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Abstract

Narrowing is an important method for solving unification problems in
equational theories that are presented by confluent term rewriting systems.
Because narrowing is a rather complicated operation, several authors stud-
ied calculi in which narrowing is replaced by more simple inference rules.
This paper is concerned with one such calculus. Contrary to what has
been stated in the literature, we show that the calculus lacks strong com-
pleteness, so selection functions to cut down the search space are not
applicable. We prove completeness of the calculus and we establish an in-
teresting connection between its strong completeness and the completeness
of basic narrowing. We also address the eager variable elimination prob-
lem. It is known that many redundant derivations can be avoided if the
variable elimination rule, one of the inference rules of our calculus, is given
precedence over the other inference rules. We prove the completeness of
a restricted variant of eager variable elimination in the case of orthogonal
term rewriting systems.

1 Introduction

E-unification—solving equations modulo some equational theory E—is a fun-
damental technique in automated reasoning. Narrowing ([21, 4, 11]) is a general
E-unification procedure for equational theories that are presented by confluent
term rewriting systems. Narrowing is the computational mechanism of many
functional-logic programming languages (see Hanus [7] for a recent survey on
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the integration of functional and logic programming). It is well-known that nar-
rowing is complete with respect to normalizable solutions. Completeness means
that for every solution to a given equation, a more general solution can be found
by narrowing. If we extend narrowing to goals consisting of several equations,
we obtain strong completeness. This means that we don’t lose completeness
when we restrict applications of the narrowing rule to a single equation in each
goal.

Since narrowing is not easily implemented, several authors studied calculi
consisting of a small number of more elementary inference rules that simulate
narrowing (e.g. [16, 8, 9, 14, 22, 6]). In this paper we are concerned with a subset
(actually the specialization to confluent TRSs) of the calculus trans proposed
by Hölldobler [9]. We call this calculus lazy narrowing calculus (lnc for short).
Because the purpose of lnc is to simulate narrowing by more elementary infer-
ence rules, it is natural to expect that lnc inherits strong completeness from
narrowing, and indeed this is stated by Hölldobler (Corollary 7.3.9 in [9]). We
show however that lnc lacks strong completeness.

An important improvement over narrowing is basic narrowing (Hullot [11]).
In basic narrowing narrowing steps are never applied to (sub)terms introduced
by previous narrowing substitutions, resulting in a significant reduction of the
search space. In this paper we establish a surprising connection between lnc
and basic narrowing: we show that lnc is strongly complete whenever basic
narrowing is complete. The latter is known for complete (i.e., confluent and
terminating) TRSs (Hullot [11]). Other sufficient conditions are right-linearity
and orthogonality (Middeldorp and Hamoen [17]). So lnc is strongly complete
for these three classes of TRSs. We prove completeness of lnc for the general
case of confluent TRSs. In the literature completeness of lnc-like calculi is
proved under the additional termination assumption. Without this assumption
the completeness proof is significantly more involved.

It is known that lnc-like calculi generate many derivations which produce
the same solutions (up to subsumption). Martelli et al. [16, 14] and Hölldobler
[9], among others, pointed out that many of these redundant derivations can
be avoided by giving the variable elimination rule, one of the inference rules of
lnc-like calculi, precedence over the other inference rules. The problem whether
this strategy is complete or not is called the eager variable elimination problem
in [9, 22]. Martelli et al. stated in [14] that this is easily shown in the case
of terminating (and confluent) TRSs, but Snyder questions the validity of this
claim in his monograph [22] on E-unification. We address the eager variable
elimination problem for non-terminating TRSs. We prove completeness of a
slightly restricted version of eager variable elimination in the case of orthogonal
TRSs. To this end we simplify and extend the main result of You [23] concerning
the completeness of outer narrowing for orthogonal constructor-based TRSs.

The remainder of the paper is organized as follows. In a preliminary section
we introduce narrowing and basic narrowing, and we state the relevant com-
pleteness results. The narrowing calculus that we are interested in—lnc—is
defined in Section 3. In that section we also show that lnc is not strongly com-
plete. In Section 4 we establish the connection between the strong completeness
of lnc and the completeness of basic narrowing. We prove the completeness of
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lnc for general confluent systems in Section 5. Section 6 is concerned with the
eager variable elimination problem. In the final section we give suggestions for
further research. The appendix contains proofs of a few technical results.

2 Preliminaries

In this preliminary section we review the basic notions of term rewriting and
narrowing. We refer to Dershowitz and Jouannaud [2] and Klop [12] for exten-
sive surveys.

