
J. Symbolic Computation (1994) 16, 1–19

Completeness of Combinations of Conditional
Constructor Systems1,2

AART MIDDELDORP

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305, Japan

(Received 22 February 1993)

In this paper we extend the divide and conquer technique of Middeldorp and Toyama
for establishing (semi-)completeness of constructor systems to conditional constructor
systems. We show that both completeness (i.e. the combination of confluence and strong
normalisation) and semi-completeness (confluence plus weak normalisation) are decom-
posable properties of conditional constructor systems without extra variables in the
conditions of the rewrite rules.

1. Introduction

A property of term rewriting systems is modular if it is preserved under disjoint union. In
the past few years the modularity of properties of term rewriting systems has been exten-
sively studied. The first results in this direction were obtained by Toyama. In (Toyama,
1987a) he showed that confluence is a modular property (see Klop et al. (1994) for a
simplified proof) and in (Toyama, 1987b) he refuted the modularity of strong normali-
sation. His counterexample inspired many researchers to look for conditions which are
sufficient to recover the modularity of strong normalisation (e.g. Rusinowitch (1987),
Middeldorp (1989), Kurihara and Ohuchi (1990), and Toyama et al. (1989).) Recently
Gramlich (1992a) proved an interesting theorem which generalises the results of Rusi-
nowitch (1987), Middeldorp (1989), and Kurihara and Ohuchi (1990), in case of finitely
branching term rewriting systems. Ohlebusch (1993b) extended Gramlich’s result to ar-
bitrary term rewriting systems. Another recent contribution to the topic of modularity is
the work of Caron (1992) who investigates the decidability problem of reachability from
a modularity perspective.

The disjointness requirement limits the practical applicability of the results mentioned
above. The results of Rusinowitch (1987), Middeldorp (1989), and Kurihara and Ohuchi
(1990) were generalised to combinations of term rewriting systems that possibly share
constructors—function symbols which do not occur at the leftmost position in left-hand

1 A preliminary version of this paper was published in the Proceedings of the 3rd International
Workshop on Conditional Term Rewriting Systems, Pont-à-Mousson, Lecture Notes in Computer Science
656, pp. 82–96, 1993.

2 Most of the work reported in this paper was performed while the author was employed at the
Advanced Research Laboratory of Hitachi Ltd., Hatoyama, Saitama 350-03, Japan.

0747–7171/90/000000 + 00 $03.00/0 c© 1994 Academic Press Limited

2 A. Middeldorp

sides of rewrite rules—by Kurihara and Ohuchi (1992), Gramlich (1992a), and Ohlebusch
(1993b). Middeldorp and Toyama (1993) obtained a useful divide and conquer technique
for establishing (semi-)completeness of term rewriting systems that adhere to the so-
called constructor discipline. In such constructor systems all function symbols occurring
at non-leftmost positions in left-hand sides of rewrite rules are constructors. Very recently
Krishna Rao (1993) generalised the completeness part of Middeldorp and Toyama (1993)
to so-called hierarchical combinations of constructor systems. We refer to the final section
of this paper for details.

Several modularity results have been extended to conditional term rewriting systems
by Middeldorp (1990, 1993), Ohlebusch (1993a) and Gramlich (1993). In the present
paper we extend the results of Middeldorp and Toyama (1993) to conditional constructor
systems. The paper is organised as follows. In the next section we briefly recapitulate
the basic notions of (conditional) term rewriting. Section 3 presents the results that are
proved in detail in the subsequent two sections. We conclude in Section 6 with suggestions
for further research.

2. Preliminaries

We start this section with a concise introduction to term rewriting. Extensive surveys
can be found in Dershowitz and Jouannaud (1990) and Klop (1992).

A signature is a set F of function symbols. Associated with every f ∈ F is a natural
number denoting its arity. Function symbols of arity 0 are called constants. The set
T (F ,V) of terms built from a signature F and a countably infinite set of variables V
with F ∩ V = ∅ is the smallest set such that V ⊂ T (F ,V) and if f ∈ F has arity n and
t1, . . . , tn ∈ T (F ,V) then f(t1, . . . , tn) ∈ T (F ,V). The root symbol of a term t is defined
as follows: root(t) = f if t = f(t1, . . . , tn) and root(t) = t if t ∈ V.

Let � be a fresh constant, named hole. A context C is a term in T (F ∪ {�},V). The
designation term is restricted to members of T (F ,V). A context may contain zero, one
or more holes. If C is a context with n holes and t1, . . . , tn are terms then C[t1, . . . , tn]
denotes the result of replacing from left to right the holes in C by t1, . . . , tn. A term s is
a subterm of a term t, denoted by s ⊆ t, if there exists a context C such that t = C[s].

A substitution σ is a mapping from V to T (F ,V) such that its domain D(σ) = {x ∈ V |
σ(x) 6= x} is finite. If σ is a substitution and t a term then tσ denotes the result of applying
σ to t, inductively defined as follows: tσ = σ(t) if t is a variable and tσ = f(t1σ, . . . , tnσ)
if t = f(t1, . . . , tn). We call tσ an instance of t. Let T ′ ⊆ T (F ,V). The set of all
substitutions σ with σ(x) ∈ T ′ for every x ∈ D(σ) is denoted by Σ(T ′).

A term rewriting system (TRS for short) is a pair (F ,R) consisting of a signature F
and a set R of pairs (l, r) with l, r ∈ T (F ,V) such that:

(1) the left-hand side l is not a variable, and
(2) variables which occur in the right-hand side r also occur in l.

Pairs (l, r) are called rewrite rules and will henceforth be written as l → r. A rewrite
rule l → r is left-linear if l does not contain multiple occurrences of the same variable.
A left-linear TRS contains only left-linear rewrite rules.

The rewrite relation →R is defined as follows: s →R t if there exists a rewrite rule
l → r ∈ R, a context C, and a substitution σ such that s = C[lσ] and t = C[rσ]. The
subterm lσ of s is called a redex and we say that s rewrites to t by contracting redex
lσ. We call s →R t a rewrite step. The transitive-reflexive closure of →R is denoted by

Completeness of Combinations of Conditional Constructor Systems 3

→∗R. If s →∗R t we say that s reduces to t. The transitive closure of →R is denoted by
→+
R. We write s←R t if t→R s; likewise for s←∗R t. The transitive-reflexive-symmetric

closure of →R is called conversion and denoted by ↔∗R. If s ↔∗R t then s and t are
convertible. Two terms t1, t2 are joinable, denoted by t1 ↓R t2, if there exists a term t3
such that t1 →∗R t3 ←∗R t2. Such a term t3 is called a common reduct of t1 and t2. When
no confusion can arise, we omit the subscript R.

