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ABSTRACT

In this paper we analyze completeness results for basic narrowing. We show that
basic narrowing is not complete with respect to normalizable solutions for equa-
tional theories defined by confluent term rewriting systems, contrary to what has
been conjectured. By imposing syntactic restrictions on the rewrite rules we recover
completeness. We refute a result of Hölldobler which states the completeness of ba-
sic conditional narrowing for complete (i.e. confluent and terminating) conditional
term rewriting systems without extra variables in the conditions of the rewrite rules.
In the last part of the paper we extend the completeness result of Giovannetti and
Moiso for level-confluent and terminating conditional systems with extra variables in
the conditions to systems that may also have extra variables in the right-hand sides
of the rules.
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1. Introduction

The aim of this paper is to analyze the various completeness results for narrowing in a uniform
setting. In order to avoid biting off more than we can chew, we restrict ourselves to ordinary nar-
rowing, basic narrowing, conditional narrowing and basic conditional narrowing. In particular,
we do not consider normal narrowing (Fay [14]), the combination of basic and normal narrowing
(Réty [37], Nutt et al. [36]), narrowing modulo equational theories (Kirchner [29]), nor various
narrowing strategies like innermost and lazy narrowing (Fribourg [15] and You [42] respectively,
see also Echahed [12, 13]).

Recently there has been much interest in incorporating the logic and functional program-
ming paradigms in a single language. The computational mechanism underlying many of these
amalgamated languages is conditional narrowing. Examples include alf (Hanus [19]), babel
(Moreno-Navarro and Rodŕıguez-Artalejo [35]), eqlog (Goguen and Meseguer [18]), k-leaf
(Giovannetti et al. [16]) and slog (Fribourg [15]).

Narrowing was first studied in the context of semantic or E-unification. Fay [14] and Hullot
[23] showed that narrowing is a complete method for solving equations in the theory defined by
a confluent and terminating term rewriting system. Completeness means that for every solution
to a given equation, a more general solution can be found by narrowing. It is well-known that
the termination requirement can be dropped, provided we restrict ourselves to normalizable
solutions. In other words, narrowing is complete for confluent term rewriting systems with
respect to normalizable solutions. In order to reduce the search space of narrowing, Hullot [23]
introduced the concept of basic narrowing. He showed that basic narrowing is complete for
confluent and terminating term rewriting systems. In this paper we show that basic narrowing
is not complete for confluent term rewriting systems with respect to normalizable solutions,
thereby disproving a conjecture of Yamamoto [41].

Narrowing has been extended to conditional theories by Kaplan [28], Hußmann [25] and
Dershowitz and Plaisted [10, 11], among others. Giovannetti and Moiso [17] observed that extra
variables in the conditions of the rewrite rules may cause incompleteness (cf. Hußmann [26]).
They showed that this incompleteness can be avoided by strengthening confluence to level-
confluence. We extend their result to conditional term rewriting systems with extra variables in
the right-hand side of the rules. Hölldobler [22] was one of the first to perform a systematic and
extensive analysis of various versions of conditional narrowing for conditional term rewriting
systems without extra variables. However, we will show that his completeness result for basic
conditional narrowing with respect to confluent and terminating conditional term rewriting
systems is incorrect. Our counterexample might influence the completeness of alf (Hanus [19])
since its operational semantics is in essence basic conditional narrowing.

The paper is organized as follows. Section 2 contains a concise introduction to term rewriting
and some elementary unification theory. In Section 3 we introduce narrowing and review its
completeness. Section 4 is concerned with basic narrowing. We show that completeness is
lost if we drop the termination requirement in exchange for the restriction to normalizable
solutions, contrary to what is generally believed. In Section 5 we show that orthogonality
and right-linearity are sufficient syntactic restrictions for recovering completeness. Conditional
narrowing is introduced in Section 6. In Section 7 we show that basic conditional narrowing
is not complete for confluent and terminating conditional term rewriting systems. We show
that basic conditional narrowing is complete if we strengthen termination to decreasingness,
a property of conditional term rewriting systems that implies the decidability of the rewrite
relation. In Section 7 we also refute a conjecture of Giovannetti and Moiso [17] about the
completeness of basic conditional narrowing for orthogonal conditional term rewriting systems.
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Section 8 contains a detailed account of the results of Giovannetti and Moiso [17] concerning the
completeness of conditional narrowing for level-confluent systems. In Section 9 we show that
conditional narrowing is complete for level-complete systems that have extra variables in the
right-hand sides of the rewrite rules. Section 10 summarizes the results discussed in detail in
previous sections. We mention some open problems and give suggestions for further research.

It is well-known that the correct use of variables and substitutions in completeness proofs
requires great care. Several completeness proofs presented in the literature are incorrect due
to incorrect assumptions about variables occurring in narrowing derivations and substitutions.
Especially the so-called lifting lemma is notorious in this respect. This phenomenon is well-
known in logic programming (cf. Shepherdson [40]). In the present paper it is our endeavour to
give complete and rigorous proofs of the various lifting lemma’s and other results. In particular,
we take great efforts to motivate all assumptions about variables and substitutions. We are
aware that easy readability is strained by a fully rigorous treatment of these matters. In order to
enhance readability, the technical proofs of the propositions that relate certain rewrite sequences
to basic narrowing derivations are deferred till the Appendix.

2. Preliminaries

In this section we review the basic notions of term rewriting and unification. We refer to
Dershowitz and Jouannaud [5] and Klop [31] for extensive surveys.

A signature is a set F of function symbols. Associated with every f ∈ F is a natural number
denoting its arity. Function symbols of arity 0 are called constants. The set T (F ,V) of terms
built from a signature F and a countably infinite set of variables V is the smallest set such that
V ⊂ T (F ,V) and if f ∈ F has arity n and t1, . . . , tn ∈ T (F ,V) then f(t1, . . . , tn) ∈ T (F ,V).
We write c instead of c() whenever c is a constant. Identity of terms is denoted by ≡ . The set
of variables occurring in a term t is denoted by V(t).

A precise formalism for describing subterm occurrences is obtained through the notion of
position. The set O(t) of positions in a term t is inductively defined as follows:

O(t) =




{ε} if t ∈ V,
{ε} ∪ {i·p | 1 6 i 6 n and p ∈ O(ti)} if t ≡ f(t1, . . . , tn).

So positions are sequences of natural numbers denoting subterm occurrences. If p ∈ O(t) then
t|p denotes the subterm of t at position p, i.e.

t|p =





t if p = ε,

(ti)|q if t ≡ f(t1, . . . , tn) and p = i·q.

We write s ⊆ t to indicate that s is a subterm of t. If s ⊆ t and s 6≡ t then s is a proper subterm
of t. The set O(t) is partitioned into O(t) and OV(t) as follows: O(t) = {p ∈ O(t) | t|p /∈ V} and
OV(t) = {p ∈ O(t) | t|p ∈ V}. If p ∈ O(t) then t[s]p denotes the term that is obtained from t by
replacing the subterm at position p by the term s. Formally:

t[s]p =





s if p = ε,

f(t1, . . . , ti[s]q, . . . , tn) if t ≡ f(t1, . . . , tn) and p = i·q.
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Positions are partially ordered by the prefix ordering 6, i.e. p 6 q if there exists an r such that
p·r = q. We write p < q if p 6 q and p 6= q. Positions p, q are disjoint, denoted by p ⊥ q, if
neither p 6 q nor q 6 p.

A substitution σ is a mapping from V to T (F ,V) such that {x ∈ V | σ(x) 6≡ x} is finite.
This set is called the domain of σ and denoted by Dσ. We frequently identify a substitution
σ with the set {x 7→ σx | x ∈ Dσ}. The empty substitution will be denoted by ε. So ε = ∅
by abuse of notation. Substitutions are extended to morphisms from T (F ,V) to T (F ,V), i.e.
σ(f(t1, . . . , tn)) ≡ f(σ(t1), . . . , σ(tn)) for every n-ary function symbol f and terms t1, . . . , tn. In
the following we write σt instead of σ(t). The set of variables introduced by σ is denoted by Iσ,
i.e. Iσ =

⋃
x∈Dσ V(σx). Composition of substitutions is denoted by ‘◦’, i.e. (σ ◦ τ)x = σ(τx)

for all x ∈ V. We say that a substitution σ is more general than a substitution τ , denoted by
σ 6 τ , if there exists a substitution ρ such that ρ ◦ σ = τ . Let V ⊆ V. The restriction σ�V of σ
to V is defined as follows:

σ�V x =





σx if x ∈ V,
x otherwise.

A variable renaming is a bijective substitution from V to V. We write σ = τ [V ] if σ�V = τ�V
and σ 6 τ [V ] denotes the existence of a substitution ρ such that ρ ◦ σ = τ [V ]. Two terms
s and t are unifiable if there exists a substitution σ, a so-called unifier of s and t, such that
σs ≡ σt. It is well-known that unifiable terms s, t posses a most general unifier σ, i.e. σ 6 τ for
every other unifier τ of s and t. Most general unifiers are unique up to variable renaming. A
substitution σ is idempotent if σ ◦ σ = σ. It is easy to show that a substitution σ is idempotent
if and only if Dσ ∩ Iσ = ∅. Given two unifiable terms s and t, the unification algorithms of
Robinson [39] and Martelli and Montanari [33] produce an idempotent most general unifier σ
that satisfies Dσ∪Iσ ⊆ V(s)∪V(t). In the sequel we make use of the following proposition. Its
routine proof is omitted.

Proposition 2.1. If σ is an idempotent most general unifier of two terms s, t that have no
variables in common then Dσ ∪ Iσ = V(s) ∪ V(t). �

Let ∼ be a binary relation on terms. We say that ∼ is closed under contexts if s ∼ t implies
that u[s]p ∼ u[t]p, for all terms u and positions p ∈ O(u). The relation ∼ is closed under
substitutions if σs ∼ σt whenever s ∼ t, for all substitutions σ. A relation that is closed under
contexts and substitutions is called a rewrite relation.

An equation is a pair (s, t) of terms, written as s = t. Let E be a set of equations. The
smallest symmetric relation that contains E and is closed under contexts and substitutions is
denoted by ↔E . So s ↔E t if there exist an equation l = r with l = r ∈ E or r = l ∈ E,
a position p ∈ O(s), and a substitution σ such that s|p ≡ σl and t ≡ s[σr]p. The transitive-
reflexive closure of ↔E is denoted by =E . This relation is extended to substitutions as follows:
σ =E τ if σx =E τx for all x ∈ V. We write σ 6E τ if there exists a substitution ρ such that
ρ ◦ σ =E τ . We define σ =E τ [V ] and σ 6E τ [V ] as above.

Two terms s and t are E-unifiable if there exists a substitution σ such that σs =E σt. In
the context of a set of equations E, the notion of most general unifier generalizes to complete
sets of E-unifiers. A set of substitutions Σ is a complete set of E-unifiers of two terms s and t
if the following three conditions are satisfied:
• Dσ ⊆ V(s) ∪ V(t) for all σ ∈ Σ,
• every σ ∈ Σ is an E-unifier of s and t,
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• if τ is an E-unifier of s and t then there exists a σ ∈ Σ such that σ 6E τ [V(s) ∪ V(t)].
Every set consisting of a most general unifier σ of terms s and t with Dσ ⊆ V(s) ∪ V(t) is a
complete set of ∅-unifiers of s and t.

A rewrite rule is a directed equation l → r satisfying l /∈ V and V(r) ⊆ V(l). If l → r is
a rewrite rule and σ a variable renaming then the rewrite rule σl → σr is called a variant of
l → r. A term rewriting system (TRS for short) is a set of rewrite rules. A rewrite rule l → r
is left-linear (right-linear) if l (r) does not contain multiple occurrences of the same variable. A
left-linear (right-linear) TRS only contains left-linear (right-linear) rewrite rules.

The rewrite relation →R associated with a TRS R is defined as follows: s →R t if there
exist a variant5 l → r of a rewrite rule in R, a position p ∈ O(s), and a substitution σ such
that s|p ≡ σl and t ≡ s[σr]p. The term σl is called a redex and we say that s rewrites to t by
contracting redex σl. We call s →R t a rewrite step. Occasionally we write s →[ p, l→ r, σ] t or
s →[ p, l→ r] t. The transitive-reflexive closure of →R is denoted by �R. If s �R t we say that
s reduces to t. The transitive closure of →R is denoted by →+

R. We write s ←R t if t →R s;
likewise for s �R t. The transitive-reflexive-symmetric closure of →R is called conversion and
denoted by =R. If s =R t then s and t are convertible. If E is the set of equations corresponding
to R, i.e. E = { l = r | l → r ∈ R}, then =R and =E coincide. Via this correspondence the
notion of R-unification is implicitly defined. Two terms t1, t2 are joinable, denoted by t1 ↓R t2,
if there exists a term t3 such that t1 �R t3 �R t2. Such a term t3 is called a common reduct of
t1 and t2. When no confusion can arise, we omit the subscript R.

A term s is a normal form if there is no term t with s→ t. We also say that s is normalized.
A term s has a normal form if there exists a reduction sequence s� t with t a normal form. A
TRS is weakly normalizing if every term has a normal form. A TRS is strongly normalizing if
there are no infinite reduction sequences t1 → t2 → t3 → · · · . In other words, every reduction
sequence eventually ends in a normal form. A TRS is locally confluent if for all terms s, t1, t2
with t1 ← s→ t2 we have t1 ↓ t2. A TRS is confluent or has the Church-Rosser property if for
all terms s, t1, t2 with t1 � s � t2 we have t1 ↓ t2. A well-known equivalent formulation of
confluence is that every pair of convertible terms is joinable (t1 = t2 ⇒ t1 ↓ t2). The renowned
Newman’s Lemma states that every locally confluent and strongly normalizing TRS is confluent.
A complete TRS is confluent and strongly normalizing. A semi-complete TRS is confluent and
weakly normalizing. Each term in a (semi-)complete TRS has a unique normal form. The above
properties of TRSs (weak normalization, strong normalization, local confluence, confluence,
completeness, and semi-completeness) specialize to terms in the obvious way. For instance, a
term s is confluent if t1 ↓ t2 whenever t1 � s � t2. If a term t has a unique normal form then
we denote this normal form by t↓.