A signature is a set F of function symbols. Associated with every f ∈ F
is a natural number denoting its arity. Function symbols of arity 0 are called
constants. The set T (F ,V) of terms built from a signature F and a countably
infinite set of variables V with F ∩ V = ∅ is the smallest set containing V
such that f(t1, . . . , tn) ∈ T (F ,V) whenever f ∈ F has arity n and t1, . . . , tn ∈
T (F ,V). We write c instead of c() whenever c is a constant. The set of variables
occurring in a term t is denoted by Var(t).

A position is a sequence of natural numbers identifying a subterm in a
term. The set Pos(t) of positions in a term t is inductively defined as follows:
Pos(t) = {ε} if t is a variable and Pos(t) = {ε} ∪ {i·p | 1 6 i 6 n and p ∈
Pos(ti)} if t = f(t1, . . . , tn). Here ε, the root position, denotes the empty
sequence. If p ∈ Pos(t) then t|p denotes the subterm of t at position p and t[s]p
denotes the term that is obtained from t by replacing the subterm at position
p by the term s. Formally, t|p = t and t[s]p = s if p = ε and t|p = ti|q and
t[s]p = f(t1, . . . , ti[s]q, . . . , tn) if p = i·q and t = f(t1, . . . , tn). The set Pos(t) is
partitioned into PosV(t) and PosF (t) as follows: PosV(t) = {p ∈ Pos(t) | t|p ∈
V} and PosF (t) = Pos(t)\PosV(t). Elements of PosV(t) are called variable
positions. Positions are partially ordered by the prefix order 6, i.e., p 6 q if
there exists a (necessarily unique) r such that p·r = q. In that case we define
q\p as the position r. We write p < q if p 6 q and p 6= q. If neither p 6 q
nor q 6 p, we write p ⊥ q. The size |t| of a term t is the cardinality of the set
Pos(t).

A substitution is a map θ from V to T (F ,V) with the property that the set
{x ∈ V | θ(x) 6= x} is finite. This set is called the domain of θ and denoted by
D(θ). We frequently identify a substitution θ with the set {x 7→ θ(x) | x ∈ D(θ)}
of variable bindings. The empty substitution will be denoted by ε. So ε = ∅ by
abuse of notation. Substitutions are extended to homomorphisms from T (F ,V)
to T (F ,V), i.e., θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)) for every n-ary function
symbol f ∈ F and terms t1, . . . , tn ∈ T (F ,V). In the following we write tθ
instead of θ(t). We denote the set

⋃
x∈D(θ) Var(xθ) of variables introduced by

θ by I(θ). The composition θ1θ2 of two substitutions θ1 and θ2 is defined by
x(θ1θ2) = (xθ1)θ2 for all x ∈ V. A substitution θ1 is at least as general as
a substitution θ2, denoted by θ1 6 θ2, if there exists a substitution θ such
that θ1θ = θ2. The relation 6 is called subsumption. The restriction θ�V of a
substitution θ to a set V (⊆ V) of variables is defined as follows: θ�V (x) = θ(x)
if x ∈ V and θ�V (x) = x if x /∈ V. A variable substitution maps variables
to variables. A variable renaming is a bijective variable substitution. It is
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well-known that the combination of θ1 6 θ2 and θ2 6 θ1 is equivalent to the
existence of a variable renaming δ such that θ1δ = θ2. We write θ1 = θ2 [V ] if
θ1�V = θ2�V . We write θ1 6 θ2 [V ] if there exists a substitution θ such that
θ1θ = θ2 [V ]. A substitution θ is called idempotent if θθ = θ. It is easy to show
that a substitution θ is idempotent if and only if D(θ) ∩ I(θ) = ∅. Terms s
and t are unifiable if there exists a substitution θ, a so-called unifier of s and
t, such that sθ = tθ. A most general unifier θ has the property that θ 6 θ′ for
every other unifier θ′ of s and t. Most general unifiers are unique up to variable
renaming. Given two unifiable terms s and t, the unification algorithms of
Robinson [20] and Martelli and Montanari [15] produce an idempotent most
general unifier θ that satisfies D(θ) ∪ I(θ) ⊆ Var(s) ∪ Var(t).

