graph of R there exist an argument filtering π and a CE -compatible reduction pair (>,>)
such that π(U(C,π)∪C)⊆> and π(C)∩> 6= ∅. ut

Before looking closer into the encoding, we demonstrate a termination proof with de-
pendency pairs by means of the following example.
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Example 6 The TRS AG01/#3.1

minus(x,0)→ x

minus(s(x),s(y))→minus(x,y)

quot(0,s(y))→ 0

quot(s(x),s(y))→ s(quot(minus(x,y),s(y)))

gives rise to the dependency pairs

Minus(s(x),s(y))→Minus(x,y) (7)

Quot(s(x),s(y))→Minus(x,y)

Quot(s(x),s(y))→ Quot(minus(x,y),s(y)) (8)

The dependency graph contains the two cycles {7} and {8}. For the first cycle there are
no usable rules and rule 7 can easily be handled by KBO. The second cycle is more chal-
lenging. To make rule 8 non-duplicating we take an argument filtering satisfying π(Quot) =
π(minus) = 1 and π(s) = [1], resulting in the rule s(x)→ x and no usable rules. Now KBO
can easily remove this cycle.

7.1 Representing Argument Filterings

Definition 18 Let F be a signature. The set of propositional variables {π f | f ∈ F}∪{π i
f |

f ∈ F and 1 6 i 6 arity( f )} is denoted by πF . Let π be an argument filtering for F . The
induced assignment απ is defined as follows:

απ(π f ) =

{
1 if π( f ) = [i1, . . . , im]
0 if π( f ) = i

and απ(π i
f ) =

{
1 if i ∈ π( f )
0 if i /∈ π( f )

for all n-ary function symbols f ∈F and i ∈ {1, . . . ,n}. Here i ∈ π( f ) if π( f ) = i or π( f ) =
[i1, . . . , im] and ik = i for some 1 6 k 6 m.

Definition 19 An assignment α for πF is said to be argument filtering consistent if for
every n-ary function symbol f ∈ F such that α 6� π f there is a unique i ∈ {1, . . . ,n} such
that α � π i

f .

It is easy to see that απ is argument filtering consistent.

Definition 20 The propositional formula AFπ(F) is defined as
∧

f∈F AFπ( f ) with

AFπ( f ) = π f ∨
arity( f )∨

i=1

(
π

i
f ∧

∧
j 6=i

¬π
j
f

)
.

Lemma 7 An assignment α for πF is argument filtering consistent if and only if α �
AFπ(F). ut

Definition 21 Let α be an argument filtering consistent assignment for πF . The argument
filtering πα is defined as follows: πα( f ) = [i | α � π i

f ] if α � π f and πα( f ) = i if α 6� π f and
α � π i

f , for all function symbols f ∈ F .
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Example 7 Consider the signature from Example 6. The assignment α only satisfying the
variables πMinus, π2

Minus, πminus, π2
Quot, π1

quot, π0, and πs is argument filtering consistent. The
induced argument filtering πα consists of π(Minus) = [2], π(minus) = π(0) = π(s) = [ ],
π(Quot) = 2, and π(quot) = 1.

Corresponding to the definition of U(C,π) we encode π(U(C,π)∪ C) ⊆ > as the con-
junction of ∧

l→r∈C

(
Uroot(l)∧ l >π r

)
∧

∧
l→r∈R

(
Uroot(l) → l >π r

)
and ∧

l→r∈R∪C

(
Uroot(l) →

∧
p∈PosF (r)

root(r|p) is defined

( ∧
q, i : iq6 p

π
i
root(r|q) →Uroot(r|p)

))

Here U f is a new propositional variable for every defined and every dependency pair sym-
bol f . If U f evaluates to true, then rules of the form f (. . .) → r must be oriented. In the
formula above the first conjunct expresses that all rules from C must be oriented by >π .
The second conjunct expresses that if a rule is usable, then it must be compatible with >π

whereas the third conjunct computes the usable rules with respect to an argument filtering
(if a rule is usable, then defined symbols that survive the argument filtering also give rise
to usable rules). The relation >π can be replaced by an encoding of a reduction pair > that
incorporates argument filterings π . The above formula is abbreviated by U(C,>π).