A term s is a normal form if there is no term t with s→ t. A TRS is weakly normalising
if every term reduces to a normal form. We write s→! t if s→∗ t and t is a normal form.
A TRS is strongly normalising if there are no infinite reduction sequences t1 → t2 →
t3 → · · · . A TRS is locally confluent if for all terms s, t1, t2 with t1 ← s → t2 we have
t1 ↓ t2. A TRS is confluent or has the Church-Rosser property if for all terms s, t1, t2
with t1 ←∗ s →∗ t2 we have t1 ↓ t2. A well-known equivalent formulation of confluence
is that every pair of convertible terms is joinable (t1 ↔∗ t2 ⇒ t1 ↓ t2). The renowned
Newman’s Lemma states that every locally confluent and strongly normalising TRS is
confluent (Newman, 1942). A complete TRS is confluent and strongly normalising. A
semi-complete TRS is confluent and weakly normalising. Each term in a (semi-)complete
TRS has a unique normal form. The above properties of TRSs specialise to terms in the
obvious way.

Let (F ,R) be an arbitrary TRS. A function symbol f ∈ F is called a defined symbol
if there exists a rewrite rule l → r ∈ R such that f = root(l). Function symbols in
F that are not defined symbols are called constructors. The subset of F consisting of
all defined symbols is denoted by D and the set of all constructors by C (= F − D). A
constructor system (CS for short) is a TRS (F ,R) with the property that every left-hand
side f(t1, . . . , tn) of a rewrite rule of R satisfies t1, . . . , tn ∈ T (C,V). To emphasise the
partition of F into D and C we write (D, C,R) instead of (F ,R) and T (F ,V) is denoted
by T (D, C,V).

We now turn our attention to conditional rewriting. The rules of a conditional term
rewriting system (CTRS for short) have the form l → r ⇐ c. Here the conditional part
c is a (possibly empty) sequence s1 = t1, . . . , sn = tn of equations. We assume that
l is not a variable and that variables occurring in r and c also occur in l. In other
words, we do not allow extra variables in the conditions. The reasons for excluding
conditional rewrite rules with extra variables will be explained later. A rewrite rule
without conditions will be written as l→ r. The rewrite relation associated with a CTRS
R is obtained by interpreting the equality signs in the conditional part of a rewrite rule as
joinability. Formally, →R is the smallest (w.r.t. inclusion) relation → with the property
that C[lσ]→ C[rσ] whenever there exist a rewrite rule l→ r ⇐ c in R, a context C, and
a substitution σ such that s = C[lσ], t = C[rσ], and c1σ ↓ c2σ for every equation c1 = c2
in c. The existence of →R is easily proved (see e.g. Kaplan (1984) or Giovannetti and
Moiso (1986)). For every CTRS R we inductively define TRSs Rn (n > 0) as follows:

R0 = ∅,
Rn+1 = { lσ → rσ | l→ r ⇐ c ∈ R and c1σ ↓Rn c2σ for all c1 = c2 in c }.

Observe that Rn ⊆ Rn+1 for all n > 0. We have s →R t if and only if s →Rn t for
some n > 0. The minimum such n is called the depth of s→ t. The depth of a reduction
s→∗R t is the minimum n such that s→∗Rn t. The depth of a ‘valley’ s ↓R t is similarly
defined. All notions previously defined for TRSs extend to CTRSs.

A CTRS (F ,R) is a conditional constructor system (CCS for short) if the TRS obtained

4 A. Middeldorp

from R by omitting all conditions is a CS. Observe that we put no (further) limitations
on the conditions of the rules in a CCS.

Example 2.1. Consider the CCS (D, C,R) with D = {even, odd}, C = {0, S, true, false}
and

R =

even(0) → true
even(S(x)) → odd(x)
odd(x) → true ⇐ even(x) = false
odd(x) → false ⇐ even(x) = true.

The first step in the reduction sequence even(S(0)) →R odd(0) →R false has depth 1
and the second step has depth 2.

3. Decomposability

The following definition originates from Middeldorp and Toyama (1993). It expresses
a natural way to divide a large (conditional) constructor system into smaller, not neces-
sarily disjoint, parts.

Definition 3.1.

(1) Let (D, C,R) be a CCS and D′ a set of function symbols. The subset of R consisting
of all rewrite rules l→ r ⇐ c that satisfy root(l) ∈ D′ is denoted by R | D′.

(2) Two CCSs (D1, C1,R1) and (D2, C2,R2) are composable if D1∩C2 = D2∩C1 = ∅ and
R1 | D2 = R2 | D1. The second requirement states that both CCSs should contain
all rewrite rules which ‘define’ a defined symbol whenever that symbol is shared. The
union of pairwise composable CCSs CCS1, . . . , CCSn is denoted by CCS1 +· · ·+CCSn
and we say that CCS1, . . . , CCSn is a decomposition of CCS1 + · · ·+ CCSn.

(3) A property P of CCSs is said to be decomposable if for all pairwise composable
CCSs CCS1, . . . , CCSn with the property P we have that CCS1 + · · ·+ CCSn has the
property P.

Note that CCSs without common function symbols are trivially composable. Thus
every decomposable property of CCSs is also a modular property of CCSs.

Proposition 3.2. Let P be a property of CCSs. The following statements are equivalent:

(1) P is decomposable;
(2) for all composable CCSs CCS1 and CCS2 with the property P we have that CCS1 +

CCS2 has the property P.

Proof. Straightforward. �

In this paper we extend the main results of Middeldorp and Toyama (1993) from
CSs to CCSs. That is, we will show that both completeness and semi-completeness are
decomposable properties of CCSs. It should be noted that neither strong normalisation
nor confluence are decomposable properties of CCSs. This is already the case for CSs
(see Middeldorp and Toyama (1993) for the easy to construct counterexamples).

Completeness of Combinations of Conditional Constructor Systems 5

Example 3.3. Consider the CCS (D, C,R) with defined symbols D = {+,×, even, odd},
constructors C = {0, S, true, false} and rewrite rules

R =

0 + x → x
S(x) + y → S(x+ y)
0× x → 0
S(x)× y → x× y + y
even(0) → true
even(S(x)) → odd(x)
odd(x) → true ⇐ even(x) = false
odd(x) → false ⇐ even(x) = true

.

We can decompose (D, C,R) into the CCSs

R1 =

0 + x → x
S(x) + y → S(x+ y)
0× x → 0
S(x)× y → x× y + y

and

R2 =

even(0) → true
even(S(x)) → odd(x)
odd(x) → true ⇐ even(x) = false
odd(x) → false ⇐ even(x) = true

with D1 = {+,×}, D2 = {even, odd}, C1 = {0, S} and C2 = {0, S, true, false}. Standard
rewriting techniques show the completeness of (D1, C1,R1) and the strong normalisa-
tion of (D2, C2,R2). For (local) confluence of (D2, C2,R2) we have to show that there
exists no term t that satisfies both even(t) ↓R2 false and even(t) ↓R2 true, which fol-
lows by an easy induction argument. Our main result now yields the completeness of
(D, C,R). We would like to stress that the problem of showing the unsatisfiability of
even(x) ↓R false∧even(x) ↓R true is more complicated than showing the unsatisfiability
of even(x) ↓R2 false ∧ even(x) ↓R2 true.

Unlike the extension of modularity results from TRSs to CTRSs in (Middeldorp, 1990,
1993), we do not make use of the decomposability of (semi-)completeness for CSs in
our proofs. Rather, we extend the proof ideas in (Middeldorp and Toyama, 1993) to
conditional systems.3 This is not entirely a routine matter. For instance, the proof of the
decomposability of completeness for CSs in (Middeldorp and Toyama, 1993) employs the
decomposability of local confluence. That result, however, does not hold for CCSs as the
following example shows. (This example is an easy adjustment of the counterexample in
(Middeldorp, 1990, 1993) against the modularity of local confluence for CTRSs.)