A rewrite rule is a directed equation l→ r that satisfies l /∈ V and Var(r) ⊆
Var(l). A term rewriting system (TRS for short) is a set of rewrite rules. The
rewrite relation →R associated with a TRS R is defined as follows: s →R t
if there exists a rewrite rule l → r ∈ R, a substitution θ, and a position
p ∈ Pos(s) such that s|p = lθ and t = s[rθ]p. The subterm lθ of s is called a
redex and we say that s rewrites to t by contracting redex lθ. Occasionally we
write s→θ, p, l→r t or s→p, l→r t. The transitive and reflexive closure of →R is
denoted by →∗R. If s →∗R t we say that s rewrites to t. The transitive closure
of →R is denoted by →+

R. The equational theory induced by R is denoted by
↔∗R. We usually omit the subscript R. A term without redexes is called a
normal form. We say that a term t has a normal form if there exists a rewrite
sequence starting from t that ends in a normal form. A substitution θ is called
normalized (normalizable) if xθ is (has) a normal form for every x ∈ D(θ). The
routine proofs of the following lemmata are omitted.

Lemma 1 Let θ, θ1, θ2 be substitutions and V , V ′ sets of variables such that
(V ′\D(θ)) ∪ I(θ�V ′) ⊆ V . If θ1 6 θ2 [V ] then θθ1 6 θθ2 [V ′]. �

Lemma 2 Let θ1, θ2 be substitutions and V , V ′ sets of variables such that
V ′ ⊆ (V \D(θ1))∪I(θ1�V ). If θ1θ2�V is normalized then θ2�V ′ is normalized. �

A TRS is terminating if it doesn’t admit infinite rewrite sequences. A TRS
is confluent if for all terms t1, t2, t3 with t1 →∗ t2 and t1 →∗ t3 there exists a
term t4 such that t2 →∗ t4 and t3 →∗ t4. Such a term t4 is called a common
reduct of t2 and t3. Confluence is equivalent to the property that t1 and t2
have a common reduct whenever t1 ↔∗ t2. If l → r is a rewrite rule and θ a
variable renaming then the rewrite rule lθ → rθ is called a variant of l→ r. A
rewrite rule l → r is left-linear (right-linear) if l (r) does not contain multiple
occurrences of the same variable. A left-linear (right-linear) TRS only contains
left-linear (right-linear) rewrite rules. Let l1 → r1 and l2 → r2 be variants of
rewrite rules of a TRS R such that they have no variables in common. Suppose
l1|p, for some p ∈ PosF (l1), and l2 are unifiable with most general unifier θ. The
pair of terms (l1[r2]pθ, r1θ) is called a critical pair of R, except in the case that
l1 → r1 and l2 → r2 are renamed versions of the same rewrite rule and p = ε.
A TRS without critical pairs is called non-ambiguous. An orthogonal TRS is
left-linear and non-ambiguous. For orthogonal TRSs a considerable amount of

4



theory has been developed, see Klop [12] for a comprehensive survey. The most
prominent fact is that orthogonal TRSs are confluent. In Section 6 we make
use of the work of Huet and Lévy [10] on standardization.

We distinguish a nullary function symbol true and a binary function symbol
≈, written in infix notation. A term of the form s ≈ t, where neither s nor t
contains any occurrences of ≈ and true, is called an equation. The term true
is also considered as an equation. The extension of a TRS R with the rewrite
rule x ≈ x → true is denoted by R+. Let e = s ≈ t be an equation and θ
a substitution. We say that θ is an (R-)solution of e and we write R ` eθ
if sθ ↔∗R tθ. So θ is a solution of e if eθ belongs to the equational theory
generated by R. If R is confluent, R ` eθ is equivalent to the existence of a
rewrite sequence eθ →∗R+

true. We find it convenient to call a solution θ of e
normalized if the substitution θ�Var(e) is normalized. Narrowing is formulated
as the following inference rule:

e

e[r]pθ

if there exist a fresh1variant l → r of a rewrite rule
in R+, a position p ∈ PosF (e), and a most general
unifier θ of e|p and l.

In the above situation we write e θ, p, l→r e[r]pθ. This is called an nc-step (nc
stands for narrowing calculus). Subscripts will be omitted when they are clear
from the context or irrelevant. A (finite) nc-derivation is a sequence

e1  θ1, p1, l1→r1 · · ·  θn−1, pn−1, ln−1→rn−1 en

of nc-steps and abbreviated to e1  ∗θ en where θ = θ1 · · · θn−1. An nc-
derivation which ends in true is called an nc-refutation. The following com-
pleteness result is due to Hullot [11].