7.2 Embedding

When reformulating Theorem 5 as a satisfaction problem, we have to fix a reduction pair,
incorporate argument filterings, and encode the combination in propositional logic. In this
section we take the reduction pair (Demb,Bemb) corresponding to the embedding order. Be-
cause embedding has no parameters it allows for a transparent translation of the constraints
π(U(C,π)∪ C) ⊆ > and π(C)∩> 6= ∅ in Theorem 5. In Section 7.3 we consider KBO,
which is a bit more challenging.

Definition 22 The embedding relation Eemb is defined on terms as follows: s Eemb t if s = t
or t = f (t1, . . . , tn) and either s Eemb ti for some i or s = f (s1, . . . ,sn) and si Eemb ti for all i.
The strict part is denoted by Cemb. The converse relations are denoted by Demb and Bemb.

In the following we define propositional formulas s Bπ
emb t and s Dπ

emb t which, in
conjunction with AFπ(F), represent all argument filterings π that satisfy πα(s) Bemb πα(t)
and πα(s) Demb πα(t). We start with defining a formula s =π t that represents all argument
filterings which make s and t equal. (In the sequel we assume that ∧ binds stronger than ∨.)

Definition 23 Let s and t be terms in T (F ,V). We define a propositional formula s =π t by
induction on s and t. If s ∈ V then

s =π t =


> if s = t,
⊥ if t ∈ V and s 6= t,
¬πg∧

m∨
j=1

(
π

j
g ∧ s =π t j

)
if t = g(t1, . . . , tm).
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Let s = f (s1, . . . ,sn). If t ∈ V then s =π t = ¬π f ∧
∨n

i=1
(
π i

f ∧ si =π t
)
. If t = g(t1, . . . , tm)

with f 6= g then

s =π t = ¬π f ∧
n∨

i=1

(
π

i
f ∧ si =π t

)
∨¬πg∧

m∨
j=1

(
π

j
g ∧ s =π t j

)
.

Finally, if t = f (t1, . . . , tn) then

s =π t = ¬π f ∧
n∨

i=1

(
π

i
f ∧ si =π ti

)
∨π f ∧

n∧
i=1

(
π

i
f → si =π ti

)
.

To keep readability of the formulas we present a translation related as close to constraints
as possible. In an implementation one should minimize the formulas, e.g., the last formula
can be expressed more concisely as

s =π t =
n∧

i=1

(
π

i
f → si =π ti

)
since we know that AFπ(F) must hold anyway.

Definition 24 Let s and t be terms in T (F ,V). We define propositional formulas s Bπ
emb t

and s Dπ
emb t = s Bπ

emb t ∨ s =π t by induction on s and t. If s ∈ V then s Bπ
emb t = ⊥. Let

s = f (s1, . . . ,sn). If t ∈ V then

s Bπ
emb t = π f ∧

n∨
i=1

(
π

i
f ∧ si Dπ

emb t )∨¬π f ∧
n∨

i=1

(
π

i
f ∧ si Bπ

emb t
)
.

If t = g(t1, . . . , tm) with f 6= g then s Bπ
emb t is the disjunction of

π f ∧
(
πg∧

n∨
i=1

(
π

i
f ∧ si Dπ

emb t
)
∨¬πg∧

m∨
j=1

(
π

j
g ∧ s Bπ

emb t j
))

and ¬π f ∧
n∨

i=1

(
π

i
f ∧ si Bπ

emb t
)
. Finally, if t = f (t1, . . . , tn) then

s Bπ
emb t = π f ∧

( n∨
i=1

(
π

i
f ∧ si Dπ

emb t
)
∨

n∧
i=1

(
π

i
f → si Dπ

emb ti
)
∧

n∨
i=1

(
π

i
f ∧ si Bπ

emb ti
))

∨¬π f ∧
n∨

i=1

(
π

i
f ∧ si Bπ

emb ti
)
.