A substitution σ is normalized (with respect to a TRS R) if σx is a normal form for every
x ∈ Dσ. A substitution σ is normalizable if σx has a normal form for every x ∈ Dσ. Let σ be a
normalizable substitution. A normalized substitution τ is called a normal form of σ if σx� τx
for all x ∈ V.

Let l1 → r1 and l2 → r2 be variants of rewrite rules of a TRS R without common variables.
Suppose p ∈ O(l1) such that (l1)|p and l2 are unifiable, so σ(l1)|p ≡ σl2 for a most general unifier
σ. The term σl1 ≡ σl1[σl2]p is subject to the reduction steps σl1 → σr1 and σl1 → σl1[σr2]p ≡
σ(l1[r2]p). The pair of reducts 〈σ(l1[r2]p), σr1〉 is a critical pair of R. If l1 → r1 and l2 → r2

are variants, we do not consider the case p = ε. A critical pair 〈s, t〉 is convergent if s ↓ t.
5 The use of variants is not essential for defining the rewrite relation since rewriting is variant independent,

meaning that if s→[ p, l→ r, σ] t and l′ → r′ is a variant of l→ r then also s→[ p, l′→ r′, σ′] t for some substitution
σ′. However, it states explicitly that we may rename variables when necessary, e.g. when we relate rewriting to
narrowing, which is not variant independent in the above sense.
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The well-known Critical Pair Lemma states that a TRS is locally confluent if and only if all its
critical pairs are convergent.

A TRS is called non-ambiguous or non-overlapping if it has no critical pairs. An orthogonal
TRS is both left-linear and non-ambiguous. For orthogonal TRSs a considerable amount of
theory has been developed, see Klop [31] for a comprehensive survey. The most prominent fact
is that every orthogonal TRS is confluent. In Section 4 we make use of the work of Huet and
Lévy [21] on needed reductions in orthogonal TRSs.

We conclude this section with some information on multiset orderings. A multiset over a set
A is an unordered collection of elements of A in which elements may have multiple occurrences.
Every partial order (i.e. transitive and irreflexive relation) � on A can be extended to a partial
order �� on the set of finite multisets over A as follows: M �� N if there exist multisets X and
Y such that
• ∅ 6= X ⊆M ,
• N = (M −X) ∪ Y ,
• for every y ∈ Y there exists an x ∈ X such that x � y.
The partial order �� is called the multiset extension of �. Dershowitz and Manna [6] showed
that the multiset extension of a well-founded order is again well-founded.

3. Narrowing

In this section we introduce narrowing and review some completeness results. The narrowing
relation defined below was introduced by Hullot [23].

Definition 3.1. We say that a term t is narrowable into a term t′ if there exist a position
p ∈ O(t), a variant6 l→ r of a rewrite rule in R, and a substitution σ such that
• σ is a most general unifier of t|p and l,
• t′ ≡ σ(t[r]p).
We write t [ p, l→ r, σ] t

′ or simply t σ t
′. The relation  is called narrowing.

Notation. We write t ∗σ t′ if there exists a narrowing derivation

t ≡ t1  σ1 t2  σ2 · · · σn−1 tn ≡ t′

such that σ = σn−1 ◦ · · · ◦ σ2 ◦ σ1. If n = 1 then σ = ε.

In a rewrite step s→[ p, l→ r, σ] t we may always assume that the applied rewrite rule has no
variables in common with s and σ is restricted to variables occurring in l. Consequently, σ is a
most general unifier of s|p and l, and t ≡ s[σr]p ≡ σ(s[r]p). Hence rewriting can be viewed as a
special case of narrowing.

A nice explanation of the word ‘narrowing’ can be found in Klop [30]. We now explain how
narrowing can be used for equational unification. In order to facilitate the exposition, we extend
the set of function symbols with a fresh binary function symbol =? and a fresh constant true.
We furthermore assume that R contains the rewrite rule x =? x → true.7 We consider only
terms of the following form:
6 Renaming of rewrite rules is mandatory for ensuring completeness. The idea is to use a single variant of a

rewrite rule and a single most general unifier, in order to avoid unnecessary computations. We always require
that the rewrite rule has no variables in common with the term to be narrowed, i.e. V(l) ∩ V(t) = ?, but in
general this is not sufficient for completeness. From the proof of Lemma 3.4 below, the precise requirements of
freshness can be deduced. That proof makes also clear that any idempotent most general unifier is adequate for
completeness.

7 This assumption will not be made when we consider orthogonal TRSs.
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• terms that do not contain any occurrences of =? and true,
• terms s =? t with s and t satisfying the previous condition,
• the constant true.
Terms of the second form are called goals. It should be stressed that confluence, completeness,
and semi-completeness are retained under the addition of the rule x =? x→ true.8

Example 3.2. Consider the TRS

R =
{

0 + x → x
S(x) + y → S(x+ y).

Suppose we want to solve the goal z + z =? S(S(0)). Figure 1 shows that narrowing is able
to find the (unique) solution {z 7→ S(0)}. This is not a coincidence: below we will see that
narrowing is able to find all elements of a complete set of R-solutions9 of a given goal, provided
R satisfies certain conditions.

z + z =? S(S(0))

a

0 =? S(S(0))

b

S(x+ S(x)) =? S(S(0))

c

S(S(0)) =? S(S(0))

e

S(S(x′ + S(S(x′)))) =? S(S(0))

d

true
...

...

no solution

solution {z 7→ S(0)} no solutions

step rewrite rule narrowing substitution

a 0 + x → x {x, z 7→ 0}
b S(x) + y → S(x+ y) {y, z 7→ S(x)}
c 0 + x′ → x′ {x 7→ 0, x′ 7→ S(0)}
d x =? x → true {x 7→ S(S(0))}
e S(x′) + y′ → S(x′ + y′) {x 7→ S(x′), y′ 7→ S(S(x′))}

Figure 1.

The soundness of narrowing is expressed in the next lemma.
8 This even holds if we would allow unrestricted term formation, due to modularity considerations; see Middeldorp

[34].
9 An R-solution of a goal s =? t is an R-unifier of the terms s and t.
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Lemma 3.3. Let R be a TRS. If s =? t ∗σ true then σ is an R-unifier of s and t.

Proof. Easy induction on the length of the narrowing derivation s =? t  ∗σ true, using the
observation that σ′s′ →R t′ whenever s′  σ′ t

′. �

The following lemma of Hullot [23] is the key to completeness. It states that rewrite sequences
can be ‘lifted’ to narrowing derivations.

Lemma 3.4. Let R be a TRS. Suppose we have terms s and t, a normalized substitution θ and
a set of variables V such that V(s) ∪ Dθ ⊆ V and t ≡ θs. If t �R t′ then there exist a term s′

and substitutions θ′, σ such that
• s ∗σ s′,
• θ′s′ ≡ t′,
• θ′ ◦ σ = θ [V ],
• θ′ is normalized.
Furthermore, we may assume that the narrowing derivation s  ∗σ s′ and the rewrite sequence
t�R t′ employ the same rewrite rules at the same positions. �

The proof presented in [23] is incorrect with regard to the normalization of the resulting
substitution θ′. Before giving a rigorous proof of this lemma we present three easy propositions
that are heavily used in the proofs of all lifting lemma’s in this paper.

Proposition 3.5. If t is a term and σ a substitution then V(σt) = (V(t)−Dσ) ∪ Iσ�V(t).

Proof. Obvious. �

Proposition 3.6. Suppose we have substitutions σ, θ, θ′ and sets A, B of variables such that
(B −Dσ) ∪ Iσ ⊆ A. If θ = θ′ [A] then θ ◦ σ = θ′ ◦ σ [B].
Proof. We have (θ◦σ)�B = (θ�Iσ ◦σ)�B∩Dσ∪θ�B−Dσ = (θ′�Iσ ◦σ)�B∩Dσ∪θ′�B−Dσ = (θ′◦σ)�B.
The assumptions are used in the second equality. �

Proposition 3.7. LetR be a TRS and suppose we have sets A, B of variables and substitutions
σ, θ, θ′ such that the following conditions are satisfied:
• θ�A is R-normalized,
• θ′ ◦ σ = θ [A],
• B ⊆ (A−Dσ) ∪ Iσ�A.
Then θ′�B is also R-normalized.

Proof. Let x ∈ B. We have to show that θ′x is an R-normal form. If x ∈ A − Dσ then
θ′x ≡ (θ′ ◦ σ)x ≡ θx which is an R-normal form by assumption. If x ∈ Iσ�A then there exists
a variable y ∈ A such that x ∈ V(σy). We have θ′x ⊆ θ′(σy) ≡ θy. By assumption θy is an
R-normal form and hence its subterm θ′x is also an R-normal form. �

Proof of Lemma 3.4. We use induction on the length of the reduction sequence from t to
t′. The case of zero length is trivial. Suppose t →R t1 �R t′ is a reduction sequence of length
n + 1. Let t →[ p, l→ r] t1. We may assume that V(l) ∩ V = ∅.10 We have (θs)|p ≡ τ l for some
substitution τ with Dτ ⊆ V(l). Since θ is normalized we have p ∈ O(s) and hence (θs)|p = θ(s|p).
Let µ = τ ∪ θ. We have µ(s|p) ≡ θ(s|p) ≡ τ l ≡ µl, so s|p and l are unifiable. Let σ1 be an
idempotent most general unifier of s|p and l. Proposition 2.1 yields Dσ1 ∪ Iσ1 = V(s|p) ∪ V(l).
Let s1 ≡ σ1(s[r]p). By definition

s [ p, l→ r, σ1] s1. (1)

10 This is justified by the variant independence of rewriting, cf. footnote 5 on page 5.
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Since σ1 6 µ, there exists a substitution ρ such that ρ◦σ1 = µ. Let V1 = (V −Dσ1)∪Iσ1. Define
θ1 = ρ�V1

. Clearly Dθ1 ⊆ V1. We have V(s1) = V(σ1(s[r]p)) ⊆ V(σ1(s[l]p)) = V(σ1s) ⊆ V1. The
last inclusion follows from Proposition 3.5. Therefore

V(s1) ∪ Dθ1 ⊆ V1. (2)

Using θ1 = ρ [V1] we obtain θ1s1 ≡ ρs1 ≡ ρσ1(s[r]p) ≡ µ(s[r]p) ≡ µs[µr]p. Since V ∩Dτ = ∅ we
have µ = θ [V ]. Likewise µ = τ [V(r)]. Hence the term µs[µr]p equals θs[τr]p ≡ t1. Thus

θ1s1 = t1. (3)

Next we show that θ1 ◦ σ1 = θ [V ]. Proposition 3.6 yields θ1 ◦ σ1 = ρ ◦ σ1 [V ]. We already
noticed that µ = θ [V ]. Linking these two equalities via the equation ρ ◦ σ1 = µ yields

θ1 ◦ σ1 = θ [V ]. (4)

Before we can apply the induction hypothesis, we have to verify that θ1 is normalized. Since
Dθ1 ⊆ V1 it suffices to show that θ1�V1

is normalized. Let B = (V −Dσ1)∪Iσ1�V . Proposition 3.7
(withA = V ) yields the normalization of θ1�B. We claim that Iσ1 ⊆ B and henceB = V1. Recall
that Iσ1 ⊆ V(s|p) ∪ V(l). Let x ∈ Iσ1. Idempotence of σ1 yields x /∈ Dσ1. If x ∈ V(s|p) ⊆ V
then x ∈ V −Dσ1. If x ∈ V(l) then x ∈ V(σ1l) = V(σ1(s|p)) and thus x ∈ Iσ1�V . So Iσ1 ⊆ B.
Hence

θ1 is normalized. (5)

The induction hypothesis yields a term s′ and substitutions θ′, σ′ such that

s1  ∗σ′ s′, (6)

θ′s′ ≡ t′, (7)

θ′ ◦ σ′ = θ1 [V1], (8)

θ′ is normalized. (9)

Moreover, we may assume that s1  ∗σ′ s′ and t1 �R t′ apply the same rewrite rules at the
same positions. Let σ = σ′ ◦ σ1. Concatenating (1) and (6) yields s  ∗σ s′. By construction
this narrowing derivation employs the same rewrite rules at the same positions as the rewrite
sequence t �R t′. It remains to show that θ′ ◦ σ = θ [V ]. Proposition 3.6 applied to (8) yields
θ′ ◦ σ′ ◦ σ1 = θ1 ◦ σ1 [V ] and hence θ′ ◦ σ = θ1 ◦ σ1 = θ [V ] by (4). �

Theorem 3.8 (Hullot [23]). Let R be a complete TRS. If σs =R σt then there exists a nar-
rowing derivation s =? t ∗τ true such that τ ≤R σ [V(s) ∪ V(t)].
Proof. Let σ′ be the normal form of σ, i.e. σ′ = {x 7→ (σx)↓R | x ∈ Dσ}. Notice that σ =R σ′.
Clearly σ′s =R σ′t. Confluence of R yields σ′s ↓R σ′t. Hence there exists a rewrite sequence
σ′(s =? t)�R true. According to Lemma 3.4 there exists a narrowing derivation s =? t ∗τ true
and a substitution σ′′ such that σ′′ ◦ τ = σ′ [V(s) ∪ V(t)]. Therefore τ 6 σ′ [V(s) ∪ V(t)]. Since
σ =R σ′ we conclude that τ 6R σ [V(s) ∪ V(t)]. �

In the following, statements like Theorem 3.8 will be abbreviated by saying that (a kind of)
narrowing is complete for (a class of) TRSs (with respect to certain goals and substitutions).
The reason for this terminology becomes apparent in the following equivalent formulation of
Theorem 3.8.
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Corollary 3.9. LetR be a complete TRS. The set {σ�V(s)∪V(t) | s =? t ∗σ true} is a complete
set of R-unifiers of s and t. �

From the above proof it is clear that the subscript R in τ ≤R σ can be dropped if we only
consider normalized substitutions. Strong normalization of R is only used in the normaliza-
tion of σ into σ′, hence we can strengthen Theorem 3.8 by dropping the strong normalization
requirement and restricting ourselves to normalizable substitutions.