Theorem 3 Let R be a confluent TRS and e an equation. For every nor-
malized2 solution θ of e there exists an nc-refutation e  ∗θ′ true such that
θ′ 6 θ [Var(e)]. �

The narrowing calculus that we are interested in (lnc—to be defined in
the next section) operates on sequences of equations, the so-called goals. A
substitution θ is a solution of a goal G = e1, . . . , en, denoted by R ` Gθ,
if R ` eiθ for all i ∈ {1, . . . , n}. We use > as a generic notation for goals
containing only equations true. So for confluent TRSs R, R ` Gθ if and only
if Gθ →∗R+

>. The calculus nc is extended to goals as follows:

G′, e,G′′

(G′, e[r]p, G′′)θ

if there exist a fresh variant l → r of a rewrite
rule in R+, a position p ∈ PosF (e), and a most
general unifier θ of e|p and l.

1This means that l → r has no variables in common with the preceding part of the
computation.

2Often completeness is stated with respect to normalizable solutions: if R ` eθ and θ�Var(e)

is normalizable then there exists an nc-refutation e  ∗θ′ true such that θ′ 6R θ [Var(e)].
Notwithstanding the fact that completeness with respect to normalized solutions implies com-
pleteness with respect to normalizable solutions but not vice-versa, to all intents and purposes
normalization and normalizability are interchangeable.
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Notions like nc-step, nc-derivation, and nc-refutation are defined as in the
single equation case. We use the symbol Π (and its derivatives) to denote
nc-derivations over goals. For an nc-derivation Π:G  ∗θ G′, Πθ denotes the
corresponding rewrite sequence Gθ →∗ G′.

There are three sources of non-determinism in nc: the choice of the equation
e, the choice of the subterm e|p, and the choice of the rewrite rule l → r. The
last two choices are don’t know non-deterministic, meaning that in general all
possible choices have to be considered in order to guarantee completeness. The
choice of the equation e is don’t care non-deterministic, because of the strong
completeness of nc. Strong completeness means completeness independent of
selection functions. A selection function is mapping that assigns to every goal
G different from > an equation e ∈ G different from true. An example of a
selection function is Sleft which always returns the leftmost equation different
from true. We say that an nc-derivation Π respects a selection function S if
the selected equation in every step G1  G2 of Π coincides with S(G1). Now
strong completeness of nc is formulated as follows.

Theorem 4 Let R be a confluent TRS, S a selection function, and G a goal.
For every normalized solution θ of G there exists an nc-refutation G  ∗θ′ >
respecting S such that θ′ 6 θ [Var(G)]. �

In this paper we make frequent use of the following lifting lemma for nc.

Lemma 5 Let G be a goal and θ a normalized substitution. For every rewrite
sequence Gθ →∗ G′ there exists an nc-derivation Π:G  ∗θ′ G′′ such that θ′ 6
θ [V ] and Πθ′ subsumes Gθ →∗ G′. Here V is any finite set of variables such
that Var(G) ∪ D(θ) ⊆ V . �

The statement “Πθ′ subsumes Gθ →∗ G′” entails that the constructed nc-
derivation Π and the given rewrite sequence Gθ →∗ G′ employ the same rewrite
rules at the same positions in the corresponding goals.

In the last part of this preliminary section we introduce basic narrowing.
Hullot [11] defined basic narrowing for the single equation case. The extension
to goals presented below follows Middeldorp and Hamoen [17].

Definition 6 A position constraint for a goal G is a mapping that assigns to
every equation e ∈ G a subset of PosF (e). The position constraint that assigns
to every e ∈ G the set PosF (e) is denoted by Ḡ.

Definition 7 An nc-derivation

G1  θ1, e1, p1, l1→r1 · · ·  θn−1, en−1, pn−1, ln−1→rn−1 Gn

is based on a position constraint B1 for G1 if pi ∈ Bi(ei) for 1 6 i 6 n−1. Here
the position constraints B2, . . . , Bn−1 for the goals G2, . . . , Gn−1 are inductively
defined by

Bi+1(e) =
{
Bi(e′) if e′ ∈ Gi\{ei}
B(Bi(ei), pi, ri) if e′ = ei[ri]pi
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for all 1 6 i < n− 1 and e = e′θi ∈ Gi+1, with B(Bi(ei), pi, ri) abbreviating the
set of positions

Bi(ei)\{q ∈ Bi(ei) | q > pi} ∪ {pi·q ∈ PosF (e) | q ∈ PosF (ri)}.
An nc-derivation issued from a goal G is called basic if it is based on Ḡ.

So in a basic derivation narrowing is never applied to a subterm introduced
by a previous narrowing substitution. The following statement summarizes the
known completeness results for basic narrowing. Part (1) is due to Hullot [11].
Parts (2) and (3) are due to Middeldorp and Hamoen [17].