Example 3.4. Consider the disjoint and hence composable CCSs

a b c dR1 =
{ }

3 The reader familiar with (Middeldorp and Toyama, 1993) will observe that the specialisation of the
proofs in this paper to CSs yields slightly simpler proofs of the main results of (Middeldorp and Toyama,
1993). (Gramlich, 1992b) contains a simpler proof of the decomposability of completeness for CSs. It
remains to be seen whether his approach can be extended to CCSs.

6 A. Middeldorp

and

R2 =
{
f(x, y, z) → x ⇐ x = y, y = z
f(x, y, z) → z ⇐ x = y, y = z.

}
.

The CS R1 is clearly locally confluent. Let R be the CS consisting of the single rewrite
rule f(x, x, x) → x. Clearly s →R t implies s →R2 t. Conversely, if s →R2 t then we
obtain s ↔∗R t by a straightforward induction on the depth of s →R2 t. Because R is
confluent, a routine argument now shows thatR2 is confluent and hence locally confluent.
However, the union of R1 and R2 is not locally confluent: we have a ← f(a, b, d) → d
since both a ↓ b and b ↓ d, but a and d have no common reduct.

4. Marked Reduction

The proofs in (Middeldorp and Toyama, 1993) heavily depend on the notion of marked
reduction. In this section we extend this notion to conditional systems and we show that
the key properties of marked reduction as established in (Middeldorp and Toyama, 1993)
are still valid in the conditional case. Throughout this section we will be dealing with
the union (D, C,R) of two composable CCSs (D1, C1,R1) and (D2, C2,R2).

Definition 4.1.

(1) The set D∗ = {f∗ | f ∈ D1} consists of marked defined symbols. Terms in T (D∗ ∪
D, C,V) are called marked terms. An unmarked term belongs to T (D, C,V). Observe
that we do not mark symbols in D2−D1. In the following we abbreviate T (D, C,V)
to T .

(2) If t is a marked term then e(t) ∈ T denotes the term obtained from t by erasing
all marks and t∗ denotes the term obtained from t by marking every unmarked
defined symbol in t that belongs to D1. These notions are extended to other syntactic
objects like substitutions and sequences of equations in the obvious way. The set
{l∗ → r∗ ⇐ c∗ | l→ r ⇐ c ∈ R1} of marked rewrite rules is denoted by M.

(3) Two marked terms s and t are similar, denoted by s ≈ t, if e(s) = e(t). If s and t
are similar then their intersection is the unique term s ∧ t such that s ∧ t ≈ s ≈ t
and a defined symbol occurrence in s ∧ t is marked if and only if the corresponding
occurrences in s and t are marked. Since ∧ is easily shown to be associative and
commutative, we can extend it to sets of pairwise similar terms in the obvious way,
i.e. if S = {s1, . . . , sn} is a set of pairwise similar terms, then ∧S denotes s1∧. . .∧sn.

In (Middeldorp and Toyama, 1993) symbols in D2−D1 are also marked. Since our main
results are symmetrical in (D1, C1,R1) and (D2, C2,R2), it suffices to mark only defined
symbols belonging to a single constructor system. This results in a few simplifications
compared to (Middeldorp and Toyama, 1993).

Definition 4.2. If t = C[t1, . . . , tn] such that all defined symbols in C are marked4

and every ti (i = 1, . . . , n) is unmarked then we call t a capped term. Furthermore, if
root(ti) ∈ D for i = 1, . . . , n then we write t = C∗[t1, . . . , tn]∗. Note that every capped
term can be uniquely written in this way. (If n = 0, i.e. t ∈ T (D∗, C,V), then t∗[]∗ is the
unique representation of t as a capped term. If t ∈ T and root(t) ∈ D then �∗[t]∗ is the

4 This implies that C doesn’t contain symbols from D2 −D1.

Completeness of Combinations of Conditional Constructor Systems 7

unique representation of t as a capped term.) Adopting the terminology from Kurihara
and Ohuchi (1990, 1992), the subterms t1, . . . , tn of t = C∗[t1, . . . , tn]∗ will be called aliens
of t. The set of all capped terms is denoted by T̂ and the set of all aliens in a capped
term t is denoted by aliens(t).

Definition 4.3. A set T ′ ⊆ T̂ is said to be alien defined by a property P if a term t
belongs to T ′ if and only if every alien of t satisfies P.

The set T̂ is alien defined by the property t ∈ T . Observe that every alien defined
subset T ′ of T̂ contains T (D∗, C,V) since terms in T (D∗, C,V) do not have aliens. It
is also not difficult to see that every alien defined set T ′ satisfies the following closure
properties:

(1) if s, t ∈ T ′ are similar then s ∧ t ∈ T ′,
(2) if t ∈ T ′ and s ∈ aliens(t) then s ∈ T ′,
(3) if t ∈ T ′, s ⊆ t, and s /∈ T then s ∈ T ′,
(4) if t ∈ T (D∗, C,V) and σ ∈ Σ(T ′) then tσ ∈ T ′.

Definition 4.4. Let s ∈ T̂ .

(1) We write s→m t if there exists a context C, a rewrite rule C1[x1, . . . , xn]→ r ⇐ c in
M (with all variables occurring in its left-hand side displayed), and terms s1, . . . , sn
such that the following four conditions are satisfied:
(a) s = C[C1[s1, . . . , sn]],
(b) si ≈ sj whenever xi = xj for 1 6 i < j 6 n,
(c) t = C[rσ],
(d) c1σ ↓≈m c2σ for every equation c1 = c2 in c.
Here σ is the substitution induced by l and s, i.e.

σ(x) =
{ ∧{si | xi = x} if x ∈ {x1, . . . , xn},
x otherwise,

and ↓≈m denotes joinability with respect to →m modulo ≈, i.e. the relation →∗m · ≈
· ←∗m. The relation →m is called marked reduction.

(2) We write s →u t if s →R t. The relation →u is called unmarked reduction. Clearly
s →u t if and only if one of the aliens in s is rewritten. In the following we restrict
the use of →R to unmarked terms.

The notion of marked reduction is illustrated in Figure 1. Specialising the above def-
inition to CSs yields the relations →o

m (for →m) and →i
m (for →u) of (Middeldorp and

Toyama, 1993). The well-definedness of→m and the closure of T̂ under→m easily follow
from the alien definedness of T̂ . In particular, we have the following fact.

Proposition 4.5. Let s ∈ T̂ . If s→m t then aliens(t) ⊆ aliens(s).