Theorem 3.10. Narrowing is complete for confluent TRSs with respect to normalizable sub-
stitutions. �

Since in a weakly normalizing TRS every substitution is normalizable, we obtain the following
result of Yamamoto [41].

Corollary 3.11. Narrowing is complete for semi-complete TRSs. �

4. Basic Narrowing

The search space of narrowing is quite large. As a matter of fact, the narrowing procedure
seldom terminates. Hullot [23] introduced a restricted form of narrowing, the so-called basic
narrowing , which still is complete for complete TRSs.

Definition 4.1.
(1) Let t1  [ p1, l1→ r1, σ1] t2  [ p2, l2→ r2, σ2] · · · [ pn−1, ln−1→ rn−1, σn−1] tn be a narrowing deriva-

tion. We inductively define sets of positions B1, . . . , Bn as follows:

B1 = O(t1),

Bi+1 = B(Bi, pi, ri) for 1 6 i < n.

Here B(Bi, pi, ri) abbreviates (Bi − { q ∈ Bi | pi 6 q })∪ { pi·q | q ∈ O(ri) }. Positions in Bi
are referred to as basic positions and positions in O(ti)−Bi are called non-basic (1 6 i 6 n).
We say that the above narrowing derivation is basic if pi ∈ Bi for 1 6 i < n.

(2) A rewrite sequence t1 →[ p1, l1→ r1, σ1] t2 →[ p2, l2→ r2, σ2] · · · →[ pn−1, ln−1→ rn−1, σn−1] tn is
based on a set of positions B1 ⊆ O(t1) if pi ∈ Bi for 1 6 i < n with B2, . . . , Bn−1 defined
as above.

So in a basic derivation narrowing is never applied to a subterm introduced by a previous
narrowing substitution. It should be noted that the concepts defined above do not depend on
the used variants of rewrite rules. It is not difficult to show that the sets Bi defined above are
closed under prefix11 for every rewrite sequence that is based on a set which is closed under
prefix. This observation will be used freely in the sequel.

Example 4.2. Consider the complete TRS R = {f(f(x))→ x}. The infinite sequence

f(x) =? x {x 7→f(x′)} x′ =? f(x′) {x′ 7→f(x′′)} f(x′′) =? x′′  {x′′ 7→f(x′′′)} · · ·
is the only narrowing derivation issued from the goal f(x) =? x. It is not basic since the
restriction p2 ∈ B2 is violated if we take B1 = O(t1) = {ε, 1} and B2 = {ε}. In later examples,
when we state that a given narrowing derivation is (non-)basic, the justification—i.e. the sets
Bi—is given by underlining all non-basic positions.
11 That is, if p < q and q ∈ Bi then p ∈ Bi.
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Hullot showed that if all basic narrowing derivations starting at a right-hand side of a rewrite
rule terminate, then the search space of basic narrowing is finite for any term. Recently, Chabin
and Réty [4] argued that the termination behaviour of basic narrowing can be further improved
by adopting a graph representation of the TRS and the goal to be solved.

Herold [20] showed that the sets Bi can be reduced by means of left-to-right basic narrowing,
without losing completeness. The search space can also be reduced by means of the so-called
selection narrowing of Bosco et al. [3]. In this paper we do not consider these optimizations,
but we note that all our results concerning basic (conditional) narrowing—both positive and
negative—extend to both left-to-right and selection narrowing. Krischer and Bockmayr [32]
describe various criteria to detect redundant basic narrowing derivations.

A more elegant formulation of basic narrowing is obtained by partitioning goals into a skeleton
and environment part as in Nutt et al. [36] and Hölldobler [22]. In such a formulation narrowing
would be defined on pairs 〈t, θ〉, consisting of a term t (the skeleton) and a substitution θ (the
environment), as follows: 〈t, θ〉 σ 〈t[r]p, σ ◦θ〉 where p ∈ O(t) and σ is a most general unifier of
(θt)|p and l for some rewrite rule l→ r. The main reason for adopting the ‘standard’ definition
is that we can still use Lemma 3.4 whereas the above formulation requires a more complicated
lifting lemma (in order to ensure completeness of basic narrowing for complete TRSs).

Besides the lifting lemma, the completeness proof of basic narrowing employs Proposition 4.4.
A proof of this proposition is given in the Appendix.

Definition 4.3. An innermost redex does not contain other redexes. In an innermost reduction
sequence only innermost redexes are contracted.

Proposition 4.4 (Hullot [24], Yamamoto [41]). Let R be a TRS and σ a normalized substitu-
tion. Every innermost reduction sequence starting from σt is based on O(t). �

Theorem 4.5 (Hullot [23, 24]). Basic narrowing is complete for complete TRSs.

Proof. Let R be a complete TRS and suppose that σs =R σt. Let σ′ be the normal form of σ.
Just as in the proof of Theorem 3.8 we obtain σ′(s =? t) �R true. Because R is complete we
may assume that this reduction sequence is innermost. According to the previous proposition
the sequence is based on O(s =? t). Since the narrowing derivation constructed by Lemma 3.4
employs the same rewrite rules at the same positions, we know that it is basic. The remainder
of the proof follows literally the proof of Theorem 3.8. �

Several authors (Yamamoto [41], Hölldobler [22]) reported a mistake in the proof of Hullot
as given in [23]. Less well-known is the fact that Hullot himself was the first to repair the
proof, see Hullot’s thesis [24]. Yamamoto observed that strong normalization can be weakened
to weakly innermost normalization. A TRS is called weakly innermost normalizing if every term
has a normal form that can be reached by means of an innermost reduction sequence. More
interesting is the following statement.

Conjecture 4.6 (Yamamoto [41]). Basic narrowing is complete for semi-complete TRSs. �

Counterexample 4.7. Consider the TRS

R =





f(x) → g(x, x)
a → b
g(a, b) → c
g(b, b) → f(a).
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f(a) =? c

g(a, a) =? c

g(a, b) =? cg(b, a) =? c

f(b) =? c

g(b, b) =? c c =? c

true

? ?

? ?

{
rule: f(x)→ g(x, x)
substitution: {x 7→ a}

Figure 2.

Induction on the structure of terms and straightforward case analysis reveals that every term has
a unique normal form. Hence R is semi-complete. However, the goal f(a) =? c cannot be solved
by basic narrowing. Figure 2 shows all narrowing derivations starting from this goal. Recall that
non-basic positions are marked by underlining. (Since the goal is variable-free, all narrowing
steps in the figure are rewrite steps.) The steps marked with a star are non-basic because each
of them rewrites an occurrence of the term a introduced by the substitution {x 7→ a} used in the
step from f(a) =? c to g(a, a) =? c. Since every successful derivation passes through a marked
step, basic narrowing is not able to solve the goal f(a) =? c. Basic narrowing is also unable
to solve the normalized goal g(x, x) =? c since the only (basic) narrowing step starting from
g(x, x) =? c produces the goal f(a) =? c: g(x, x) =? c {x 7→ b} f(a) =? c.

In particular basic narrowing is not complete for confluent TRSs with respect to normaliz-
able substitutions, contrary to what is generally believed. In the next section we recover the
completeness of basic narrowing for semi-complete TRSs by imposing syntactic restrictions on
the rewrite rules.

5. Restoring Completeness

Counterexample 4.7 suggests two sufficient conditions for the completeness of basic narrowing
for semi-complete TRSs: orthogonality and right-linearity. We first show the sufficiency of
orthogonality. The proof is based on the work of Huet and Lévy [21] on needed reductions.
Before stating their main result, we introduce a few preliminary concepts.

Definition 5.1. Let A: s →[ p, l→ r] t be a reduction step in a TRS R and let q ∈ O(s). The
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set q\A of descendants of q in t is defined as follows:

q\A =





{ q } if q < p or q ⊥ p,
{ p·p3·p2 | r|p3

≡ l|p1
} if q = p·p1·p2 with p1 ∈ OV(l),

∅ otherwise.

IfQ ⊆ O(s) thenQ\A denotes the set
⋃
q∈Q q\A. The notion of descendant is extended to rewrite

sequences in the obvious way. Orthogonal TRSs have the nice property that a descendant of a
redex is again a redex (with respect to the same rewrite rule).

Definition 5.2. A redex s in a term t is needed if in every reduction sequence from t to normal
form a descendant of s is contracted. A needed redex s in a term t is innermost if it does not
contain other needed redexes. In an (innermost) needed reduction sequence only (innermost)
needed redexes are contracted.

Theorem 5.3 (Huet and Lévy [21]). Let t be a term in an orthogonal TRS.
• If t is not a normal form then t contains a needed redex.
• If t has a normal form, repeated contraction of needed redexes leads to that normal form.
�

Definition 5.4. Let R be a TRS. We write s →‖ t if t can be obtained from s by contracting
a set of pairwise disjoint redexes in s. The relation →‖ is called parallel reduction.

Proposition 5.5. Let R be an orthogonal TRS and σ a normalized substitution. Every inner-
most needed reduction sequence starting from σt is based on O(t).
Proof. See the Appendix. �

The formulation of the completeness theorem for basic narrowing with respect to normaliz-
able solutions in the context of orthogonal TRSs is slightly different than previous completeness
results. The reason is that the rewrite rule x =? x → true cannot be used since it disturbs
left-linearity. This also explains why we have to require the normalizability of σs and σt.

Theorem 5.6. Let R be an orthogonal TRS. If σs =R σt and σ, σs, and σt are normalizable
then there exist a basic narrowing derivation s =? t ∗τ s′ =? t′ and a most general unifier τ ′ of
s′ and t′ such that τ ′ ◦ τ 6R σ [V(s) ∪ V(t)].
Proof. Let σ′ be the normal form of σ. By confluence, the terms σs, σ′s, σt, and σ′t have the
same normal form n. Thus there exists a sequence σ′(s =? t)�R n =? n. Due to the absence of
the rule x =? x → true, the term n =? n is a normal form. According to Theorem 5.3 we may
assume that in the rewrite sequence from σ′(s =? t) to n =? n only innermost needed redexes
are contracted. From Proposition 5.5 we learn that the sequence is based on O(s =? t) and
hence the narrowing derivation constructed by Lemma 3.4 is basic. The remainder of the proof
is similar to the previous completeness proofs. �

The above completeness result has been independently obtained by Giovannetti and Moiso
(Corrado Moiso, personal communication, August 1991).

Corollary 5.7. Basic narrowing is complete for weakly normalizing orthogonal TRSs. �
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The following example shows that the normalizability requirement of σs and σt in Theo-
rem 5.6 is essential.

Example 5.8. Consider the orthogonal TRS

R =





f(x) → h(x, x)
g(x) → h(x, i(x))
a → i(a).

The following narrowing derivation shows that the goal f(a) =? g(a) can be solved:

f(a) =? g(a)  h(a, a) =? g(a)

 h(a, a) =? h(a, i(a))

 h(a, i(a)) =? h(a, i(a)).

The third step in the above sequence is non-basic. One easily shows that f(a) and g(a) have no
common reduct with respect to basic narrowing. Hence the goal f(a) =? g(a) cannot be solved
by basic narrowing.

Furthermore, orthogonality cannot be weakened to non-ambiguity.

Example 5.9. Consider the TRS

R =





f(x) → g(x, h(x))
g(x, x) → a
b → h(b).

Since there are no critical pairs, R is non-ambiguous. With some effort we can show that R
is confluent, notwithstanding the presence of the non-left-linear rule g(x, x) → a. We have
f(b) �R a but basic narrowing is not able to solve the goal f(b) =? a. This goal is not
normalized. If we add the rewrite rule f ′(b′)→ f(b) to R then basic narrowing is unable to find
the only solution {x 7→ b′} of the normalized goal f ′(x) =? a.

Notice that the TRS in Example 5.9 is not weakly normalizing. We conjecture that basic
narrowing is complete for semi-complete non-ambiguous TRSs. We now consider the sufficiency
of right-linearity. The following useful notion is inspired by a similar notion introduced by Réty
[37].

Definition 5.10. Let A: s→[ p, l→ r] t be a reduction step in a TRS R. A position q ∈ O(s) is
called an antecedent of a position q′ ∈ O(t) if q′ is a descendant of q. The set of antecedents of
q′ in s is denoted by A/q′. This notion is extended to sets of positions in the obvious way.

The next proposition is the key result for proving the sufficiency of right-linearity for the
completeness of basic narrowing for confluent TRSs with respect to normalizable solutions. We
will make a small concession with regard to our endeavour to rigorous proofs: statements that
depend on the easy but tedious interplay between antecedents and basic positions are not proved
in full detail. We feel that such detail would veil the structure of the proof. The transformation
presented in the proof is illustrated in Example 5.12 below.
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Proposition 5.11. Let R be a right-linear TRS and σ a normalized substitution. Every re-
duction sequence starting from σt can be transformed into a reduction sequence that is based
on O(t).
Proof. We use induction on the length of the reduction sequence starting from σt. If the
length equals zero then we have nothing to prove. Let

σt ≡ t1 →[ p1, l1→ r1] · · · →[ pn−1, ln−1→ rn−1] tn →[ pn, ln→ rn] tn+1

be a reduction sequence of n steps. Define B1, . . . , Bn as usual. According to the induction
hypothesis we may assume that pi ∈ Bi for i = 1, . . . , n− 1. If pn ∈ Bn then the whole sequence
is based on O(t). So assume that pn /∈ Bn. Define sets of positions V1, . . . , Vn,W1, . . . ,Wn as
follows:
• Vn = { pn},
• Vi = Ai/(Vi+1 −Bi+1) for i = n− 1, . . . , 1 (here Ai is the reduction step from ti to ti+1),
• Wi = Vi ∩Bi for i = 1, . . . , n.
Using the fact that pi ∈ Bi, it is not difficult to show that q 
 pi whenever q ∈ Vi+1 − Bi+1,
for i = 1, . . . , n − 1. From this we easily obtain that (ti)|q ≡ (tn)|pn for all q ∈ Vi. With some
effort we can show that for every q ∈ Vi either q ⊥ pi or q can be written as q = pi·q′·q′′ for
some q′ ∈ OV(li). Moreover, if q ∈Wi then only the second case applies. Let m be the smallest
index such that Vm 6= ∅. We now construct the diagram of Figure 3. A few remarks are in

tm tm+1 tm+2 · · · tn tn+1

t′m t′m+1 t′m+2 · · · t′n

t′′m+1 t′′m+2 · · ·

pm pm+1 pm+2 pn−1 pn

pm

pm+1 pm+2 pn−1

Wm = Vm Vm\Am Vm+1\Am+1 Vn−1\An−1

Wm+1 Wm+2

≡

Figure 3.

order. First note that Vm ⊆ Bm: if m > 1 then this follows by definition; the normalization of
σ yields V1 ⊆ B1. Therefore Vm = Wm. Right-linearity of R yields Vi\Ai ⊆ Vi+1 and hence
Vi\Ai ∪Wi+1 = Vi+1. Observe that pi is a redex position in t′i even if the rewrite rule li → ri
is non-left-linear. Since Vn−1\An−1 = { pn} we have t′n ≡ tn+1. Finally, it is straightforward to
show that the reduction sequence

tm →‖ t′m → t′m+1 →‖ t′′m+1 → t′m+2 →‖ t′′m+2 → · · · → t′n

is based on Bm and thus we succeeded in constructing a reduction sequence from σt to tn+1

that is based on O(t). �

Example 5.12. Consider the right-linear TRS

R =





f(x, x) → g(i(b), x)
g(x, x) → f(x, i(a))
i(x) → j(x)
a → b
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and the non-basic reduction sequence

f(i(a), i(b))→ f(i(b), i(b))→ g(i(b), i(b))→ f(i(b), i(a))→ f(j(b), i(a)).