The formula s Bπ
emb t ∧AFπ(F) is satisfiable if and only if there exists an argument

filtering π such that π(s) Bemb π(t). Even stronger, s Bπ
emb t ∧AFπ(F) encodes all argument

filterings π that satisfy π(s) Bemb π(t). Analogous statements hold for s =π t ∧AFπ(F) and
s Dπ

emb t ∧AFπ(F).

Lemma 8 Let s, t ∈ T (F ,V). If α is an assignment for πF such that α � s Bπ
emb t ∧AFπ(F)

then πα(s) Bemb πα(t). If π is an argument filtering such that π(s) Bemb π(t) then απ �
s Bπ

emb t ∧AFπ(F). ut

We conclude this section by stating the propositional formulation of the termination
criterion of Theorem 5 specialized to embedding.
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Theorem 6 Let R be a TRS over a signature F and let C be a cycle in the dependency
graph of R. The formula

U(C,Dπ
emb) ∧

∨
l→r∈C

l Bπ
emb r ∧ AFπ(F)

is satisfiable if and only if there exists an argument filtering π such that π(U(C,π)∪ C) ⊆
Demb and π(C)∩Bemb 6= ∅.6 ut

7.3 Knuth-Bendix Order

Our aim is to define a formula s >π
kbo t ∧AFπ(F)∧PO(F)∧ADMπ(F) that is satisfiable if

and only if there exist an argument filtering π and a precedence � such that π(s) >kbo π(t).
The conjunct PO(F) will ensure that the assignment for the variables X f g corresponds to
a proper order on the signature. The conjunct ADMπ(F) takes care of the admissibility
condition.

Below we define the conjunct s >π
kbo t . The basic idea is to adapt s Bπ

emb t by incorpo-
rating the recursive definition of >kbo. First we propose a formula that expresses that after
applying the argument filtering no variables are duplicated.

Definition 25 The formula NDπ(s, t) is defined as follows:

NDπ(s, t) =
∧

x∈Var(t)

|s,>|x > |t,>|x

with

|s,ϕ|x =


(〈ϕ〉,>) if s = x,
(0,>) if s ∈ V and s 6= x,

n

∑
i=1

|si,ϕ ∧π
i
f |x if s = f (s1, . . . ,sn).

The idea behind the recursive definition of |s,ϕ|x is to collect the constraints under
which a variable is preserved by the argument filtering. If those constraints are satisfied they
correspond to an occurrence of the variable. Adding the constraints yields the number of
variables which survive the argument filtering.

Example 8 Consider the rule l = Minus(s(x),s(y)) → Minus(x,y) = r. Then the formula
NDπ(l,r) evaluates to 〈π1

Minus ∧π1
s 〉 > 〈π1

Minus〉 ∧ 〈π2
Minus ∧π1

s 〉 > 〈π2
Minus〉 where the first

(second) conjunct expresses non-duplication of variable x (y). Informally, the formula ex-
presses that whenever an argument filtering π keeps the first (or second) argument of Minus,
then it must also keep the argument of s.

Next we give a formula that computes the weight of a term after an argument filtering
has been applied.

Definition 26 We define wπ(t) as w′
π(t,>) with

w′
π(t,ϕ) =


(ϕ ·w0,>) if t ∈ V ,

((π f ∧ϕ) · f,>)+
n

∑
i=1

w′
π(ti,π i

f ∧ϕ) if t = f (t1, . . . , tn).