Proof. Routine. �

As a matter of fact, the above proposition shows that any alien defined subset of T̂
is closed under marked reduction. Closure of T̂ under →u is obvious. The crucial point
in the definition of marked reduction is that we allow terms in an instantiated condition

8 A. Middeldorp

f∗ g∗

s t s

m

*

*
*

**

*

*
*

*

*

*
*

**

*

*
*

**

s

*

*
*

*

t

g∗

*

*
*

*

t

≈
m

⇑

�
f(x, y) → g(x) ⇐ x = g(y)
g(x) → x

�
⊆ R1

Figure 1.

to be joinable with respect to marked reduction up to similarity. In (Middeldorp and
Toyama, 1993) the concept of similarity was introduced to cope with non-left-linear
rewrite rules. However, in a conditional system non-left-linearity can be hidden in the
conditions. A conditional rewrite rule f(x, y) → c ⇐ x = y resembles in many respects
the unconditional but non-left-linear rule f(x, x)→ c.

Proposition 4.6. Let s ∈ T̂ .

(1) If s→m t then e(s)→R1 e(t).
(2) If s→u t then e(s)→R e(t).

Proof. The first part is obtained by a straightforward induction on the depth of s→m t.
The second part is trivial. �

Completeness of Combinations of Conditional Constructor Systems 9

Consider a capped term s and a reduction step e(s) →R t. In the unconditional case
(i.e. if R is a CS) it is easy to see that we can lift e(s) →R t to s →m t′ or s →u t

′ for
some term t′ ∈ T̂ with e(t′) = t (∗). Together with Proposition 4.6 this constitutes a
very clear relationship between →R-reduction on T and →m and →u-reduction on T̂ .
In the conditional case this nice correspondence is lost, as shown in the next example.

Example 4.7. Consider the CCS

R1 =
{
f(x) → x ⇐ x = b
a → b

with D1 = {f, a, b} and C1 = ∅. We have f(a) →R1 a, but f∗(a) is a normal form with
respect to marked reduction since a ↓≈m b∗ does not hold.

Fortunately, we do not really need this one-to-one correspondence between ordinary
reduction and reduction (→m and →u) on capped terms. The relationship expressed in
Lemma 4.18 below is sufficient for our purposes. The next few propositions pave the way
for Lemma 4.18. First we show that (∗) does hold for “inside normalised” capped terms.

Definition 4.8. A term in T̂ is called inside normalised if it is a normal form with
respect to →u. In other words, a term in T̂ is inside normalised if and only if its aliens
are normal forms. The subset of T̂ consisting of all inside normalised terms is denoted
by T̂in.

Observe that T̂in is alien defined by the property of being in normal form. Hence T̂in
is closed under marked reduction.

Example 4.9. Consider the CCS of Example 4.7. We have f(b)→R1 b. The term f∗(b) is
inside normalised, and since b ↓≈m b∗ we can indeed lift the step f(b)→R1 b to f∗(b)→m b.

Proposition 4.10. Let s ∈ T̂in. If e(s)→R t then there exists a term t′ ∈ T̂in such that
s→m t′ and e(t′) = t; see Figure 2.

s
m
t′ ∈ T̂in e(t′) = t

s ∈ T̂in e(s) R t

Figure 2.

Proof. We use induction on the depth of e(s) →R t. In case of zero depth there is
nothing to prove. Suppose the depth of e(s) →R t equals n + 1 (n > 0). By definition
there exists a context C, a rewrite rule l → r ⇐ c ∈ R, and a substitution σ such that
e(s) = C[lσ], t = C[rσ], and, for every equation c1 = c2 in c, c1σ ↓R c2σ with depth at
most n. Write l = C1[x1, . . . , xn] such that all variables in l are displayed. Since there

10 A. Middeldorp

are no extra variables in the rule l → r ⇐ c, we may assume that D(σ) ⊆ {x1, . . . , xn}.
We have s = C ′[C∗1 [s1, . . . , sn]] for some context C ′ and terms s1, . . . , sn ∈ T̂in such that
e(C ′) = C and e(si) = xiσ for i = 1, . . . , n. Let τ be the substitution induced by l and
s. Note that τ ∈ Σ(T̂in) and e(τ) = σ. Let c1 = c2 be an equation in c. We will show
that c∗1τ ↓≈m c∗2τ . We know that there exists a valley c1σ →∗R u ←∗R c2σ in which the
depth of every step is at most n. Since e(c∗i τ) = ciσ and c∗i τ ∈ T̂in, a straightforward
induction argument shows the existence of a term ui such that c∗i τ →∗m ui and e(ui) = u,
for i = 1, 2. Clearly u1 ≈ u2. Hence c∗1τ ↓≈m c∗2τ . From the inside normalisation of s we
infer that l → r ⇐ c ∈ R1 and hence l∗ → r∗ ⇐ c∗ ∈ M. Define t′ = C ′[r∗τ]. We have
s→m t′. Clearly e(t′) = C[rσ] = t. �

Proposition 4.11. Let s ∈ T̂in. If e(s)→!
R t then there exists a term t′ ∈ T̂in such that

s→!
m t′ and e(t′) = t.

Proof. Repeated application of Proposition 4.10 yields a term t′ ∈ T̂in such that s→∗m
t′ and e(t′) = t. It remains to show that t′ is a normal form with respect to →m. This
follows from the assumption that t is a normal form, by means of Proposition 4.6(1). �

In the sequel we are mainly interested in capped terms whose aliens are semi-complete.
The set of all such terms is denoted by T̂sc. Clearly T̂in ⊆ T̂sc ⊆ T̂ . Note that T̂sc is
alien defined by the property of being semi-complete. Hence T̂sc is closed under marked
reduction. Closure under →u follows from Propositions 4.16 and 4.17 below.

Proposition 4.12. Unmarked reduction is semi-complete on T̂sc.

Proof. Obvious. �

So every term t ∈ T̂sc has a unique normal form in T̂in with respect to →u, which will
be denoted by ψ(t). Consider similar terms s, t ∈ T̂sc. In general ψ(s) and ψ(t) are not
similar. The next proposition states that they can be made similar by applying certain
‘balancing’ marked reduction steps.

Proposition 4.13. Let s, t ∈ T̂sc. If s ≈ t then there exist similar terms s′, t′ ∈ T̂sc such
that ψ(s)→∗m s′, ψ(t)→∗m t′, and ψ(s ∧ t) = s′ ∧ t′.

Proof. We may write s ∧ t = C∗[s1 ∧ t1, . . . , sn ∧ tn]∗, s = C[s1, . . . , sn], and t =
C[t1, . . . , tn]. We will define similar terms s′i and t′i such that ψ(si) →∗m s′i, ψ(ti) →∗m
t′i, and ψ(si ∧ ti) = s′i ∧ t′i, for every i ∈ {1, . . . , n}. Fix i. We have e(si) = ti or
si = e(ti). Assume without loss of generality the former. By definition si →!

u ψ(si).
Proposition 4.6 yields ti →∗u e(ψ(si)) and since ti is semi-complete we obtain e(ψ(si))→!

u

ψ(ti). According to Proposition 4.11 ψ(si) has a normal from s′i with respect to→m such
that e(s′i) = ψ(ti). Define t′i = ψ(ti). We clearly have ψ(si∧ti) = ψ(ti) = s′i∧ψ(ti) = s′i∧
t′i. Now that we have defined s′1, t

′
1 . . . , s

′
n, t
′
n, let s′ = C[s′1, . . . , s

′
n] and t′ = C[t′1, . . . , t

′
n].