The information extracted from this sequence in the proof of Proposition 5.11 is summarized in
the following table:

i ti pi Bi Vi Wi

1 f(i(a), i(b)) 1.1 O(t1) ∅ ∅
2 f(i(b), i(b)) ε O(t2) {1, 2} {1, 2}
3 g(i(b), i(b)) ε {ε, 1, 1.1} {1, 2} {1}
4 f(i(b), i(a)) 1 {ε, 2, 2.1} {1} ∅
5 f(j(b), i(a))

This gives rise to the construction in Figure 4, from which we obtain the basic reduction

f(i(a), i(b)) f(i(b), i(b)) g(i(b), i(b)) f(i(b), i(a))

f(j(b), j(b)) g(i(b), j(b)) f(j(b), i(a))

g(j(b), j(b))

W2

W3

Figure 4.

sequence

f(i(a), i(b))→ f(i(b), i(b))→‖ f(j(b), j(b))→ g(i(b), j(b))→ g(j(b), j(b))→ f(j(b), i(a)).

Notice that there are two further antecedents of i(b), viz. the underlined subterms in f(i(a), i(b)).
These antecedents didn’t make their presence into V1, and with reason: if we start our detour
at f(i(a), i(b)) instead of f(i(b), i(b)) we do not end up with a basic sequence.

Theorem 5.13. Basic narrowing is complete for confluent right-linear TRSs with respect to
normalizable substitutions.

Proof. Similar to the proof of Theorem 4.5. The only difference is the replacement of Propo-
sition 4.4 by Proposition 5.11. �

Corollary 5.14. Basic narrowing is complete for semi-complete right-linear TRSs. �

6. Conditional Narrowing

Before introducing conditional narrowing, we give a short review of conditional rewriting.
The rules of a conditional term rewriting system (CTRS for short) have the form l→ r ⇐ c.

Here the conditional part c is a (possibly empty) sequence s1 = t1, . . . , sn = tn of equations. At
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present we only require that l is not a single variable. A rewrite rule without conditions will be
written as l→ r. The rewrite relation→R associated with a CTRSR is obtained by interpreting
the equality signs in the conditional part of a rewrite rule as joinability. Formally, →R is the
smallest (w.r.t. inclusion) rewrite relation → with the property that lσ → rσ whenever there
exist a variant l→ r ⇐ c of a rewrite rule in R and a substitution σ such that σs′ ↓ σt′ for every
equation s′ = t′ in c. The existence of →R is easily proved (see e.g. Kaplan [27] or Giovannetti
and Moiso [17]). An inductive definition of→R is given below (Definition 6.2). All notions that
we defined in Section 2 for TRSs extend to CTRSs.

The various completeness results for conditional narrowing put different restrictions on the
distribution of variables among rewrite rules. The next definition makes these restrictions ex-
plicit.

Definition 6.1. The set of variables occurring in a conditional rewrite rule R: l → r ⇐ c
is denoted by V(R) and E(R) denotes the set of extra variables occurring in R, i.e. E(R) =
V(R)−V(l). Every rewrite rule l→ r ⇐ c is classified according to the distribution of variables
among l, r, and c, as follows:

type requirement

1 V(r) ∪ V(c) ⊆ V(l)

2 V(r) ⊆ V(l)

3 V(r) ⊆ V(l) ∪ V(c)

4 no restrictions

An n-CTRS contains only rules of type n. So a 1-CTRS contains no extra variables, a 2-
CTRS may only contain extra variables in the conditions, and a 3-CTRS may even have extra
variables in the right-hand sides provided these also occur in the corresponding conditional part.
A 4-CTRS will simply be called CTRS.

Most of the literature on conditional term rewriting is concerned with 1 and 2-CTRSs. Just
as in the unconditional case, we assume that our CTRSs contain the rule x =? x→ true.

Notation. If c is the sequence of equations s1 = t1, . . . , sn = tn then c̃ denotes the multiset12

{s1 =? t1, . . . , sn =? tn}.

Definition 6.2. Let R be a CTRS. We inductively define TRSs Rn for n > 0 as follows:13

R0 = {x =? x→ true },
Rn+1 = {σl→ σr | l→ r ⇐ c ∈ R and σe�Rn true for all e ∈ c̃ }.

Observe that Rn ⊆ Rn+1 for all n > 0. We have s→R t if and only if s→Rn t for some n > 0
([27], [17]). The minimum such n is called the depth of s→ t.
12 See footnote 15 on page 21.
13 The usual definition

R0 = ?,
Rn+1 = {σl→ σr | l→ r ⇐ c ∈ R and σs ↓Rn σt for all s = t in c }

does not rely on the presence of the rule x =? x → true. For terms without occurrences of =? these relations
coincide with the ones of Definition 6.2.
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We are now ready to define conditional narrowing. In the literature several different formu-
lations are given (e.g. Kaplan [28], Dershowitz and Plaisted [10], Hußmann [25], Giovannetti and
Moiso [17], Bockmayr [2]). In this paper we follow the natural approach of Bockmayr [2]. In this
approach narrowing is directly defined on finite multisets14 of goals, the so-called goal clauses.
In examples goal clauses are often presented as sequences of goals, i.e. we frequently omit the
curly brackets. We also find it convenient to identify a goal e with the goal clause {e}. The
rewrite relation →R extends to goal clauses in the obvious way. The extended relation inherits
all properties (confluence, strong normalization, . . . ) of the original →R. The set of variables
occurring in a goal clause T will be denoted by V(T ).

Definition 6.3. Let R be a CTRS. A goal clause S conditionally narrows into a goal clause T
if there exist a goal e ∈ S, a position p ∈ O(e), a variant R: l → r ⇐ c of a conditional rewrite
rule in R, and a substitution σ such that
• σ is a most general unifier of e|p and l,
• T = σ((S − {e}) ∪ {e[r]p} ∪ c̃).
We write S  [e, p, R, σ] T or simply S  σ T .

Example 6.4. Consider the CTRS

R =





even(0) → t
even(S(x)) → odd(x)
odd(x) → t ⇐ even(x) = f
odd(x) → f ⇐ even(x) = t

and the goal even(S(y)) =? t. The following derivation shows that the solution {y 7→ S(0)} is
found by conditional narrowing:

even(S(y)) =? t  odd(y) =? t

 t =? t, even(y) =? f

 σ1 t =? t, odd(x) =? f

 t =? t, f =? f, even(x) =? t

 σ2 t =? t, f =? f, t =? t

 ∗ true, true, true.

Here σ1 = {y 7→ S(x)} and σ2 = {x 7→ 0}.

Notation. We will use the symbol > as a generic notation for multisets consisting of a finite
number of true’s.

Definition 6.5. Let R be a CTRS and T a goal clause. We write R ` T if T �R >. The set
of all such goal clauses is denoted by G>(R) or simply G>. If R is confluent then G> is closed
under →R. The level of a goal clause T ∈ G> is the least n such that Rn ` T .

The soundness of conditional narrowing is expressed in the following lemma.
14 Representing goal clauses by multisets facilitates the definition of basic narrowing in Section 7. As far as

conditional narrowing is concerned, we might as well opt for a set representation.
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Lemma 6.6. Let R be a CTRS and T a goal clause. If T  ∗σ > then R ` σT .

Proof. Induction on the length of the narrowing derivation from T to >. The case of zero
length is trivial. Suppose

T  [ e, p, l→ r⇐ c, σ1] T1  ∗σ2
>.

Let σ = σ2 ◦ σ1. By definition T1 = σ1((T −{e})∪ {e[r]p} ∪ c̃). The induction hypothesis yields
R ` σ2T1. Hence we have both R ` σ((T−{e})∪{e[r]p}) and R ` σc̃. From the last observation
we infer that σl→R σr and therefore

σT →R (σT − {σe}) ∪ {σe[σr]p}.
Since (σT − {σe}) ∪ {σe[σr]p} = σ((T − {e}) ∪ {e[r]p}) we obtain R ` σT . �

In order to compare conditional rewriting and conditional narrowing, Bockmayr [2] intro-
duced a further relation on goal clauses which he called Reduktion ohne Auswertung der Prämisse
(reduction without evaluating conditions). We will denote a slight variant of this relation by�.

Definition 6.7. Let R be a CTRS and suppose that S and T are goal clauses. We write
S �R T if there exist a goal e ∈ S, a position p ∈ O(e), a variant l → r ⇐ c of a rewrite rule
in R and a substitution σ such that
• e|p ≡ σl,
• T = (S − {e}) ∪ {e[σr]p} ∪ σc̃,
• R ` σc̃.
Occasionally we write S �[ e, p, l→ r⇐ c, σ] T or S �[ e, p, l→ r⇐ c] T . The transitive-reflexive
closure of �R is denoted by ��R. We define approximations �n

R (n > 0) of �R as in
Definition 6.2. That is, S �0

R T if T = (S−{e})∪{true} with e ≡ (s =? s) ∈ S and S �n+1
R T

if S �[ e, p, l→ r⇐ c, σ] T with Rn ` σc̃. We have�n
R ⊆�n+1

R for all n > 0 and�R = ∪n>0 �n
R.

The difference with the definition of Bockmayr is that we require R ` σc̃. For 1-CTRSs
the relation � can be viewed as a special case of the conditional narrowing relation  , but in
general � is not included in  due to extra variables in conditional rewrite rules.

Proposition 6.8 (Bockmayr [2]). Let R be a CTRS and T a goal clause. We have R ` T if
and only if T ��R >.

Proof.
⇒ By induction on n we will show the existence of a sequence T ��R > whenever Rn ` T . If

n = 0 then there exists a rewrite sequence from T to > in which only the rule x =? x→ true
is used. By definition, this sequence is also a �R-sequence. Suppose Rn+1 ` T . So there
exists an Rn+1-sequence from T to >. We use induction on the length of this sequence. The
case of zero length is trivial. Let T →Rn+1 T

′ �Rn+1 >. We obtain a sequence T ′ ��R >
from the second induction hypothesis. There exist a goal e ∈ T , a position p ∈ O(e), a
variant R: l → r ⇐ c of a rewrite rule in R, and a substitution σ such that e|p ≡ σl,
T ′ = (T − {e}) ∪ {e[σr]p}, and Rn ` σc̃. From the first induction hypothesis we obtain
a sequence σc̃ ��R >. We have T �R T ′ ∪ σc̃. Combining this step with the sequences
T ′��R > and σc̃��R > yields the desired result.

⇐ We use induction on the length of the sequence T ��R >. The case of zero length is trivial.
Suppose T �R T ′ ��R >. The induction hypothesis yields R ` T ′. There exist a goal
e ∈ T , a position p ∈ O(e), a variant R: l→ r ⇐ c of a rewrite rule in R, and a substitution
σ such that e|p ≡ σl, T ′ = T ′′ ∪ σc̃, and R ` σc̃. Here T ′′ = (T − {e}) ∪ {e[σr]p}. Clearly
T →R T ′′. Since T ′′ ⊆ T ′ we infer R ` T ′′ from R ` T ′. We conclude that R ` T .
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�

In Section 7 we will see that �R does not inherit strong normalization of R. Confluence is
preserved, provided we are not particular about a few extra true’s.

Notation. We write S ' T if the goal clauses S and T are identical or they differ only in the
number of true’s, i.e. S −> = T −> by abuse of notation.

Proposition 6.9. Let R be a CTRS and S a goal clause.
(1) If S ��R T then T can be partitioned into T1 and T2 such that S �R T1 and R ` T2.
(2) If S �R T then there exists a goal clause T1 such that S ��R T ∪ T1 and R ` T1.

Proof. Straightforward. �

Lemma 6.10. Let R be a confluent CTRS. If S ��R T1 and S ��R T2 then there exist goal
clauses T3 ' T4 such that T1 ��R T3 and T2 ��R T4.

Proof. Proposition 6.9(1) yields goal clauses U1, V1, U2 and V2 such that T1 = U1 ∪ V1,
T2 = U2 ∪ V2, R ` V1, R ` V2, S �R U1 and S �R U2. Since the relation →R is confluent
on goal clauses, there exists a goal clause U3 such that both U1 �R U3 and U2 �R U3.
According to Proposition 6.9(2) there exist goal clauses W1 and W2 such that R `W1, R `W2,
U1 ��R U3 ∪W1 and U2 ��R U3 ∪W2. Using Proposition 6.8, we obtain

T1 = U1 ∪ V1 ��R U3 ∪W1 ∪ V1 ��R U3 ∪ >
and likewise

T2 = U2 ∪ V2 ��R U3 ∪W2 ∪ V2 ��R U3 ∪ >.
�

From Proposition 6.8 and Lemma 6.10 we immediately infer that G> is closed under�R for
confluent CTRSs R.