Here ψ ·gk abbreviates 〈ψ ∧gk, . . . ,ψ ∧g1〉.
6 Independently, in [4] a similar encoding is presented for LPO.
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Definition 27 Let s and t be terms. We define propositional formulas

s >π
kbo t = NDπ(s, t)∧ (wπ(s) > wπ(t) ∨ wπ(s) = wπ(t) ∧ s >π

kbo′ t )

and s >π
kbo t = s >π

kbo t ∨ s =π t with s >π

kbo′ t inductively defined as follows. If s ∈ V then
s >π

kbo′ t = ⊥. Let s = f (s1, . . . ,sn). If t ∈ V then s >π

kbo′ t = s Bπ
emb t . If t = g(t1, . . . , tm)

with f 6= g then

s >π
kbo t = π f ∧πg∧X f g∨¬πg∧

m∨
j=1

(π j
g ∧ s >π

kbo t j)∨¬π f ∧
n∨

i=1

(π i
f ∧ si >π

kbo t ).

Finally, if t = f (t1, . . . , tn) then

s >π
kbo t = π f ∧〈s1, . . . ,sn〉>π, f

kbo 〈t1, . . . , tn〉∨¬π f ∧
n∨

i=1

(π i
f ∧ si >π

kbo ti).

Here 〈s1, . . . ,sn〉>π, f
kbo 〈t1, . . . , tn〉 is defined as ⊥ if n = 0 and as

π
1
f ∧ s1 >π

kbo t1∨ (π1
f → s1 =π t1)∧〈s2, . . .sn〉>π, f

kbo 〈t2, . . . , tn〉

if n > 0.

Note that s >π

kbo′ t corresponds to the definition of >kbo in the case of equal weights
(Definition 1 case (b)). The peculiar looking equation s >π

kbo′ t = s Bπ
emb t for t ∈ V can be

explained by the admissibility condition (encoded below) and the fact that π(s) and π(t) = t
are assumed to have equal weight.

Definition 28 The formula ADMπ(F) defined below is satisfiable if and only if the weight
function is admissible in the presence of an argument filtering.

w0 > 0 ∧
∧

f∈F

(
constant( f )→ f > w0

)
∧

∧
f∈F

(
f = 0 ∧unary( f )→

∧
g∈F , f 6=g

(πg → X f g)
)

with constant( f ) = π f ∧
arity( f )∧

i=1

¬π
i
f and unary( f ) = π f ∧

arity( f )∨
i=1

(π i
f ∧

∧
i6= j

¬π
j
f

)
.

Similar as in Section 4 the formula PO(F) equals
∧

f ,g∈F X f g → f′ > g′. We are now
ready to state the propositional encoding of the termination criterion of Theorem 5 special-
ized to KBO.

Theorem 7 Let R be a TRS over a signature F and let C be a cycle in the dependency
graph of R. If the formula

U(C,>π
kbo) ∧

∨
l→r∈C

l >π
kbo r ∧ ADMπ(F) ∧ AFπ(F) ∧ PO(F)

is satisfiable then there are an argument filtering π , a precedence �, and an admissible
weight function (w,w0) such that π(U(C,π)∪C)⊆>kbo and π(C)∩>kbo 6= ∅. ut

From a satisfying assignment one can read off the argument filtering, the precedence,
and the weight function. We omit the straightforward details. The converse of Theorem 7
holds if we do not put a bound on the number k of bits used for the representation of the
weights. This is automatically the case for the SMT back-end. For SAT this is possible due
to the results of Section 3.
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8 Experimental Results