Clearly s′ ≈ t′, ψ(s) = C[ψ(s1), . . . , ψ(sn)] →∗m s′, ψ(t) = C[ψ(t1), . . . , ψ(tn)] →∗m t′,
and ψ(s ∧ t) = C[ψ(s1 ∧ t1), . . . , ψ(sn ∧ tn)] = C[s′1 ∧ t′1, . . . , s′n ∧ t′n] = s′ ∧ t′. �

The above proposition easily generalises to the case of n > 2 pairwise similar terms.

Completeness of Combinations of Conditional Constructor Systems 11

Proposition 4.14. Let s1, . . . , sn ∈ T̂sc be pairwise similar terms. There exist pair-
wise similar terms t1, . . . , tn ∈ T̂sc such that ψ(si) →∗m ti for every i ∈ {1, . . . , n} and
ψ(∧{si | 1 6 i 6 n}) = ∧{ti | 1 6 i 6 n}.

Proof. Straightforward induction on n, using Proposition 4.13. �

Definition 4.15. We define a relation . on terms in T̂ as follows: s . t if for every alien
t′ ⊆ t there exists an alien s′ ⊆ s and a context C such that s′ →∗R C[t′] and t′ is an alien
in C[t′]. Since C[t′] doesn’t contain marked symbols, the latter condition simply means
that the context C doesn’t contain any defined symbols above its hole �. The relation .
is easily seen to be transitive. In words, s . t if every alien of t can be ‘traced back’ to
some alien in s.

Proposition 4.16. Let s ∈ T̂sc. If s . t then t ∈ T̂sc.

Proof. We have to show that every alien t′ in t is semi-complete. By definition there
exists an alien s′ in s and a context C such that s′ →∗R C[t′] and t′ ∈ aliens(C[t′]). From
the semi-completeness of s′ we infer the semi-completeness of C[t′]. This implies that all
aliens in C[t′] are semi-complete. �

Proposition 4.17. Let s ∈ T̂ . If s→m t or s→u t then s . t.

Proof. If s →m t then the result follows from Proposition 4.5. Suppose s →u t. Let
s = C∗[s1, . . . , sn]∗. We have t = C[s1, . . . , ti, . . . , sn] for some term ti with si →R ti. Let
a be an alien in t. Either a = sj for some j 6= i or a is an alien in ti. In the former case
a is an alien in s. In the latter case we have si →R ti = C ′[a] for some context C ′. �

Lemma 4.18. Let s ∈ T̂sc. If e(s) →R t then s →u t
′ or s →!

u · →+
m · ←!

u t
′ for some

term t′ ∈ T̂sc such that e(t′) = t. Moreover, we may assume that s . t′.

Proof. We use induction on the depth of e(s) →R t. The case of zero depth is trivial.
Suppose the depth of e(s)→R t equals n+1 (n > 0). By definition there exists a context
C, a rewrite rule l→ r ⇐ c ∈ R, and a substitution σ such that e(s) = C[lσ], t = C[rσ],
and, for every equation c1 = c2 in c, c1σ ↓R c2σ with depth at most n. We distinguish
two cases.

(1) If the ‘redex occurrence’ lσ is not marked in s then we may write s = C ′[lσ] for
some context C ′ with e(C ′) = C. In this case we clearly have s →u C ′[rσ] and
e(C ′[rσ]) = t. Moreover, s . C ′[rσ] by the preceding proposition.

(2) Suppose lσ is marked in s. Write l = C1[x1, . . . , xn] such that C1 is variable-free.
Without loss of generality we assume that D(σ) ⊆ {x1, . . . , xn}. We have s =
C ′[C∗1 [s1, . . . , sn]] for some context C ′ and terms s1, . . . , sn ∈ T̂sc such that e(C ′) =
C and e(si) = xiσ for i = 1, . . . , n. Let τ be the substitution induced by l∗ and s, and
define a substitution υ by υ(x) = ψ(xτ) for every x ∈ V. Note that υ is well-defined
since τ ∈ Σ(T̂sc). Let c1 = c2 be an equation in c. We will show that c∗1υ ↓≈m c∗2υ;
see Figure 3. We know the existence of a valley c1σ →∗R u ←∗R c2σ in which the
depth of every step is at most n. Since e(c∗i τ) = ciσ and c∗i τ ∈ T̂sc, a straightforward
induction argument shows the existence of a term ui such that ψ(c∗i τ) →∗m ψ(ui)

12 A. Middeldorp

c1σ

a1

u

a2

a3

c2σ

c∗1τ

a′1

u1 u2

a′2

a′3

c∗2τ

≈
ψ(c∗1τ)

ψ(a′1)

ψ(u1) ψ(u2)

ψ(a′2)

ψ(a′3)

ψ(c∗2τ)

u′1 u′2≈

=

=

u

u

u u

u

u

u

!

!

! !

!

!

!

m ∗ m∗

u

u

m

m

m

+

+

+

R

R R

R

R

1

1

1

1

1

2

3

3

4
1

2

3

4

induction hypothesis

e(u1) = e(u2)⇒ u1 ≈ u2

Proposition 4.12

Proposition 4.13

Figure 3.

and e(ui) = u, for i = 1, 2. Since u1 ≈ u2, Proposition 4.13 yields ψ(u1) ↓≈m ψ(u2).
Hence c∗1υ = ψ(c∗1τ) ↓≈m ψ(c∗2τ) = c∗2υ. We have ψ(s) = ψ(C ′)[C∗1 [ψ(s1), . . . , ψ(sn)]].
With help of Proposition 4.14 we can find terms t1, . . . , tn such that ψ(si) →∗m ti
for i ∈ {1, . . . , n} and ψ(∧{si | xi = x}) = ∧{ti | xi = x} for every x ∈ {x1, . . . , xn}.
Clearly ψ(s) →∗m ψ(C ′)[C∗1 [t1, . . . , tn]]. Note that ∧{ti | xi = x} = xυ for every
x ∈ {x1, . . . , xn}. Hence ψ(C ′)[C∗1 [t1, . . . , tn]] →m ψ(C ′)[r∗υ]. Define t′ = C ′[r∗τ].
Clearly t ∈ T̂sc and ψ(t′) = ψ(C ′)[ψ(r∗τ)] = ψ(C ′)[r∗υ]. Therefore ψ(s) →+

m ψ(t′),
i.e., s→!

u · →+
m · ←!

u t
′. One easily shows that e(t′) = t and s . t′.

�

Observe that the first alternative in Lemma 4.18 implies ψ(s) = ψ(t′) and that the
second alternative is equivalent to ψ(s)→+

m ψ(t′).

Corollary 4.19. Let s ∈ T̂sc. If e(s) →∗R t then there exists a term t′ ∈ T̂sc such that
e(t′) = t and ψ(s)→∗m ψ(t′).

In the proof of our main results we transform reduction sequences in the union (D, C,R)
of two composable CCSs (D1, C1,R1) and (D2, C2,R2) having a certain property P by
means of the previous results into R1-reduction sequences. In order to employ the fact
that (D1, C1,R1) satisfies P, we have to get rid of subterms that do not belong to
T (D1, C1,V). Actually, constructors in C2 − C1 do not bother us: if (D1, C1,R1) satis-
fies P then (D1, C,R1) also satisfies P, for all interesting properties P. So we only have
to get rid of maximal subterms with root symbol belonging to D2 −D1.