In the remainder of this section we show that conditional narrowing is complete for CTRSs
without extra variables—the so-called 1-CTRSs.

Lemma 6.11. Let R be a 1-CTRS. Suppose we have goal clauses S and T , a normalized sub-
stitution θ, and a set V of variables such that V(S) ∪ Dθ ⊆ V and T = θS. If T ��R T ′ then
there exist a goal clause S′ and substitutions θ′, σ such that
• S  ∗σ S′,
• θ′S′ = T ′,
• θ′ ◦ σ = θ [V ],
• θ′ is normalized.
Furthermore, we may assume that the narrowing derivation S  ∗σ S′ and the rewrite sequence
T ��R T ′ employ the same rewrite rules at the same positions in the corresponding goals.

Proof. Almost identical to the proof of the lifting lemma for TRSs (Lemma 3.4). The only
difference is that we are dealing with goal clauses instead of terms. �

Bockmayr [2] presents an incorrect lifting lemma for 1-CTRSs with respect to a single �-
step. This ‘one step’ lifting lemma is not powerful enough to lift rewrite sequences by an
inductive proof. The proof of the lifting lemma for 1-CTRSs presented in Kaplan [28] employs
false assumptions about narrowing substitutions.
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Definition 6.12. A substitution σ is called an R-solution of a goal clause T if R ` σT .

Theorem 6.13. Conditional narrowing is complete for complete 1-CTRSs.

Proof. Let R be a complete 1-CTRSs and suppose σ is an R-solution of a goal clause T .
Let σ′ be the normal form of σ. We obtain R ` σ′T from the confluence of R. According to
Proposition 6.8 there exists a sequence σ′T ��R >. Lemma 6.11 yields a narrowing derivation
T  ∗τ > and a substitution σ′′ such that σ′′ ◦ τ = σ′ [V(T )]. Therefore τ 6 σ′ [V(T )] and hence
τ 6R σ [V(T )]. �

In the literature this completeness result is ascribed to different authors. It seems that
Kaplan was the first who presented a detailed proof (in a different setting though). As was
the case for TRSs, we may drop the requirement of strong normalization in exchange for the
restriction to normalizable solutions.

Theorem 6.14. Conditional narrowing is complete for confluent 1-CTRSs with respect to nor-
malizable substitutions. �

Corollary 6.15. Conditional narrowing is complete for semi-complete 1-CTRSs. �

7. Basic Conditional Narrowing

The formulation of basic narrowing for TRSs (Definition 4.1) does not immediately extend to the
conditional case. The reason is that a goal clause consists of several goals, each to be equipped
with its own constraint on ‘narrowable positions’. In order to keep the administration of these
constraints manageable we introduce the following concept.

Definition 7.1. Let T be a goal clause. A position constraint for T is a mapping B that assigns
to every goal e ∈ T a subset of O(e). The position constraint that assigns to every e ∈ T the
set O(e) will be denoted by T .

Definition 7.2.
(1) A narrowing derivation T1  [ e1, p1, l1→ r1⇐ c1, σ1] · · ·  [ en−1, pn−1, ln−1→ rn−1⇐ cn−1, σn−1] Tn

is basic if pi ∈ Bi(ei) for 1 6 i 6 n − 1 where the position constraints B1, . . . , Bn are
inductively defined by B1 = T 1 and

Bi+1(e) =





Bi(e′) if e′ ∈ Ti − {ei},
B(Bi(ei), pi, ri) if e′ ≡ ei[ri]pi ,
O(e′) if e′ ∈ c̃i

for all 1 6 i < n and e ≡ σie′ ∈ Ti+1.15

(2) A rewrite sequence T1 �[ e1, p1, l1→ r1⇐ c1, σ1] · · · �[ en−1, pn−1, ln−1→ rn−1⇐ cn−1, σn−1] Tn is
based on a position constraint B1 for T1 if pi ∈ Bi for 1 6 i 6 n−1 with B2, . . . , Bn defined
by

Bi+1(e) =





Bi(e) if e ∈ Ti − {ei},
B(Bi(ei), pi, ri) if e ≡ ei[σiri]pi ,
O(e′) if e ≡ σie′ with e′ ∈ c̃i

15 Recall that Ti+1 = σi((Ti − {ei}) ∪ {ei[ri]pi} ∪ c̃i). If we would have represented goal clauses by sets then the
definition of Bi+1 is ambiguous since Ti − {ei}, {ei[ri]pi}, and c̃i do not have to be pairwise disjoint.
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for all 1 6 i < n and e ∈ Ti+1.

Hölldobler [22] showed that basic conditional narrowing is complete for complete 1-CTRSs.
This fact is also mentioned in the “summary of completeness results and open problems for
conditional narrowing” in Giovannetti and Moiso [17]. However, the following example reveals
that this result is incorrect.

Counterexample 7.3. Consider the 1-CTRS

R =





f(x) → a ⇐ x = b, x = c
d → b
d → c
b → c ⇐ f(d) = a.

Since the recursive path ordering is applicable (with precedence f � a and d � b � c) to the
unconditional part of R, R certainly is strongly normalizing. We have d → b and d → c, and
hence f(d)→ a and b→ c, which makes the only critical pair 〈b, c〉 convergent. Local confluence
is obtained by some easy case analysis or an appeal to a result of Dershowitz et al. [8] which
states that the Critical Pair Lemma holds for overlay16 CTRSs. According to Newman’s Lemma
R is confluent. However, basic conditional narrowing is not able to solve the goal f(d) =? a as

f(d) =? a

f(b) =? a

f(c) =? a, f(d) =? a︸ ︷︷ ︸b =? c︸ ︷︷ ︸

f(c) =? ad =? b, d =? c

c =? b

f(d) =? a︸ ︷︷ ︸

d =? c, d =? c, f(d) =? a︸ ︷︷ ︸
no progress

no progress

no further
basic steps

no progress

Figure 5.

can be seen from Figure 5 (in this figure trivial goals of the form t =? t are not shown), while
the following non-basic narrowing derivation shows that the goal can be solved:

f(d) =? a  a =? a, d =? b, d =? c

 a =? a, b =? b, d =? c

 a =? a, b =? b, c =? c

 ∗ >.

Basic conditional narrowing is also unable to solve the normalized goal f(x) =? a.
16 An overlay CTRS is a CTRS with the property that if l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2 are variants of rewrite

rules and p ∈ O(l1) such that (l1)|p and l2 are unifiable, then p = ε.
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The mistake in Hölldobler [22] is due to the incorrect assumption that the strong normal-
ization of �R is implied by the strong normalization of R. We now show that completeness
of basic narrowing can be ensured by strengthening strong normalization. In the next section
we show that completeness can also be recovered by strengthening confluence. The property
defined below originates from Dershowitz et al. [9].

Definition 7.4. A 1-CTRS R is decreasing if there exists a well-founded extension � of the
rewrite relation →R with the following properties:
• � has the subterm property, i.e. t � t|p for all positions p ∈ O(t)− {ε},
• if l→ r ⇐ c ∈ R and σ is a substitution then σl � σs, σt for all s = t in c.

Every decreasing 1-CTRS is strongly normalizing and moreover—when there are finitely
many rewrite rules—its rewrite relation is decidable.

Example 7.5. The CTRS of Counterexample 7.3 is not decreasing: as f(d)→ a⇐ d = b, d = c
is an instance of the first rewrite rule we must have f(d) � b, but the rule b → c ⇐ f(d) = a
requires b � f(d).

Lemma 7.6. If R is a decreasing 1-CTRS then �R is strongly normalizing.

Proof. With every goal clause S we associate a multiset m(S) by replacing every goal s =? t
in S by the terms s and t. The presence of true in S does not contribute to m(S). Using the
definition of � it is easy to show that m(S) �� m(T ) whenever S �R T . Here �� is the
multiset extension of �. Since the multiset extension of a well-founded ordering is well-founded,
the relation �R is strongly normalizing. �

The proof of Proposition 7.7 can be found in the Appendix.

Proposition 7.7. Let R be a 1-CTRS, T a goal clause, and σ a normalized substitution. Every
innermost �R-sequence starting from σT is based on T . �

Theorem 7.8. Basic conditional narrowing is complete for decreasing and confluent 1-CTRSs.

Proof. Let R be a decreasing and confluent 1-CTRSs. Suppose σ is an R-solution of a goal
clause T and let σ′ be its normal form. We obtain σ′T ��R > as in the proof of Theorem 6.13.
Because�R is strongly normalizing (Lemma 7.6) there exists an innermost�R-sequence from
σ′T to a normalized goal T ′. From Lemma 6.10 we obtain T ′ ' >, i.e. T ′ = >. According to
Proposition 7.7 the innermost sequence σ′T ��R > is based on T . It is not difficult to show
that the narrowing derivation constructed by Lemma 6.11 is basic. The remainder of the proof
follows literally the proof of Theorem 6.13. �

The CTRS of Counterexample 7.3 is not a so-called normal CTRS. In a normal CTRS R
every right-hand side of an equation in the conditions of the rewrite rules is a ground normal
form with respect to the unconditional TRS obtained from R by omitting the conditions. One
might ask whether this is essential. The following example answers this question negatively.

Example 7.9. Consider the normal 1-CTRS

R =





f(x) → g(x, x)
a → b
g(a, b) → c
g(b, b) → c ⇐ f(a) = c.
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Completeness of R follows as in Counterexample 7.3. (The Critical Pair Lemma however is not
applicable.) Notice that g(b, b) → c since f(a) → g(a, a) → g(a, b) → c. One easily shows that
the goal f(a) =? c cannot be solved by basic conditional narrowing. Moreover, basic conditional
narrowing is not able to solve the normalized goal g(x, x) =? c.

We conclude this section with a refutation of the following claim.

Conjecture 7.10 (Giovannetti and Moiso [17]). Basic conditional narrowing is complete for
semi-complete orthogonal 1-CTRSs.17 �

Since (weakly normalizing) orthogonal CTRSs are in general not confluent (Bergstra and
Klop [1]), we cannot replace the phrase “semi-complete orthogonal” by “weakly normalizing
orthogonal”.

Counterexample 7.11. Consider the orthogonal 1-CTRS

R =





f(x) → a ⇐ g(b) = c
g(x) → c ⇐ x = f(x)
b → f(b).

In the Appendix it is shown that R is semi-complete. The goal g(b) =? c can be solved by
conditional narrowing as follows:

g(b) =? c  c =? c, b =? f(b)

 c =? c, f(b) =? f(b)

 ∗ >.

In this derivation the second step is not basic. Figure 6 reveals that all basic narrowing deriva-
tions issued from g(b) =? c come across a goal clause that contains the original goal g(b) =? c.
Hence basic conditional narrowing is not able to solve the goal g(b) =? c. One easily shows that
the normalized goal g(x) =? c also cannot be solved by basic conditional narrowing.

8. Level-Confluence

Hußmann claimed in [25] that conditional narrowing is also complete for complete CTRSs that
have extra variables in the conditions of the rewrite rules, but the following example of Giovan-
netti and Moiso [17] shows that this is not the case.

Example 8.1. Consider the 2-CTRS

R =





a → b
a → c
b → c ⇐ x = b, x = c.

17 Actually, Giovannetti and Moiso conjecture in [17] the completeness of basic conditional narrowing for orthogonal
1-CTRSs with respect to normalized solutions. By refuting the weaker statement, our counterexample becomes
stronger.
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S2
3

S0
4 S1

4

Abbreviations (i > 0):

Si1 : g(f i(b)) =? c Si2 : c =? c, f i(b) =? f(f i(b))

Si3 : c =? c, f i(b) =? a, g(b) =? c Si4 : g(f i(a)) =? c, g(b) =? c

f i(t) : f(. . . f︸ ︷︷ ︸
i f ’s

(t) . . .)

Figure 6.

It is easy to show thatR is complete. In particular we have b→R c, but all narrowing derivations
issued from the goal b =? c are infinite, e.g.

b =? c  c =? c, x =? b, x =? c

 c =? c, x =? c, x =? c, x′ =? b, x′ =? c

 c =? c, x =? c, x =? c, x′ =? c, x′ =? c, x′′ =? b, x′′ =? c

 · · ·

In order to cope with extra variables in the conditions of the rewrite rules, Giovannetti and
Moiso proposed to strengthen confluence.

Definition 8.2. A CTRS R is called level-confluent if each Rn (n > 0) is confluent. We call
R level-complete if each Rn (n > 0) is complete.

Example 8.3. The complete 1-CTRS of Counterexample 7.3 is not level-confluent: we have
d →R1 b and d →R1 c but the depth of the joining step b →R c is 3. Likewise the 2-CTRS of
Example 8.1 is not level-confluent.

Every strongly normalizing and level-confluent CTRS is level-complete, but the reverse does
not hold.

Example 8.4. Consider the CTRS R = { f(x) → f(g(x)) ⇐ f(x) = f(a) }. We have R0 =
{x =? x → true } and Rn+1 = { f(gn(a)) → f(gn+1(a)) } ∪ Rn for n > 0. It is easy to
see that every Rn is complete. Hence R is level-complete, but R is not strongly normalizing:
f(a)→R1 f(g(a))→R2 f(g(g(a)))→R3 · · · .

The next example shows that the lifting lemma as presented in Section 6 for 1-CTRSs does
not carry over to (level-confluent) 2-CTRSs.

25



Example 8.5. Consider the strongly normalizing and level-confluent 2-CTRS

R =
{
a → b
b → c ⇐ x = a, x = b.