We implemented our encodings on top of TTT2.7 MiniSat [10] and MiniSat+ [11] were used
to check satisfiability of the SAT and PB based encodings and Yices [8] was the choice for
the SMT approach. All three tools are interfaced from TTT2 which is written in OCaml.
For the SAT approach propositional formulas are transformed into CNF similar to [34]. For
all data given in the following tables addition in SAT (Definition 5) takes overflows into
account, i.e., adding two k-bit numbers results in a (k + 1)-bit number. Below we compare
our implementations of KBO, sat, pbc, and smt with the ones of TTT, AProVE [16], and an
implementation dkm (also on top of TTT2) as proposed in [7]. TTT and AProVE admit only
strict precedences. Both implement the algorithm of Korovin and Voronkov [28] together
with techniques of Dick et al. [7]. For two of our approaches (sat and pbc) KBO orientability
amounts to finding a satisfying assignment for a propositional formula whereas the smt

approach is based on linear programming. The other tools find a solution by solving a system
of homogeneous linear inequations which also amounts to linear programming. Although
this problem is known to be decidable in polynomial time [24,23] in practice algorithms with
exponential (worst-case) time complexity such as the simplex method [5] perform much
better. Dick et al. [7] prefer the method of complete description over simplex due to its
support for incrementality. This shows that although computing a KBO for a given TRS can
be done in polynomial time none of the existing tools does so.

We used the 1381 TRSs and 724 string rewrite systems (SRSs) of the standard rewriting
category in version 4.0 of the Termination Problems Data Base [32]. All tests have been
performed on a single core of a server equipped with eight dual-core AMD Opteron R© pro-
cessors 885 running at a clock rate of 2.6GHz and 64GB of main memory with a timeout of
60 seconds.

Concerning optimizations, when computing weights of terms symbols occurring on both
sides of rules are ignored. Furthermore the encoding of KBO is only computed if a test for
embedding fails. Apart from obvious identities like

ϕ ∧>→ ϕ >∧ϕ → ϕ ϕ ∧⊥→⊥ ⊥∧ϕ →⊥ ·· ·

which help to reduce the size of the encoding no further simplifications are applied. But
keeping the encoding in a cache allows to re-use precomputed formulas which drastically
reduces encoding time.

8.1 Results for TRSs

As addressed earlier one has to fix the number k of bits which is used to represent natural
numbers in binary representation. The actual choice is specified as argument to sat (pbc).
Note that a rather small k is sufficient to handle all potential systems from [32] which makes
Theorems 2 and 3 powerful in practice. As already indicated in Example 2 there does not ex-
ist a uniform upper bound on k but for every given TRS one can compute such a k according
to Theorem 1.

The left part of Table 1 summarizes8 the results for strict precedences. Interestingly, al-
ready k = 4 suffices to prove the maximum number of systems terminating. The TRS higher-

order/AProVE/HO/ReverseLastInit needs weight eight for the constant init and therefore

7 http://colo6-c703.uibk.ac.at/ttt2/
8 Full experimental data to be found at http://colo6-c703.uibk.ac.at/ttt2/kbo/.

http://colo6-c703.uibk.ac.at/ttt2/
http://colo6-c703.uibk.ac.at/ttt2/kbo/
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Table 1 KBO for 1381 TRSs.

strict precedence quasi-precedence
method(#bits) total time #successes #timeouts total time #successes #timeouts
sat/pbc(2) 30.5/90.7 104/104 0/0 34.0/161.3 105/104 0/1
sat/pbc(3) 31.6/93.0 106/106 0/0 34.7/142.6 107/107 0/0
sat/pbc(4) 34.7/99.8 107/107 0/0 37.3/142.2 108/108 0/0
sat/pbc(10) 350.9/187.5 107/107 3/1 377.8/253.2 108/107 3/2
smti 26.5 107 0 24.4 108 0
smtr 26.3 107 0 24.4 108 0
AProVE 1945.2 101 18
TTT 329.2 101 1
TTT(simplex) 370.0 105 4
dkm 808.8 99 13
dkm’ 443.9 102 7

can only be handled by KBO with k > 4. The SMT approach does not need to represent
numbers in binary and consequently there are no bit-restrictions on the weights. Even fur-
ther, this encoding allows to choose the real numbers as domain for the weights. However,
Yices can only deal with rationals. The index for smt indicates if integers (smti) or rationals
(smtr) are employed.