Completeness of Combinations of Conditional Constructor Systems 13

Definition 4.20.

(1) A set of pairs φ = {〈s1, x1〉, . . . , 〈sn, xn〉} is a garbage collector if x1, . . . , xn are
mutually distinct variables and s1, . . . , sn are mutually distinct unmarked terms
without occurrences of x1, . . . , xn such that root(si) ∈ D2 − D1 for i = 1, . . . , n.5

Let t = C[t1, . . . , tm] such that all maximal occurrences of unmarked subterms in t
with root symbol in D2−D1 are displayed. We say that φ is applicable to t, denoted
by φn t, if x1, . . . , xn do not occur in t and {t1, . . . , tm} ⊆ {s1, . . . , sn}. In this case
we may write t = C[si1 , . . . , sim] with all occurrences of s1, . . . , sn in t displayed and
we define φ(t) = C[xi1 , . . . , xim].

(2) Let φ = {〈s1, x1〉, . . . , 〈sn, xn〉} be a garbage collector. If t = C[xi1 , . . . , xim] such
that all occurrences of the variables x1, . . . , xn in t are displayed, then the term
C[si1 , . . . , sim] is denoted by φ−1(t).

Proposition 4.21. Every capped term t has an applicable garbage collector φ.

Proof. Let {t1, . . . , tn} be the set of all maximal subterms of t with root symbol in
D2 − D1. Choose fresh variables x1, . . . , xn and define φ = {〈t1, x1〉, . . . , 〈tn, xn〉}. By
construction φ is a garbage collector with φn t. �

Proposition 4.22. The relations →m, →R1 , and →R2 are closed under φ−1, for all
garbage collectors φ.

Proof. Since the mapping φ−1 can be considered as a substitution in Σ(T), the result
follows from the closure of→m,→R1 , and→R2 under such substitutions, which is easily
shown by an induction on the depth of steps s→m t, s→R1 t, and s→R2 t. �

Proposition 4.23. Let t be a capped term and suppose that φ is a garbage collector.

(1) If φn t then φ−1(φ(t)) = t.
(2) We have φn t if and only if φn e(t). Moreover, if φn t then e(φ(t)) = φ(e(t)).
(3) If t does not contain symbols in D2 −D1 then φn φ−1(t) and φ(φ−1(t)) = t.

Proof. Straightforward. �

Proposition 4.24. Let s and t be similar capped terms. If φn s then φn t and φ(s) ≈
φ(t).

Proof. We obtain φ n t by two applications of Proposition 4.23(2). The similarity of
φ(s) and φ(t) also follows from Proposition 4.23(2). �

Proposition 4.25. Let φ be a garbage collector that is applicable to a capped term s. If
s→m t then φn t and φ(s)→m φ(t).

Proof. Since every unmarked subterm of t with root symbol in D2−D1 occurs in some
alien in t, we obtain φnt from Proposition 4.5. We prove that φ(s)→m φ(t) by induction

5 The notion of garbage collector is simpler than the corresponding notion of D′-replacement in
(Middeldorp and Toyama, 1993).

14 A. Middeldorp

on the depth of s →m t. In case of zero depth we have nothing to prove. Suppose the
depth of s →m t equals n + 1 (n > 0). By definition there exists a context C, a rewrite
rule l = C1[x1, . . . , xn] → r ⇐ c in M with C1 variable-free, and terms s1, . . . , sn such
that s = C[C1[s1, . . . , sn]], si ≈ sj whenever xi = xj , t = C[rσ], and, for every equation
c1 = c2 in c, c1σ ↓≈m c2σ with depth at most n. Here σ is the substitution induced by l
and s. We have φ(s) = φ(C)[C1[φ(s1), . . . , φ(sn)]]. Let τ be the substitution induced by
l and φ(s). Proposition 4.24 yields xτ = φ(xσ), hence φ(t) = φ(C)[rτ]. Let c1 = c2 be an
equation in c. From c1σ ↓≈m c2σ we obtain c1τ = φ(c1σ) ↓≈m φ(c2σ) = c2τ by a routine
induction argument. Therefore φ(s)→m φ(t). �

5. Main Results

In this section we present our main results. We prove the decomposability of weak
normalisation, semi-completeness, and completeness, in that order. The proof of the
decomposability of completeness for CSs in (Middeldorp and Toyama, 1991) does not
depend on the decomposability of semi-completeness. This is possible since the decom-
posability of local confluence—which holds in the unconditional case—enables one to
circumvent a direct proof of confluence. However, local confluence is not a decomposable
property of CCSs. Hence we show the decomposability of semi-completeness before we
tackle completeness.

Proposition 5.1. Suppose (D1, C1,R1) and (D2, C2,R2) are composable CCSs and let
s ∈ T (Di, Ci,V) for some i ∈ {1, 2}. If s →R1∪R2 t then s →Ri t and thus t ∈
T (Di, Ci,V).

Proof. The proposition is easily proved by induction on the depth of the step s→R1∪R2

t, using the equality R1 | D2 = R2 | D1. �

Lemma 5.2. Weak normalisation is a decomposable property of CCSs.

Proof. Let (D, C,R) be the union of two weakly normalising and composable CCSs
(D1, C1,R1) and (D2, C2,R2). By induction on the structure of t we will show that ev-
ery term t ∈ T has a normal form with respect to R. The case t ∈ C ∪ V is trivial.
If t is a defined constant then t belongs to some Di and the result follows from the
weak normalisation of (Di, Ci,Ri) and Proposition 5.1. For the induction step, suppose
that t = f(t1, . . . , tn) with t1, . . . , tn weakly normalising. Let si be an R-normal form
of ti for i = 1, . . . , n. Clearly t →∗R f(s1, . . . , sn). If f ∈ C then f(s1, . . . , sn) is an
R-normal form of t. Suppose f ∈ D. Without loss of generality we may assume that
f ∈ D1. Let t′ = f∗(s1, . . . , sn). From Proposition 4.21 we obtain a garbage collector
φ which is applicable to t′. Note that e(φ(t′)) belongs to T (D1, C,V). Since (D1, C,R1)
inherits weak normalisation from (D1, C1,R1),6 there exists an R1-normal form n such
that e(φ(t′)) →!

R1
n. According to Proposition 5.1 n is also normal form with respect

to R2. Using Proposition 4.22, we easily infer φ(t′) ∈ T̂in from t′ ∈ T̂in. From Proposi-
tion 4.11 we obtain a term n′ ∈ T̂in with e(n′) = n and φ(t′) →!

m n′. Propositions 4.22
and 4.23(1) yield t′ →∗m φ−1(n′). The inside normalisation of φ−1(n′) follows from the

6 This follows e.g. from the more general Corollary 5.4 in (Middeldorp, 1993).

Completeness of Combinations of Conditional Constructor Systems 15

inside normalisation of t′ by means of Proposition 4.5. From Proposition 4.6(1) we ob-
tain f(s1, . . . , sn) = e(t′) →∗R1

e(φ−1(n′)). Clearly e(φ−1(n′)) = φ−1(n). We conclude
the proof by showing that φ−1(n) is an R-normal form. Suppose to the contrary that
φ−1(n) →R u for some term u. Since φ−1(n′) ∈ T̂in, we can apply Proposition 4.10,
which yields a term u′ ∈ T̂in such that e(u′) = u and φ−1(n′) →m u′. Since n′ does not
contain function symbols in D2 − D1, we obtain φ n φ−1(n′) and φ(φ−1(n′)) = n′ from
Proposition 4.23(3). Proposition 4.25 now yields n′ →m φ(u′), contradicting the fact that
n′ is a normal form with respect to →m. �

Theorem 5.3. Semi-completeness is a decomposable property of CCSs.