Let S = { b =? c } and θ = ε. The rewrite step θS � { c =? c, b =? a, b =? b } = T ′ can be
lifted to S  ε { c =? c, x =? a, x =? b } = S′. Any substitution θ′ satisfying θ′S′ = T ′ must
have θ′x = b and thus θ′ is not normalized as b→R2 c. This is not really a problem since T ′ can
be rewritten to > by using only�1

R-steps and b is R1-normalized. That is, the rewrite sequence

θS �2
R { c =? c, b =? a, b =? b }�1

R { c =? c, b =? b, b =? b }��0
R >

can be lifted to

S  { c =? c, x =? a, x =? b } { c =? c, x =? b, x =? b } ∗ >.
Now consider the rewrite sequence

θS �2
R { c =? c, a =? a, a =? b }�1

R { c =? c, a =? a, b =? b }��0
R >

in which the constant a is substituted for the extra variable of the conditional rewrite rule
applied in the first step. This sequence cannot be lifted. The problem is that the introduced
constant a is rewritten. This is possible because the subsequence from { c =? c, a =? a, a =? b }
to > contains �1

R-steps and a is normalized only with respect to R0.

In the next definition we restrict the relation �R, based on the findings of the previous
example.

Definition 8.6. Let R be an arbitrary CTRS. We define relations �◦ nR on G> for n > 0 as
follows: �◦ 0

R is the restriction of�0
R to G> and S �◦ n+1

R T if there exist a goal e ∈ S, a position
p ∈ O(e), a variant R: l→ r ⇐ c of a rewrite rule in R, and a substitution σ such that
• e|p ≡ σl,
• T = (S − {e}) ∪ {e[σr]p} ∪ σc̃,
• Rn ` σc̃,
• σ�E(R) is Rn-normalized,
• the level of e is at least n+ 1.
So S �◦ n+1

R T if S �n+1
[ e, p, R: l→ r⇐ c, σ] T with σ�E(R) Rn-normalized and the level of e at least

n+ 1. The union of all �◦ nR (n > 0) is denoted by �◦ R.

It should be noted that in general the inclusions�◦ nR ⊆�◦ n+1
R (n > 0) do not hold. Moreover,

�◦ R is properly included in the restriction of �R to G>. Lemma 8.11 below states that �◦ R
is powerful enough to rewrite all goals in G> to >, provided R is a level-complete CTRS. In
Lemma 8.13 we show that �◦ R-sequences can be lifted to narrowing derivations for any level-
confluent 2-CTRSs R. The completeness of conditional narrowing for level-complete 2-CTRS is
an easy consequence of these two facts. We start with some easy propositions.

Proposition 8.7. Let R be a level-confluent CTRS and e a goal with level n. If e →Rm e′

with m 6 n then the level of e′ is at most n.

Proof. Since Rm ⊆ Rn we have e →Rn e′. By definition e �Rn true. Level-confluence of R
yields e′ �Rn true. Hence the level of e′ is at most n. �
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Proposition 8.8. Let R be a level-confluent CTRS and S, T ∈ G>. If S �◦ R T then the level
of T does not exceed the level of S.

Proof. If S �◦ 0
R T then S and T have the same level. So suppose that S �◦ n+1

[ e, p, R: l→ r⇐ c, σ] T .
Let m be the level of S. We have m > n + 1. We will show that the level of every goal
e′ ∈ T = (S − {e}) ∪ {e[σr]p} ∪ σc̃ is bounded by m. For e′ ∈ S − {e} this is obvious. The level
of every e′ ∈ σc̃ is at most n < m. In the only remaining case e′ ≡ e[σr]p we have e →Rn+1 e

′

and hence the result follows from the previous proposition. �

Proposition 8.9. Let R be a level-complete CTRS and T ∈ G>. The following statements are
equivalent:
(1) T is a →R-normal form,
(2) T is a �R-normal form,
(3) T is a �◦ R-normal form.

Proof. The implications “(1)⇒ (2)” and “(2)⇒ (3)” are easy. Suppose there is a�◦ R-normal
form T ∈ G> that is not a →R-normal form. Take the smallest n such that T →Rn T ′ for some
goal clause T ′. If n = 0 then we obtain the impossible T �◦ 0

R T ′. So suppose that n > 0. By
definition there exist a goal e ∈ T , a position p ∈ O(e), a variant R: l→ r ⇐ c of a rewrite rule
in R, and a substitution σ such that e|p ≡ σl, T ′ = (T −{e})∪{e[σr]p}, and Rn−1 ` σc̃. Define
a substitution τ as follows:

τx =





(σx)↓Rn−1 if x ∈ E(R),

σx otherwise.

The well-definedness of τ follows from the completeness of Rn−1. We have σc̃ �Rn−1 τ c̃.
Confluence of Rn−1 yields Rn−1 ` τ c̃. By construction τ�E(R) is Rn−1-normalized. If the level
of e is at least n then T �◦ n[ e, p, R, τ ] (T−{e})∪{e[τr]p}∪τ c̃, contradicting the�◦ R-normalization
of T . If the level of e is less than n then there exist an m < n and a goal clause T ′′ such that
T →Rm T ′′, contradicting the minimality of n. We conclude that every�◦ R-normal form is also
a →R-normal form. �

Lemma 8.10. If R is a level-complete CTRS then every �◦ R-sequence is finite.

Proof. Let T be a goal clause. We will show that there are no infinite�◦ R-sequences starting
from T . If T /∈ G> then there are no�◦ R-sequences originating from T . So we may assume that
T has some level n. We use induction on n. If n = 0 then only the rule x =? x → true can
be used, and the number of applications of this rule is clearly bounded by the cardinality of T .
Suppose the level of T is n + 1 and consider an infinite �◦ R-sequence starting from T . Since
�◦ R-sequences issued from different goals in T do not interfere, we infer from the pigeon-hole
principle the existence of a goal e ∈ T with an infinite �◦ R-sequence. Consider the first step

{e}�◦ [ e, p, l→ r⇐ c, σ] {e[σr]p} ∪ σc̃

in this sequence. Since the level of e is n+1, we have e→n+1
R e[σr]p. Proposition 8.8 shows that

the level of {e[σr]p} ∪ σc̃ is at most n+ 1. Since the level of σc̃ is less than n+ 1, we learn from
the induction hypothesis that there are no infinite�◦ R-sequences starting from σc̃. Hence there
must be an infinite �◦ R-sequence starting from e[σr]p, and thus the level of e[σr]p is n+ 1. We
repeat the above process with e[σr]p. We end up with an infinite →n+1

R -sequence, contradicting
the strong normalization of Rn+1. �

27



Lemma 8.11. Let R be a level-complete CTRS and T a goal clause. We have R ` T if and
only if T ��◦ R >.

Proof. According to Proposition 6.8 it suffices to prove the equivalence of T ��R > and
T ��◦ R >.
⇒ From Lemma 8.10 we infer that T has a normal form T ′ with respect to �◦ R. According

to Proposition 8.9 T ′ is also a �R-normal form. Clearly T ��R T ′. Lemma 6.10 amounts
to T ′ ' >, i.e. T ′ = >. Therefore T ��◦ R >.

⇒ Trivial.
�

Because every �◦ R-sequence is finite, we may assume that the normal form T ′ = > in the
above proof is obtained by means of an innermost�◦ R-sequence. This observation will be used
in the proof of the completeness of basic conditional narrowing for level-complete 2-CTRSs
(Theorem 8.20).

Definition 8.12. A solution σ of a goal clause T is said to be sufficiently normalized if σ�V(e)

is Rn-normalized where n is the level of σe, for every goal e ∈ T .

The difficult part in the proof of the following lifting for level-confluent 2-CTRSs is the
sufficient normalization of the resulting substitution θ′.

Lemma 8.13. Let R be a level-confluent 2-CTRS. Suppose we have goal clauses S and T , a
sufficiently normalized solution θ of S, and a set V of variables such that V(S) ∪ Dθ ⊆ V and
T = θS. If T ��◦ R T ′ then there exist a goal clause S′ and substitutions θ′, σ such that
• S  ∗σ S′,
• θ′S′ = T ′,
• θ′ ◦ σ = θ [V ],
• θ′ is a sufficiently normalized solution of S′.
Furthermore, we may assume that the narrowing derivation S  ∗σ S′ and the sequence T ��◦ R T ′
employ the same rewrite rules at the same positions in the corresponding goals.

Proof. We use induction on the length of the ��◦ R-sequence from T to T ′. The case of zero
length is trivial. Suppose T �◦ n[θe, p, R: l→ r⇐ c, τ ] T1 ��◦ R T ′. We may assume that V(R)∩V = ∅
and Dτ ⊆ V(R). We first show that p ∈ O(e). Let m be the level of θe. By definition n 6 m.
We have τ l →Rn τr, Rn−1 ` τ c̃, and τ�E(R) is Rn−1-normalized. Because θ is a sufficiently
normalized solution of S, θ�V(e) is Rm-normalized and hence also Rn-normalized. Thus p ∈ O(e)
and so (θe)|p = θ(e|p). Let µ = τ ∪ θ. We have µ(e|p) ≡ θ(e|p) ≡ τ l ≡ µl. Let σ1 be an
idempotent most general unifier of e|p and l. Proposition 2.1 yields Dσ1∪Iσ1 = V(e|p)∪V(l). Let
S1 = σ1((S−{e})∪{e[r]p}∪ c̃). By definition S  [e, p, R, σ1] S1. Let V1 = (V −Dσ1)∪Iσ1∪E(R).
We now show that V(S1) ⊆ V1. Proposition 3.5 yields

V(σ1S) ⊆ (V −Dσ1) ∪ Iσ1 ⊆ V1. (1)

It is easy to show that

E(R) ∩ Dσ1 = ∅. (2)

Together with (1) and the inclusion V(r) ⊆ V(l) ∪ E(R),18 this yields

V(σ1(e[r]p)) ⊆ V(σ1(e[l]p)) ∪ E(R) = V(σ1e) ∪ E(R) ⊆ V(σ1S) ∪ E(R) ⊆ V1. (3)
18 Since R is a 2-CTRS we have of course V(r) ⊆ V(l). However, in the next section we will reuse most parts of

this proof in the context of 3-CTRSs. Hence we avoid using the stronger inclusion V(r) ⊆ V(l) here.
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The last inclusion follows from (1). From (2) and the inclusion V(c̃) ⊆ V(l) ∪ E(R) we obtain
V(σ1c̃) ⊆ V(σ1l) ∪ E(R). From formula (3) we learn that V(σ1l) ⊆ V1 and thus

V (σ1c̃) ⊆ V1. (4)

Combining (1), (3), and (4) yields V(S1) ⊆ V1. Since σ1 6 µ, there exists a substitution ρ such
that ρ ◦ σ1 = µ. Define θ1 = ρ�V1

. By definition Dθ1 ⊆ V1 and θ1 = ρ [V1]. From (2) and
V(l) − Dσ1 ⊆ Iσ1 we infer that V(R) − Dσ1 ⊆ V1 and hence ((V ∪ V(R)) − Dσ1) ∪ Iσ1 = V1.
An application of Proposition 3.6 yields θ1 ◦ σ1 = ρ ◦ σ1 = µ [V ∪ V(R)]. From µ�V = θ and
µ�V(R) = τ we infer that

θ1 ◦ σ1 = θ [V ] (5)

and

θ1 ◦ σ1 = τ [V(R)]. (6)

From these two equalities we obtain

θ1S1 = θ1σ1(S − {e}) ∪ {θ1σ1e[θ1σ1r]p} ∪ θ1σ1c̃ = θ(S − {e}) ∪ {θe[τr]p} ∪ τ c̃ = T1. (7)

Before we can apply the induction hypothesis, we have to show that θ1 is a sufficiently normalized
solution of S1. Let e′ ∈ S1. By definition there exists an e′′ ∈ (S − {e}) ∪ {e[r]p} ∪ c̃ such that
e′ ≡ σ1e

′′. We distinguish three cases: (a) e′′ ∈ S − {e}, (b) e′′ ≡ e[r]p, and (c) e′′ ∈ c̃.
(a) Since V(e′′) ⊆ V we obtain θ1e

′ ≡ θe′′ from (5) and hence θ1e
′ has the same level as θe′′,

say k. By assumption θ�V(e′′) is Rk-normalized. We have to show that θ1�V(e′) is also Rk-
normalized. Since V(e′) ⊆ (V(e′′) − Dσ1) ∪ Iσ1�V(e′′) (Proposition 3.5) this follows from
Proposition 3.7.

(b) Let e′′ ≡ e[r]p. Formula (7) shows that θ1e
′ ≡ θe[τr]p. Therefore θe →Rn θ1e

′. Proposi-
tion 8.7 shows that the level of θ1e

′ is at most m. So it suffices to show that θ1�V(e′) is Rm-
normalized. Since R is a 2-CTRS19 we have V(r) ⊆ V(l) and hence V(e′) = V(σ1(e[r]p)) ⊆
V(σ1(e[l]p)) = V(e′). Using the fact that θ�V(e) is Rm-normalized, we obtain the Rm-
normalization of θ1�V(e′) from Propositions 3.5 and 3.7.

(c) Let e′′ ∈ c̃. Since V(e′′) ⊆ V(R) we obtain θ1e
′ ≡ τe′′ from (6). By definition Rn−1 ` τ c̃ and

τ�E(R) is Rn−1-normalized. So the level of θ1e
′ does not exceed n− 1 and hence it suffices

to show that θ1�V(e′) is Rn−1-normalized. From (4) we infer that V(e′) ⊆ Iσ1 ∪ E(R). In
case (b) we noticed that θ1�Iσ1

is Rm-normalized and thus also Rn−1-normalized. From
E(R) ∩ Dσ1 = ∅ and (6) we infer that θ1�E(R) equals τ�E(R), which by definition is Rn−1-
normalized.