Since TTT and AProVE implement the slightly stronger KBO definition of [28] they
can prove two TRSs (various/27 and TRCSR/Ex9 Luc06 GM) terminating which cannot be
handled by our methods. (We did not investigate if one can specialize the encodings to also
capture these systems but are convinced that this is in principle possible.) On the other hand
TTT gives up on HM/t000 (and six more TRSs that derive from context sensitive rewriting)
which specifies addition for natural numbers in decimal notation (using 104 rewrite rules).
The problem is not the time limit but at some point the algorithm detects that it will require
too many resources. To prevent a likely stack overflow from occurring, the computation is
terminated and a “don’t know” result is reported. AProVE does not cut off execution and
consequently for this system (and 17 others) no result is obtained within 60 seconds. Also
dkm fails on HM/t000 (timeout) whereas for none of our approaches this system seems
to pose a problem at all; sat(4), pbc(4), smti, and smtr succeed within 0.14, 0.12, 0.04,
and 0.03 seconds. The algorithm dkm produces large sparse matrices during execution for
some systems (e.g. for HM/t000 after 30 seconds 1GB of memory is used). We developed
an OCaml module for sparse matrices which could drastically reduce memory usage (e.g.
for HM/t000 after 30 seconds only 50MB). Nevertheless this effort just slightly improves
the data for dkm. On the whole database the number of successful proofs did not increase
and execution time decreases just slightly. Another issue that increased performance of dkm

much more was sorting the set of equations in order to keep the internal data-structure
(the matrices SA

i ) for MCD much smaller. This allowed us to prove various/21 in 0.026
sec whereas it was intractable for this method beforehand (out-of-memory after 8 minutes).
The idea of sorting somehow contradicts the claim in [7] that MCD is preferable over the
simplex method [5] due to its incremental nature. Our tests showed that restarting MCD
(with sorted inequalities) whenever some new inequalities are added performs better than
just incrementally adding one inequality after the other. Table 1 shows that by sorting (dkm’)
the method can prove three additional TRSs while the execution time drops by a factor of
two. We also varied (within TTT) the back-end for solving linear inequations. While the
standard implementation of TTT uses MCD, the special version TTT(simplex) implements
the first phase of [5]. Again the results contradict the claim in [7] that MCD is better suited
than the simplex method.
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Table 2 KBO for 724 SRSs.

strict precedence quasi-precedence
method(#bits) total time #successes #timeouts total time #successes #timeouts
sat/pbc(3) 12.8/11.6 24/24 0/0 14.3/12.8 24/24 0/0
sat/pbc(4) 13.7/11.7 30/30 0/0 15.3/12.5 30/30 0/0
sat/pbc(6) 16.5/13.0 33/33 0/0 18.4/14.2 33/33 0/0
sat/pbc(8) 18.5/18.3 33/33 0/0 22.0/17.6 33/33 0/0
smti 12.6 33 0 12.2 33 0
smtr 12.5 33 0 12.0 33 0
AProVE 673.7 30 4
TTT 45.4 30 0
TTT(simplex) 22.3 33 0
dkm 370.9 29 6
dkm’ 258.0 30 4

Table 3 KBO with dependency pairs for 1381 TRSs/724 SRSs.

TRSs SRSs
method(#bits) total time #successes #timeouts total time #successes #timeouts
sat(2) 2641.1 488 27 114.4 45 0
sat(3) 3478.3 491 31 336.2 48 1
sat(4) 6468.9 489 56 846.1 54 4
sat(5) 10921.7 488 120 1595.2 55 8
sat(6) 13757.9 488 174 2764.3 57 17
sat(10) 19821.7 478 265 8265.1 54 64
smti 1830.9 487 16 64.2 58 0
smtr 1132.8 489 9 56.8 58 0
AProVE 15562.9 445 232 2902.7 37 36
TTT 23898.5 323 366 2623.5 27 36

As can be seen from the right part of Table 1, by admitting quasi-precedences one addi-
tional TRS (SK90/2.42, Example 1) can be proved terminating.