Proof. Let (D, C,R) be the union of semi-complete and composable CCSs (D1, C1,R1)
and (D2, C2,R2). From Lemma 5.2 we infer the weak normalisation of (D, C,R). By
induction on the structure of t we will show that every term t ∈ T is confluent. The case
t ∈ D ∪ C ∪ V is easy. Suppose t = f(t1, . . . , tn) such that t1, . . . , tn are confluent and
thus semi-complete. If f is a constructor then t is easily shown to be confluent. Suppose
f ∈ D. Without loss of generality we assume that f ∈ D1. Let t′ = f∗(t1, . . . , tn). Clearly
t′ ∈ T̂sc. Proposition 4.21 yields a garbage collector φ which is applicable to ψ(t′). After
these preliminary definitions, we consider diverging reductions u1 ←∗R t→∗R u2. Figure 4
shows how to obtain a common reduct of u1 and u2. Therefore t is confluent. �

t

u1 u2

e(φ(ψ(t′)))

e(φ(ψ(u′1))) e(φ(ψ(u′2)))

u3

φ−1(e(φ(ψ(u′1))))

φ−1(u3)

φ−1(e(φ(ψ(u′2))))= =e(ψ(u′1)) e(ψ(u′2))

e(u′1) e(u′2)= =

R ∗ R∗

R
∗

R
∗

R1
∗

R1
∗

R1
∗

R1
∗

R1

∗
R1

∗

1 1

6 6

5 5

4

2 2

1 1

3 3

3 3

1

2

3

4

5

6

Corollary 4.19 Proposition 4.6 Proposition 4.22

Proposition 4.25 confluence of (D1, C,R1)7 Proposition 4.23(1,2)

Figure 4.

7 (D1, C,R1) inherits confluence from (D1, C1,R1): Theorem 3.17 in (Middeldorp, 1993) states a more
general result.

16 A. Middeldorp

Theorem 5.4. Completeness is a decomposable property of CCSs.

Proof. Suppose (D1, C1,R1) and (D2, C2,R2) are complete and composable CCSs. From
Theorem 5.3 we obtain the semi-completeness of their union (D, C,R). Hence it remains
to show that (D, C,R) is strongly normalising. This will be established by induction on
the structure of terms t ∈ T . The base case is easy. Let t = f(t1, . . . , tn) such that
t1, . . . , tn are strongly normalising and thus complete. If f is a constructor then t is
clearly strongly normalising. So assume without loss of generality that f ∈ D1. If t is not
strongly normalising then there exists an infinite reduction sequence

t = s1 →R s2 →R s3 →R · · · .
Let t′ = s′1 = f∗(t1, . . . , tn). Clearly t′ ∈ T̂sc. Repeated application of Lemma 4.18
yields terms s′i ∈ T̂sc (i > 1) with e(s′i) = si and, for all i > 1, s′i . s

′
i+1, and either

s′i →u s
′
i+1 or ψ(s′i)→+

m ψ(s′i+1); see Figure 5. We now show that the second possibility

t s2 s3 s4 s5 · · ·

t′ s′2 s′3 s′4 s′5 · · ·

ψ(t′) ψ(s′2) ψ(s′4) ψ(s′5) ψ(s′6) · · ·

u u u u u! ! ! ! !

u u

m m m

+ + +

R R R R R

= =

Figure 5.

occurs infinitely often. Suppose to the contrary that there exists an index N such that
s′i →u s

′
i+1 for all i > N . By the pigeon-hole principle there exists an alien a in s′N with

an infinite R-reduction. Since t′.s′N there exists an alien a′ in t′ such that a′ →∗R C[a] for
some context C. Hence a′ is not strongly normalising. However, since a′ is an unmarked
subterm of t′ = f∗(t1, . . . , tn), it must be a subterm of one of the strongly normalising
terms t1, . . . , tn. This is impossible. From the semi-completeness of →u on T̂sc we infer
that ψ(s′i) = ψ(s′i+1) whenever s′i →u s

′
i+1. Hence we obtain a sequence

ψ(t′) = ψ(s′1)→∗m ψ(s′2)→∗m ψ(s′3)→∗m · · ·
containing infinitely many reduction steps. From Proposition 4.21 we obtain a garbage
collector φ which is applicable to ψ(t′). According to Proposition 4.25 the term φ(ψ(t′))
has an infinite reduction sequence

φ(ψ(t′)) = φ(ψ(s′1))→∗m φ(ψ(s′2))→∗m φ(ψ(s′3))→∗m · · · .
Employing Proposition 4.6, the erasure of all markers in the last sequence yields an
infinite R1-reduction sequence starting from the term e(φ(ψ(t′))) ∈ T (D1, C,V). Since
(D1, C,R1) inherits completeness from (D1, C1,R1),8 this is impossible. �

8 This follows e.g. from the more general Theorem 4.31 in (Middeldorp, 1993).

Completeness of Combinations of Conditional Constructor Systems 17

6. Conclusion

The results presented in this paper should be extended to CCSs with extra variables
in the conditions of the rewrite rules. This will not be an easy matter. First of all, the
results on marked reduction in Section 4 do not extend to such CCSs (after an obvious
adjustment of the substitution σ in Definition 4.4). However, all counterexamples (against
Proposition 4.10 and Lemma 4.18) that we could think of involved a non-confluent CCS.
Another problem is that Proposition 5.1 and Lemma 5.2 do not allow this relaxation
in the distribution of variables. Consider for instance the following disjoint CCSs from
Middeldorp (1990, 1993):

R1 =
{
f(x, x) → d
f(x, y) → f(x, y) ⇐ x = z, z = y

}
,

and

R2 =
{
a → b
a → c

}
.

One easily shows that R1 is confluent. From this we obtain the weak normalisation
of R1 by a routine argument. Clearly R2 is weakly normalising. However, R1 ∪ R2 is
not weakly normalising since the term f(b, c) reduces only to itself. Observe that R2

lacks confluence. We strongly believe that both semi-completeness and completeness are
decomposable properties of CCSs with extra variables in the conditions.

Using different proof techniques, Krishna Rao (1993) recently extended the complete-
ness part of (Middeldorp and Toyama, 1993)—the decomposability of completeness for
CSs, that is—to hierarchical systems. Hierarchical systems are CSs that can be parti-
tioned into two CSs such that one of the systems may use a defined symbol of the other
system in the right-hand sides of its rewrite rules without importing the rules defining
that symbol, see Krishna Rao (1993) for a precise formulation. The typical example is
the extension of

R1 =
{

0 + x → x
S(x) + y → S(x+ y)

}

with

R2 =
{

0× x → 0
S(x)× y → x× y + y

}
.