The induction hypothesis yields a goal clause S′ and substitutions θ′, σ′ such that S1  ∗σ′ S′,
θ′S′ = T ′, θ′ ◦ σ′ = θ1 [V1], and θ′ is a sufficiently normalized solution of S′. Moreover, we may
assume that S1  ∗σ′ S′ and T1 ��◦ R T ′ employ the same rewrite rules at the same positions in
the corresponding goals. Let σ = σ′ ◦ σ1. Clearly S  ∗σ S′. By construction this narrowing
derivation and the rewrite sequence T ��◦ R T ′ employ the same rewrite rules at the same
positions in the corresponding goals. It remains to show that θ′ ◦ σ = θ [V ]. This follows from
θ′ ◦ σ′ = θ1 [V1] and (5), using Proposition 3.6. �

Giovannetti and Moiso [17] present a lifting lemma for level-confluent 2-CTRSs without
proof. Dershowitz and Okada give a rather informal treatment of a lifting lemma for 1-CTRSs
and level-confluent 2-CTRSs (Lemma 5.2 in [7]). This lemma is not suitable for proving the
completeness of conditional narrowing for level-complete 2-CTRSs.20

19 This is the only place in the proof where we use the fact that R is a 2-CTRS.
20 As exemplified by the level-complete 2-CTRS {a→ b⇐ x = a}.
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Theorem 8.14 (Giovannetti and Moiso [17]). Conditional narrowing is complete for level-com-
plete 2-CTRSs.

Proof. Let R be a level-complete 2-CTRS and suppose that σ is a solution of a goal clause T .
Let n be the level of σT . Let σ′ be the Rn-normal form of σ. Confluence of Rn yields Rn ` σ′T .
Hence the level of σ′T is at most n and therefore σ′ is a sufficiently normalized solution of T .
According to Lemma 8.11 there exists a sequence σ′T ��◦ R >. Lemma 8.13 yields a narrowing
derivation T  ∗τ > and a substitution σ′′ such that σ′′ ◦ τ = σ′ [V(T )]. Therefore τ 6 σ′ [V(T )]
and hence τ 6R σ [V(T )]. �

We have seen that in case of complete TRSs and 1-CTRSs strong normalization can be
dropped, provided we restrict ourselves to normalizable solutions. This does not hold for level-
complete 2-CTRSs as the following example of Giovannetti and Moiso [17] shows.

Example 8.15. Consider the level-confluent 2-CTRS

R =
{
a → b ⇐ x = f(x)
c → f(c).

We have a →R b because c →R f(c), but conditional narrowing is not able to solve the goal
a =? b, whose trivial solution ε is clearly normalizable.

However, it is not difficult to prove the equivalence of R ` T and T ��◦ R > (cf. Lemma 8.11)
for 2-CTRSs R with the property that that every Rn is semi-complete. The proof, which cannot
be based on Lemma 8.10, has more or less the same structure as the proof of Proposition 6.8.
Hence we can strengthen Theorem 8.14.

Definition 8.16. A CTRS R is called level-semi-complete if each Rn (n > 0) is semi-complete.
Example 8.18 shows that level-semi-completeness is not the same as the combination of level-
confluence and weak normalization.

Theorem 8.17. Conditional narrowing is complete for level-semi-complete 2-CTRSs. �

Example 8.18. Extend the CTRS of the previous example with the rule

f(x)→ d⇐ y = f(y).

The new CTRS is level-confluent and weakly normalizing but not level-semi-complete as R1 is
not weakly normalizing. Again the goal a =? b cannot be solved by conditional narrowing.

We conclude this section by proving that basic conditional narrowing is complete for level-
complete 2-CTRS. This result is due to Giovannetti and Moiso. The Appendix contains a proof
of the following proposition.

Proposition 8.19. Let R be a level-confluent 2-CTRS and σ a sufficiently normalized solution
of a goal clause T . Every innermost �◦ R-sequence starting from σT is based on T . �

Theorem 8.20. Basic conditional narrowing is complete for level-complete 2-CTRSs.

Proof. Similar to the proof of Theorem 7.8. Let R be a level-complete 2-CTRS. Suppose σ is
an R-solution of a goal clause T and let σ′ be its Rn-normal form where n is the level of σT .
We obtain σ′T ��◦ R > as in the proof of Theorem 6.13. We may assume that this sequence is
innermost (cf. the remark after Lemma 8.11). According to Proposition 8.19 it is based on T . It
is not difficult to show that the narrowing derivation constructed by Lemma 8.13 is basic. The
proof is completed as usual. �
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9. Extra Variables in Right-Hand Sides

In this section we extend the main result of the previous section—the completeness of conditional
narrowing for level-complete 2-CTRSs—to CTRSs that contain extra variables in the right-hand
sides of the rewrite rules. An example of such a CTRS is the following system (inspired by [8])
which specifies the computation of Fibonacci numbers:





0 + x → x
S(x) + y → S(x+ y)
f(0) → 〈0, S(0)〉
f(S(x)) → 〈z, y + z〉 ⇐ f(x) = 〈y, z〉
first(〈x, y〉) → x
fib(x) → first(f(x)).

We require that extra variables in the right-hand side of a rule occur in its conditional part,
i.e. we restrict ourselves to 3-CTRSs. This is not a real restriction as we consider only strongly
normalizing CTRSs.

Unfortunately, the lifting lemma of the previous section does not extend to level-complete
3-CTRSs.

Example 9.1. Consider the level-complete 3-CTRS

R =
{
a → f(x) ⇐ x = b
b → c.

Let S = { a =? f(c) } and θ = ε. Clearly θ is a sufficiently normalized solution of S. We have
the rewrite step

θS �◦ 1
R { f(b) =? f(c), b =? b } = T ′.

There is only one narrowing step originating from S:

S  ε { f(x) =? f(c), x =? b } = S′.

Every substitution θ′ satisfying θ′S′ = T ′ must have θ′x = b. But this conflicts with the sufficient
normalization of θ′ since the level of θ′(f(x) =? f(c)) is 1 and θ′x is R1-reducible. Suppose that
we extend θS �◦ 1

R T ′ with the step T ′ �◦ 0
R { f(b) =? f(c), true } = T ′′, i.e. we solve the

condition of the rule applied in the previous step. The corresponding narrowing step is

S′  {x,y 7→ b} { f(b) =? f(c), true } = S′′,

where we used the rule y =? y → true. Now the problem has disappeared: every substitution θ′′

is sufficiently normalized with respect to S′′. By solving the condition x =? b the problematic
term b was transferred from the substitution θ′ to the goal S′′.

Example 9.1 suggests that Lemma 8.13 may hold if we restrict ourselves to �◦ R-sequences
that first solve the introduced conditions after every application of a conditional rewrite rule.
This indeed turns out to be the case. Observe that �◦ R-sequences complying with the obli-
gation to solve conditions immediately after their introduction correspond to ordinary rewrite
sequences, the only difference being the introduction of a few harmless constants true after a
condition has been solved in a �◦ R-sequence.
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Definition 9.2. Let R be a CTRS. A�◦ R-rewrite sequence is said to be well-behaved if it can
be constructed according to the following two principles
• Let T �◦ [ e, p, l→ r⇐ c, σ] (T − {e}) ∪ {e[σr]p} ∪ σc̃. If σc̃��◦ R > is well-behaved then

T �◦ [ e, p, l→ r⇐ c, σ] (T − {e}) ∪ {e[σr]p} ∪ σc̃��◦ R (T − {e}) ∪ {e[σr]p} ∪ >

is well-behaved. In particular every unconditional step T �◦ [ e, p, l→ r, σ] (T −{e})∪{e[σr]p}
is well-behaved.

• If T1 ��◦ R T2 and T2 ��◦ R T3 are well-behaved then their concatenation T1 ��◦ R T2 ��◦ R T3

is well-behaved.

Proposition 9.3. Let R be a level-complete CTRS and T ∈ G>. There exists a well-behaved
sequence T ��◦ R >.

Proof. According to Lemma 8.11 there exists a sequence T ��◦ R >. This sequence can be
transformed into a well-behaved sequence T ��◦ R > by a straightforward reordering process. �

Lemma 9.4. Let R be a level-complete 3-CTRS. Suppose we have goal clauses S and T , a
sufficiently normalized solution θ of S, and a set V of variables such that V(S) ∪ Dθ ⊆ V and
T = θS. If T ��◦ R T ′ is well-behaved then there exist a goal clause S′ and substitutions θ′, σ
such that
• S  ∗σ S′,
• θ′S′ = T ′,
• θ′ ◦ σ = θ [V ],
• θ′ is a sufficiently normalized solution of S′.
Furthermore, we may assume that the narrowing derivation S  ∗σ S′ and the sequence T ��◦ R T ′
employ the same rewrite rules at the same positions in the corresponding goals.

Proof. We use induction on the level of T . If the level of T equals 0 then only the rule x =?

x→ true is used in the�◦ R-sequence from T to T ′. Since {x =? x→ true} clearly constitutes a
level-confluent 2-CTRS, the result follows from Lemma 8.13. Suppose the level of T equals N+1.
We use induction on the length of the well-behaved�◦ R-sequence from T to T ′. The case of zero
length is trivial. Suppose T �◦ n[θe, p, R: l→ r⇐ c, τ ] T1 ��◦ R T ′ with V(R)∩ V = ∅ and Dτ ⊆ V(R).
Because this sequence is well-behaved, the subsequence from T1 = (T − {θe}) ∪ {θe[τr]p} ∪ τ c̃
to T ′ can be written as T1 ��◦ R T2 = (T − {θe}) ∪ {θe[τr]p} ∪ >��◦ R T ′. The structure of the
proof is illustrated in Figure 7. Let m be the level of θe. Clearly m 6 N + 1. By definition

T T1 T2 T ′

θ

S

θ1

S1

θ2

S2

θ′

S′

(1) (2) (3)

�◦ R ��◦ R ��◦ R

 σ1  ∗σ2
 ∗σ′

Figure 7.

n 6 m. At this point we follow literally the proof of Lemma 8.13 until we reach formula (7).
This takes care of diagram (1) in Figure 7. Next we show the existence of a goal clause S2 and
substitutions θ2, σ2 such that S1  ∗σ2

S2, V(S2) ∪ Dθ2 ⊆ V2, θ2S2 = T1, θ2 ◦ σ2 = θ1 [V1], and
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θ2 is a sufficiently normalized solution of S2. Here V2 = (V1 − Dσ2) ∪ Iσ2. We distinguish two
cases.
c̃ = ∅ (This means that R is an unconditional rewrite rule.) We define S2 = S1, θ2 = θ1, and

σ2 = ε. Since in this case V(r) ⊆ V(l) we can repeat cases (a) and (b) in the proof of
Lemma 8.13 in order to conclude that θ2 is a sufficiently normalized solution of S2. The
other requirements are trivially satisfied.

c̃ 6= ∅ In this case the substitution θ1 is in general not a sufficiently normalized solution of S1

since in case (b) of the proof of Lemma 8.13 the requirement V(r) ⊆ V(l) is essential.
Case (c), however, does not rely on the restriction to 2-CTRSs. Hence θ1 is a sufficiently
normalized solution of τ c̃. From Rn−1 ` τ c̃ we infer that the level of τ c̃ is less than
N + 1. From T1 ��◦ R T2 we extract a well-behaved sequence τ c̃ ��◦ R >. Applying
the first induction hypothesis yields substitutions θ2 and σ2 such that σ1c̃  ∗σ2

> and
θ2 ◦ σ2 = θ1 [V1]. Let S2 = σ2σ1((S − {e}) ∪ {e[r]p}) ∪ >. Clearly S1  ∗σ2

S2. Using
V(S1) ⊆ V1 we easily obtain V(S2) ⊆ V2. It is not difficult to show that θ2S2 = T1. Since
θ2�V2

also satisfies the above requirements (i.e. θ2�V2
◦ σ2 = θ1 [V1] and θ2�V2

S2 = T1),
we may assume that Dθ2 ⊆ V2. It remains to show that θ2 is a sufficiently normalized
solution of S2. Let e′ ∈ S2 − >. There exists an e′′ ∈ (S − {e}) ∪ {e[r]p} such that
e′ ≡ σ2σ1e

′′. We distinguish two cases: (a) e′′ ∈ S − {e} and (b) e′′ ≡ e[r]p.
(a) Since V(e′′) ⊆ V and V(σ1e

′′) ⊆ V1 we obtain θ2e
′ ≡ θe′′ from θ1 ◦ σ1 = θ [V ] and

θ2 ◦ σ2 = θ1 [V1]. Because θ is a sufficiently normalized solution of S, θ�V(e′′) is
Sl-normalized where l is the level of θe′′. We have to show that θ2�V(e′) is also Sl-
normalized. This follows from θ1◦σ1 = θ [V ], θ2◦σ2 = θ1 [V1], and two applications
of Propositions 3.5 and 3.7.

(b) Let e′′ ≡ e[r]p. We have θe→Rn θe[τr]p ≡ θ2e
′. Proposition 8.7 shows that the level

of θ2e
′ is at most m and hence it suffices to show that θ2�V(e′) is Rm-normalized.

The crucial observation is that we have the following inclusion:

V(e′) = V(σ2σ1(e[r]p)) ⊆ V(σ2σ1e). (1)

Suppose to the contrary that there exists a variable x ∈ V(σ2σ1(e[r]p))−V(σ2σ1e).
This implies that x ∈ V(σ2σ1r). Since V(σ2σ1l) = V(σ2σ1(e|p)) ⊆ V(σ2σ1e), we
have x ∈ V(σ2σ1r) − V(σ2σ1l). According to Lemma 6.6 we may infer R ` σ2σ1c̃
from σ1c̃  ∗σ2

>. Hence σ2σ1l →Ri σ2σ1r for some i > 0. However, since →Ri
is closed under substitutions (in particular under the substitution {x 7→ σ2σ1l}),
we obtain an infinite →Ri-sequence starting from σ2σ1l, contradicting the level-
completeness of R. Therefore inclusion (1) is valid. Using θ1◦σ1 = θ [V ], V(e) ⊆ V ,
and the Rm-normalization of θ�V(e), we obtain the Rm-normalization of θ1�V(σ1e)

by means of Propositions 3.5 and 3.7. The Rm-normalization of θ2�V(σ2σ1e) follows
in the same way. From (1) we obtain the Rm-normalization of θ2�V(e′).