8.2 Results for SRSs

For SRSs we have similar results, as can be inferred from Table 2. The main difference is the
larger number of bits needed for the propositional representation of the weights. The maxi-
mum number of SRSs is proved terminating with k > 6. Generally speaking TTT performs
better on SRSs than on TRSs concerning KBO because it can handle all systems within the
time limit. However, again our experiments reveal that the implementation of TTT is not
complete, i.e., it proves termination of 30 SRSs only whereas our implementations succeed
on 33 SRSs. The three SRSs that make up the difference (Trafo/dup11, Zantema/z069, Zan-

tema/z070) derive from algebra (polyhedral groups). Also AProVE and dkm are unable to
handle these systems (timeout) while the simplex version of TTT performs well. Admitting
quasi-precedences does not allow to prove more systems terminating by KBO.

8.3 Results with Dependency Pairs

For the results in this section the dependency pair definition of [6] together with dependency
graph refinements presented in [18,20] and with usable rules like in [18,19] have been con-
sidered. In combination with the dependency pair setting KBO gains much power compared
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to the direct approach. One reason is that by allowing argument filterings duplicating sys-
tems may become non-duplicating and consequently this (severe) restriction is eased.

We implemented the sat encoding from Section 7 and a similar encoding for smt. As can
be seen in Table 39 the smt encoding is by far the fastest and for rational weights the solving
time is drastically reduced compared to the integer case. Interestingly even if the weights are
allowed to take rational values Yices returns integer solutions for almost all systems. (We
refer to Section 9 for details.) Although for TRSs smtr misses proving two systems com-
pared to sat(3) it remains the optimal choice since no parameters have to be chosen to call
the method. Furthermore the two missing systems can be handled by slightly increasing the
timeout, i.e., smtr is successful on TRCSR/PALINDROME complete-noand FR within 98.6
seconds and spends 204.4 seconds on TRCSR/PALINDROME complete-noand Z. Globally
speaking within four minutes smtr can investigate all systems whereas there remain time-
outs for sat. For the SRS category SMT is the clear winner since it is by far the fastest and
most powerful as demonstrated in the right part of Table 3.

9 Assessment and Conclusion

In this section we compare the three new approaches presented in this article. Let us start
with the most important measurements: power and run time. Here smt is the clear winner.
In [42] smt was not considered and pbc performed best. Since here a different database is
employed the results look slightly worse for PB. On most examples pbc still outperforms sat

but on a few systems (transformations from context-sensitive rewriting) pbc is not efficient at
all. But pbc still scales better when using more bits (cf. Table 1). Furthermore, the pseudo-
boolean approach is less implementation work since additions are performed by the SAT
solver and also the transformation to CNF is not necessary. Of course smt combines the
benefits of both approaches. The encoding is straight forward, short in implementation, and
efficient.

But an advantage of the pseudo-boolean approach is the option of a goal function which
should be minimized while preserving satisfiability of the constraints. Although the usage
of such a goal function is not of computational interest it is useful for generating easily hu-
man readable proofs. We experimented with functions minimizing the weights for function
symbols and reducing the comparisons in the precedence. The former has the advantage
that one obtains a KBO proof with minimal weights which is nicely illustrated on the SRS
Zantema/z113 consisting of the rules

11→ 43 33→ 56 55→ 62

12→ 21 22→ 111 34→ 11

44→ 3 56→ 12 66→ 21

TTT and AProVE produce the proof

w(1) = 32471712256 w(2) = 48725750528 w(3) = 43247130624

w(4) = 21696293888 w(5) = 44731872512 w(6) = 40598731520

3� 1� 2 1� 4

9 We stress that TTT has a weaker implementation of the dependency pair framework and consequently
the results cannot directly be compared.
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whereas pbc(6) produces