Observe that R1 and R2 are not composable as R1 | {+} 6= R2 | {+}. It goes without
saying that it should be investigated whether Krishna Rao’s result can be carried over
to CCSs.

A CTRS R is called level-confluent if every Rn is confluent. Level-confluence (Gio-
vannetti and Moiso, 1986) is a key property for ensuring completeness of languages that
amalgamate the logic and functional programming paradigms and whose operational se-
mantics is conditional narrowing, see e.g. (Giovannetti and Moiso, 1986) and (Middeldorp
and Hamoen, 1992). At present very few techniques are available for establishing level-
confluence. It would be interesting to investigate whether our results can be extended
to level-complete (i.e. level-confluent and strongly normalising) and level-semi-complete
CCSs. The confluence part of our proof of the decomposability of semi-completeness
(see Figure 4) doesn’t yield level-confluence, since the depth of the reduction sequence
from e(u′i) to e(ψ(u′i)) may very well exceed the depth of the peak u1 ←∗R t →∗R u2. A

18 A. Middeldorp

possible approach is to reduce u′i only to its Rn-normal form, where n is the depth of
u1 ←∗R t→∗R u2, but so far we haven’t been able to put this idea into a proof.

Acknowledgements. The presentation of the paper benefited from the comments of Vin-
cent van Oostrom. The author thanks Enno Ohlebusch and an anonymous referee for
suggesting improvements.

References
1. Caron, A.C. (1992). Decidability of Reachability and Disjoint Union of Term Rewriting Systems.

In: “Proceedings of the Colloquium on Trees in Algebra and Programming, Rennes”, Lecture Notes
in Computer Science 581, pp. 86–101, Springer Verlag.

2. Dershowitz, N., Jouannaud, J.-P. (1990). Rewrite Systems. In: “Handbook of Theoretical Computer
Science, Vol. B” (ed. J. van Leeuwen), pp. 243–320, North-Holland.

3. Giovannetti, E., Moiso, C. (1986). Completeness Result for E-Unification Algorithms based on
Conditional Narrowing. In: “Proceedings of the Workshop on Foundations of Logic and Functional
Programming, Trento”, Lecture Notes in Computer Science 306, pp. 157–167, Springer Verlag.

4. Gramlich, B. (1992a). Generalized Sufficient Conditions for Modular Termination of Rewriting.
In: “Proceedings of the 3rd International Conference on Algebraic and Logic Programming, Pisa”,
Lecture Notes in Computer Science 632, pp. 53–68, Springer Verlag.

5. Gramlich, B. (1992b). Relating Innermost, Weak, Uniform and Modular Termination of Term
Rewriting Systems. In: “Proceedings of the Conference on Logic Programming and Automated
Reasoning, St. Petersburg”, Lecture Notes in Artificial Intelligence 624, pp. 285–296, Springer
Verlag.

6. Gramlich, B. (1993). Sufficient Conditions for Modular Termination of Conditional Term Rewrit-
ing Systems. In: “Proceedings of the 3rd International Workshop on Conditional Term Rewriting
Systems, Pont-à-Mousson”, Lecture Notes in Computer Science 656, pp. 128–142, Springer Verlag.

7. Kaplan, S. (1984). Conditional Rewrite Rules. Theoretical Computer Science 33(2), pp. 175–193.
8. Klop, J.W., (1992). Term Rewriting Systems. In: “Handbook of Logic in Computer Science, Vol.

II” (eds. S. Abramsky, D. Gabbay, T. Maibaum), pp. 1–116, Oxford University Press.
9. Klop, J.W., Middeldorp, A., Toyama, Y., Vrijer, R. de (1994). Modularity of Confluence: A Sim-

plified Proof. Information Processing Letters. To appear.
10. Krishna Rao, M.R.K. (1993). Completeness of Hierarchical Combinations of Term Rewriting Sys-

tems. In: “Proceedings of the Thirteenth Conference on Foundations of Software Technology and
Theoretical Computer Science, Bombay”, Lecture Notes in Computer Science, Springer Verlag.

11. Kurihara, M., Ohuchi, A. (1990). Modularity of Simple Termination of Term Rewriting Systems.
Journal of IPS Japan 31(5), pp. 633–642.

12. Kurihara, M., Ohuchi, A. (1992). Modularity of Simple Termination of Term Rewriting Systems
with Shared Constructors. Theoretical Computer Science 103, pp. 273–282.

13. Middeldorp, A. (1989). A Sufficient Condition for the Termination of the Direct Sum of Term
Rewriting Systems. In: “Proceedings of the 4th IEEE Symposium on Logic in Computer Science,
Pacific Grove”, pp. 396–401.

14. Middeldorp, A. (1990). Modular Properties of Term Rewriting Systems. Ph.D. thesis, Vrije Uni-
versiteit, Amsterdam.

15. Middeldorp, A. (1993). Modular Properties of Conditional Term Rewriting Systems. Information
and Computation 104(1), pp. 110-158.

16. Middeldorp, A., Hamoen, E. (1992). Counterexamples to Completeness Results for Basic Narrowing
(Extended Abstract). In: “Proceedings of the 3rd International Conference on Algebraic and Logic
Programming, Pisa”, Lecture Notes in Computer Science 632, pp. 244–258, Springer Verlag.

17. Middeldorp, A., Toyama, Y. (1993). Completeness of Combinations of Constructor Systems. Jour-
nal of Symbolic Computation 15, pp. 331–348. 1993.

18. Newman, M.H.A. (1942). On Theories with a Combinatorial Definition of Equivalence. Annals of
Mathematics 43(2), pp. 223–243.

19. Ohlebusch, E. (1993a). Combinations of Simplifying Conditional Term Rewriting Systems. In:
“Proceedings of the 3rd International Workshop on Conditional Term Rewriting Systems, Pont-à-
Mousson”, Lecture Notes in Computer Science 656, pp. 113–127, Springer Verlag.

20. Ohlebusch, E. (1993b). On the Modularity of Termination of Term Rewriting Systems. Report nr.
11, Universität Bielefeld.

21. Rusinowitch, M. (1987). On Termination of the Direct Sum of Term Rewriting Systems. Information
Processing Letters 26, pp. 65–70.

22. Toyama, Y. (1987a). On the Church-Rosser Property for the Direct Sum of Term Rewriting Sys-
tems. Journal of the ACM 34(1), pp. 128–143.

Completeness of Combinations of Conditional Constructor Systems 19

23. Toyama, Y. (1987b). Counterexamples to Termination for the Direct Sum of Term Rewriting Sys-
tems. Information Processing Letters 25, pp. 141–143.

24. Toyama, Y., Klop, J.W., Barendregt, H.P. (1989). Termination for the Direct Sum of Left-Linear
Term Rewriting Systems. In: “Proceedings of the 3rd International Conference on Rewriting Tech-
niques and Applications, Chapel Hill”, Lecture Notes in Computer Science 355, pp. 477–491,
Springer Verlag.