This concludes the construction of diagram (2) in Figure 7. According to Proposition 8.8 the
level of T2 is at most N + 1. If it is less than N + 1 then we apply the first induction hypothesis.
Otherwise we apply the second induction hypothesis. In both cases we obtain a goal clause S′

and substitutions θ′, σ′ such that S2  ∗σ′ S′, θ′S′ = T ′, θ′ ◦ σ′ = θ2 [V2], and θ′ is a sufficiently
normalized solution of S′. Now that we have completed diagram (3) in Figure 7, it is time
to glue the three diagrams together. Let σ = σ′ ◦ σ2 ◦ σ1. We clearly have S  ∗σ S′. From
θ1 ◦ σ1 = θ [V ], θ2 ◦ σ2 = θ1 [V1], θ′ ◦ σ′ = θ2 [V2], and the definitions of V1 and V2, we obtain
θ′ ◦ σ = θ [V ] by two applications of Proposition 3.6. �
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Combining Lemma 8.11, Proposition 9.3, and Lemma 9.4 yields the final result of this paper.

Theorem 9.5. Conditional narrowing is complete for level-complete 3-CTRSs. �

It is unclear whether basic conditional narrowing is complete for level-complete 3-CTRSs.
The problem is that Proposition 8.19 does not extend to (level-complete) 3-CTRSs.

Example 9.6. Consider again the CTRS of Example 9.1 and the goal S = { a =? f(c) }. The
sequence

S �◦ 1
R f(b) =? f(c), b =? b

�◦ 0
R f(b) =? f(c), true

�◦ 1
R f(c) =? f(c), true

�◦ 0
R >

is innermost and well-behaved, but not based on S. Nevertheless, basic conditional narrowing
is able to solve the goal a =? f(c):

S  f(x) =? f(c), x =? b

 {x 7→ c} true, c =? b

 true, c =? c

 >,

but the corresponding �R-sequence

S �2
R f(c) =? f(c), c =? b

�0
R true, c =? b

�1
R true, c =? c

�0
R >

is not a �◦ R-sequence since the level of S equals 1.

10. Conclusion

In this paper we have tried to perform a thorough study of the completeness of narrowing
and basic narrowing for TRSs and CTRSs. The main results are summarized below. Results
preceded with ‘◦’ are new.

Narrowing is complete for

• complete TRSs (Theorem 3.8),
• semi-complete TRSs (Corollary 3.11),
• confluent TRSs with respect to normalizable solutions (Theorem 3.10).

Basic narrowing is complete for
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• complete TRSs (Theorem 4.5),
◦ orthogonal TRSs with respect to normalizable solutions and goals (Theorem 5.6),
◦ confluent right-linear TRSs with respect to normalizable solutions (Theorem 5.13),
◦ weakly normalizing orthogonal TRSs (Corollary 5.7),
◦ semi-complete right-linear TRSs (Corollary 5.14).

Basic narrowing is not complete for

◦ semi-complete TRSs (Counterexample 4.7).

Conditional narrowing is complete for

• complete 1-CTRSs (Theorem 6.13),
• semi-complete 1-CTRSs (Corollary 6.15),
• confluent 1-CTRSs with respect to normalizable solutions (Theorem 6.14),
• level-complete 2-CTRSs (Theorem 8.14),
◦ level-semi-complete 2-CTRSs (Theorem 8.17),
◦ level-complete 3-CTRSs (Theorem 9.5).

Conditional narrowing is not complete for

• complete 2-CTRSs (Example 8.1),
• level-confluent 2-CTRSs with respect to normalizable solutions (Example 8.15).

Basic conditional narrowing is complete for

◦ decreasing and confluent 1-CTRSs (Theorem 7.8),
• level-complete 2-CTRSs (Theorem 8.20).

Basic conditional narrowing is not complete for

◦ complete 1-CTRSs (Counterexample 7.3),
◦ semi-complete orthogonal 1-CTRSs (Counterexample 7.11).

We expect that the completeness of basic narrowing for level-complete 2-CTRSs carries over to
3-CTRSs. It is less clear whether level-semi-completeness is sufficient for the completeness of
conditional narrowing for 3-CTRSs (cf. Theorem 8.17). As a matter of fact, it seems reasonable
to conjecture that Theorem 8.17 does not extend to 3-CTRSs since strong normalization of every
Rn is crucial in the proof of the lifting lemma for 3-CTRSs (Lemma 9.4).

Giovannetti and Moiso [17] observed that the confluence proof of Bergstra and Klop [1] for
orthogonal and normal 2-CTRSs (IIIn systems in the terminology of [1]) actually shows level-
confluence. Such a result (if at all true) makes less sense for 3-CTRSs since 3-CTRSs typically
are not normal, see for example the 3-CTRS at the beginning of Section 9. Thus it is important
to develop other criteria that are easy to check and which ensure the level-confluence of 3-
CTRSs. Useful techniques which ensure the strong normalization of 2 and 3-CTRSs need also
to be developed.

If we extend the set of basic positions as in the combination of basic and normal narrowing
(see Réty [37]), our counterexamples (4.7 and 7.3) no longer work. It is worthwhile to investigate
whether such a relaxed form of basic narrowing suffices for completeness.

As explained in the introduction, we restricted ourselves in this paper to narrowing and basic
narrowing for TRSs and CTRSs. It would be interesting to treat the other variants of narrowing
in the same systematic way.
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Appendix

In this Appendix we present proofs of Propositions 4.4, 5.5, 7.7, and 8.19. The proofs are very
much alike, but it is difficult to capture the similarities in a separate, general proposition.
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Proposition 4.4. LetR be a TRS and σ a normalized substitution. Every innermost reduction
sequence starting from σt is based on O(t).
Proof. Suppose

σt ≡ t1 →[ p1, l1→ r1, σ1] · · · →[ pn−1, ln−1→ rn−1, σn−1] tn

is an innermost reduction sequence. Let B1 = O(t) and define B2, . . . , Bn−1 as in Definition 4.1.
By induction on i we will show that (ti)|p is a normal form whenever p ∈ O(ti)−Bi for 1 6 i < n.
The case i = 1 follows from the normalization of σ. Suppose the statement holds for i = 1, . . . ,m
and let p ∈ O(tm+1)−Bm+1. We distinguish two cases: p ⊥ pm and p > pm. (The case p < pm
is impossible since this would imply p ∈ Bm+1 as we already know that Bm is closed under
prefix and pm ∈ Bm.)
(1) If p ⊥ pm then clearly p ∈ O(tm) − Bm and (tm+1)|p ≡ (tm)|p. The induction hypothesis

yields the desired result.
(2) If p > pm then there exist positions q ∈ OV(rm) and q′ such that p = pm·q·q′ (otherwise

p ∈ Bm+1). Hence (tm+1)|p ≡ (σmrm)|q·q′ ≡ (σmx)|q′ where x is the variable in rm at
position q. So (tm+1)|p is a proper subterm of σmlm and because tm →[ pm, lm→ rm, σm] tm+1

is an innermost reduction step, (tm+1)|p is a normal form.
�

Before proving Proposition 5.5 we give a few elementary properties of orthogonal TRSs. The
following lemma expresses a famous result in the theory of orthogonal TRSs (see e.g. Huet and
Lévy [21]). Confluence of orthogonal TRSs is an easy consequence of this lemma.

Parallel Moves Lemma. Let R be an orthogonal TRS. If t→‖ t1 and t→‖ t2 then there exists
a term t3 such that t1 →‖ t3 and t2 →‖ t3. Moreover, the redexes contracted in t1 →‖ t3 (t2 →‖ t3)
are the descendants in t1 (t2) of the redexes contracted in t→‖ t2 (t→‖ t1). �

The following consequence of the Parallel Moves Lemma is used in the proof of Proposition 5.5
below.

Proposition A.1. Let R be an orthogonal TRS. Suppose s contains a redex r which is not
needed. If s→ t then the descendants of r in t are not needed.

Proof. Because r is not needed there exists a normalizing reduction sequence

s ≡ s1 → s2 → · · · → sn

in which no descendant of r is contracted. Using the Parallel Moves Lemma we construct the
following diagram of Figure 8. The contracted redexes in ti →‖ ti+1 are the descendants of the

s ≡ s1 s2 · · · sn

t ≡ t1 t2 · · · tn

Figure 8.

redex contracted in the step si → si+1. Hence no descendant of r is contracted in the sequence
t1 � tn and because sn ≡ tn no descendant of r in t is needed. �
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Proposition 5.5. Let R be an orthogonal TRS and σ a normalized substitution. Every inner-
most needed reduction sequence starting from σt is based on O(t).
Proof. The proof has the same structure as the proof of Proposition 4.4. Suppose

σt ≡ t1 →[ p1, l1→ r1, σ1] · · · →[ pn−1, ln−1→ rn−1, σn−1] tn

is an innermost needed reduction sequence and define B1, . . . , Bn−1 as usual. By induction on i
we will show that (ti)|p contains no needed redexes whenever p ∈ O(ti)−Bi for 1 6 i < n. The
case i = 1 is trivial. Suppose the statement holds for i = 1, . . . ,m and let p ∈ O(tm+1)−Bm+1.
The case p ⊥ pm easily follows from the induction hypothesis. If p > pm then (tm+1)|p is a
proper subterm of σmlm, just as in the proof of Proposition 4.4. Suppose (tm+1)|p contains a
redex r. Since tm →[ pm, lm→ rm, σm] tm+1 is an innermost needed reduction step, r is not needed
in tm. Proposition A.1 shows that r is not needed in tm+1. �

Proposition 7.7. Let R be a 1-CTRS, T a goal clause and σ a normalized substitution. Every
innermost �R-sequence starting from σT is based on T .

Proof. Suppose

σT = T1 �[ e1, p1, R1, σ1] · · ·�[ en−1, pn−1, Rn−1, σn−1] Tn

is an innermost �R-sequence. Let B1 = T and define the position constraints B2, . . . , Bn−1 as
in Definition 7.2(2). By induction on i we will show that e|p is a normal form whenever e ∈ Ti
and p ∈ O(e) − Bi(e) for 1 6 i < n. For i = 1 this is a consequence of the normalization of
σ. Suppose the statement holds for i = 1, . . . ,m. Let Rm be the rule lm → rm ⇐ cm and take
e ∈ Tm+1. We distinguish three cases: e ∈ Tm − {em}, e ≡ em[σmrm]pm , and e ∈ σmc̃m.
(1) If e ∈ Tm − {em} then Bm+1(e) = Bm(e) and hence the result follows from the induction

hypothesis.
(2) The case e ≡ em[σmrm]pm follows as in the proof of Proposition 4.4.
(3) If e ∈ σmc̃m then Bm+1(e) = O(e′) where e = σme

′. Hence it suffices to show that σm�V(e′) is
normalized. Since R is a 1-CTRS, we have V(e′) ⊆ V(lm) and because σmlm is an innermost
redex in em we know that σm�V(lm) is normalized.

�

Proposition 8.19. Let R be a level-confluent 2-CTRS and σ a sufficiently normalized solution
of a goal clause T . Every innermost �◦ R-sequence starting from σT is based on T .

Proof. Suppose

σT = T1 �◦ [ e1, p1, R1: l1→ r1⇐ c1, σ1] · · ·�◦ [ en−1, pn−1, Rn−1: ln−1→ rn−1⇐ cn−1, σn−1] Tn

is an innermost �◦ R-sequence. Let B1 = T and define the position constraints B2, . . . , Bn−1 as
in Definition 7.2(2). By induction on i we will show that e|p is Rj-normalized whenever e ∈ Ti
and p ∈ O(e)− Bi(e) for 1 6 i < n. Here j is the level of e. For i = 1 this is a consequence of
the sufficient normalization of σ. Suppose the statement holds for i = 1, . . . ,m and let k be the
level of em. We have

Tm�◦ l[ em, pm, Rm, σm] Tm+1 = (Tm − {em}) ∪ {em[σmrm]pm} ∪ σmc̃m
for some l 6 k. Hence Rl−1 ` σmc̃m and σm�E(Rm) is Rl−1-normalized. Take e ∈ Tm+1. We
distinguish three cases.
(1) If e ∈ Tm − {em} then Bm+1(e) = Bm(e) and hence the result follows from the induction

hypothesis.
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(2) Let e ≡ em[σmrm]pm . We have em →Rl e. Proposition 8.7 shows that the level of e is
at most k and hence it suffices to show that e|p is Rk-normalized. As in the proof of
Proposition 4.4 we distinguish the two cases p ⊥ pm and p > pm.

(a) If p ⊥ pm then e|p ≡ (em)|p and p /∈ Bm(em). Hence the result follows from the
induction hypothesis.

(b) Let p > pm. Since R is a 2-CTRS we have V(rm) ⊆ V(lm) and hence we infer that e|p
is a proper subterm of σmlm. Because σmlm is an innermost Rk-redex in em, σm�V(lm)

is Rk-normalized.

(3) If e ∈ σmc̃m then the level e does not exceed l−1 and Bm+1(e) = O(e′) where e = σme
′. So

it is sufficient to show that σm�V(e′) is Rl−1-normalized. Clearly V(e′) ⊆ V(lm)∪E(Rm). We
already observed that σm�E(Rm) is Rl−1-normalized and σm�V(lm) is Rk-normalized. Since
k > l − 1, σm�V(lm) is certainly Rl−1-normalized.

�

We conclude the Appendix by showing that the orthogonal 1-CTRS R of Counterexam-
ple 7.11 is semi-complete.

Proof. We transform

R =





f(x) → a ⇐ g(b) = c
g(x) → c ⇐ x = f(x)
b → f(b)

into a semi-complete TRS R′ such that the relations →+
R and →+

R′ coincide. First observe that
g(b) ↓R c. Hence R generates the same rewrite relation as the CTRS

R1 =





f(x) → a
g(x) → c ⇐ x = f(x)
b → f(b).

It is not difficult to show that {a, b} ∪ {f(s) | s is an arbitrary term} is the set of all terms t
that satisfy t ↓R1 f(t). As a consequence, the rewrite relations of R1 and the TRS

R2 =





f(x) → a
g(a) → c
g(b) → c
g(f(x)) → c
b → f(b)

coincide. Define

R′ =




f(x) → a
g(a) → c
b → f(b).

Clearly →R′ ⊆ →R2 . One easily shows that →R2 ⊆ →+
R′ . We conclude that →+

R = →+
R′ .

Confluence of R′ is an immediate consequence of orthogonality. Weak normalization of R′
easily follows by induction on the structure of terms. �
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