w(1) = 31 w(2) = 47 w(3) = 41

w(4) = 21 w(5) = 43 w(6) = 39

3� 1� 2 3� 5� 6� 2 1� 4

So for the first time it became clear that these large numbers are not needed to prove KBO
orientability of the system Zantema/z113. Regarding the goal function dealing with the
minimization of comparisons in the precedence we detected that using two (three, four, ten)
bits to encode weights of function symbols 49 (56, 60, 60) TRSs can be proved terminat-
ing with empty precedence. To some extent it is clear that AProVE and TTT produce such
large weights since these implementations are based on the work in [7] which always en-
sures minimal precedences. Surprisingly our dkm’ implementation produced a proof for vari-

ous/21 with minimal (since empty) precedence and weight function w(+) = 12, w(p1) = 24,
w(p2) = 42, w(p5) = 90, and w(p10) = 141, contradicting the discussion at the end of [7, Ex-
ample 2] claiming that a precedence p10� p5� p2� p1 is needed.

Without dependency pairs there is no real gain in speed when allowing rationals for
SMT. This might be due to the fact that only two proofs (HM/t000 and SK90/2.46) make use
of rational valued weights in the TRS category and the same is true for SRSs (Trafo/dup11

and Trafo/dup16). But the difference becomes larger within the dependency pair setting.
Suddenly 57 proofs for TRSs and 41 for SRSs contain rational valued weights. As already
mentioned earlier [28] proves that restricting to integer weights does not change the power
of the order.

All encodings presented in this article are polynomial in size. Performing binary addition
using circuits as in Definition 5 stays polynomial because of introducing fresh variables.
Clearly these fresh variables might double the search space for the SAT solver. The same
holds for the transformation to CNF.

While running the experiments, sat and pbc produced different answers for the SRS
Zantema/z13; pbc claimed KBO termination whereas sat answered “don’t know”. Chasing
that discrepancy revealed a bug [9] in MiniSat+ (which has been corrected in the meantime).

Our experiments reveal that SMT suits an efficient and simple implementation best.
However, for KBO linear arithmetic is sufficient which is not the case for other popular
termination techniques like polynomial interpretations [30]. Currently SMT solvers do not
support non-linear arithmetic at all or completely inappropriate. Thus it seems inevitable to
use SAT as a back-end [13] for efficient implementations dealing with polynomials.

Comparing KBO with other direct approaches for proving termination such as LPO or
polynomial interpretations, the question arises how powerful KBO is. Despite the severe
restriction of non-duplication, there are KBO terminating TRSs that cannot be oriented by
LPO or polynomial interpretations. Taking derivational complexity as measure for the power
of an order, KBO surpasses the other approaches. The derivation length, denoted dlR(n),
computes the length of a longest possible derivation starting at a term of size n. Hofbauer
and Lautemann [22] showed that KBO can prove TRSs R terminating for which dlR cannot
be bounded by a primitive recursive function whereas polynomials are bounded from above
by double exponential functions. Lepper [31] proved that the Ackermann function gives
an upper bound on dlR if termination of R can be proven by KBO. Moser [33] extended
this result to infinite signatures. Concerning LPO, Weiermann [39] showed that multiple
recursive functions suffice for bounding derivational complexity.

To stress the significance of our work we state some details about the use of KBO in
the termination prover TTT2. It used the SMT encoding (with rationals) in the November
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2008 termination competition for both categories in which it participated. Here KBO had
to compete with a number of other termination techniques in TTT2. For the category TRS
Standard (SRS Standard) KBO was used in about 22% (18%) of the successful termination
proofs which shows the applicability of the method.

In this article we presented a method to compute upper bounds for weights. Furthermore
we presented three logic-based encodings of KBO—pure SAT, PB, and SMT—which can be
implemented more efficiently and with considerably less effort than the dedicated methods
described in [7, 28]. Our experiments reveal enormous gains in efficiency. Especially the
SMT encoding gives rise to a very fast and user-friendly implementation since the method
is parameter-free (no restriction of bits for weights).
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