Theorem 8 Let R be a confluent TRS and G a goal. For every normalized
solution θ of G there exists a basic nc-refutation G  ∗θ′ > such that θ′ 6
θ [Var(G)], provided one of the following conditions is satisfied:
(1) R is terminating,
(2) R is orthogonal and Gθ has an R-normal form, or
(3) R is right-linear.
�

3 Lazy Narrowing Calculus

Calculi in which the narrowing inference rule is replaced by a small number of
more primitive operations are comprehensively examined by Hölldobler in his
thesis [9] and Snyder in his monograph [22]. The calculus that we investigate in
this paper is the specialization of Hölldobler’s calculus trans, which is defined
for general equational systems and based on paramodulation, to (confluent)
TRSs and narrowing.

Definition 9 Let R be a TRS. The lazy narrowing calculus, lnc for short,
consists of the following five inference rules:
[o] outermost narrowing

G′, f(s1, . . . , sn) ' t, G′′
G′, s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, G′′

if there exists a fresh variant f(l1, . . . , ln)→ r of a rewrite rule in R,
[i] imitation

G′, f(s1, . . . , sn) ' x,G′′
(G′, s1 ≈ x1, . . . , sn ≈ xn, G′′)θ

if θ = {x 7→ f(x1, . . . , xn)} with x1, . . . , xn fresh variables,
[d] decomposition

G′, f(s1, . . . , sn) ≈ f(t1, . . . , tn), G′′

G′, s1 ≈ t1, . . . , sn ≈ tn, G′′ ,

[v] variable elimination

G′, s ' x,G′′
(G′, G′′)θ

if x /∈ Var(s) and θ = {x 7→ s},
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[t] removal of trivial equations

G′, x ≈ x,G′′
G′, G′′

.

In the rules [o], [i], and [v], s ' t stands for s ≈ t or t ≈ s.
The variable elimination rule [v] is different from the one of Martelli et al.

[16, 14] in that we don’t keep the solved equation x ' t around. The rules
[d], [v], and [t] constitute the syntactic unification algorithm of Martelli and
Montanari [15]. Because syntactic unification is performed by [d], [v], and [t],
the rewrite rule x ≈ x→ true is no longer used in lnc. As a consequence, we
assume that the symbol true doesn’t occur in lnc-goals.

Contrary to usual narrowing, the outermost narrowing rule [o] generates
new parameter-passing equations s1 ≈ l1, . . . , sn ≈ ln besides the body equation
r ≈ t. These parameter-passing equations must eventually be solved in order
to obtain a refutation, but we don’t require that they are solved right away.
That is the reason why we call the calculus lazy. We introduce some useful
notations relating to the calculus lnc. If G and G1 are the upper and lower
goal in the inference rule [α] (α ∈ {o, i, d, v, t}), we write G ⇒[α] G1. This is
called an lnc-step. The applied rewrite rule or substitution may be supplied
as subscript, that is, we will write things like G ⇒[o], l→r G1 and G ⇒[i], θ G1.
lnc-derivations are defined as in the case of nc. To distinguish lnc-derivations
from nc-derivations, we use the symbol Ψ (and its derivatives) for the former.
An lnc-refutation is an lnc-derivation ending in the empty goal �.

Because the purpose of lnc is to simulate narrowing, it is natural to expect
that lnc inherits strong completeness from nc. Indeed, Hölldobler [9, Corollary
7.3.9] states the strong completeness of lnc for confluent TRSs with respect to
normalizable solutions. However, this does not hold.

Counterexample 10 Consider the TRS

R =





f(x) → g(h(x), x)
g(x, x) → a

b → h(b)

and the goal G = f(b) ≈ a. Confluence of R can be proved by a routine
induction argument on the structure of terms and some case analysis. The
(normalized) empty substitution ε is a solution of G because

f(b) ≈ a →R g(h(b), b) ≈ a →R g(h(b), h(b)) ≈ a
→R a ≈ a →R+ true.

Consider the selection function Sright that selects the rightmost equation in
every goal. There is essentially only one lnc-derivation issued fromG respecting
Sright:

f(b) ≈ a ⇒[o], f(x)→g(h(x),x) b ≈ x, g(h(x), x) ≈ a
⇒[o], g(x1,x1)→a b ≈ x, h(x) ≈ x1, x ≈ x1, a ≈ a
⇒[d] b ≈ x, h(x) ≈ x1, x ≈ x1

⇒[v], {x1 7→x} b ≈ x, h(x) ≈ x
⇒[i], {x7→h(x2)} b ≈ h(x2), h(x2) ≈ x2

⇒[i], {x2 7→h(x3)} · · ·
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This is clearly not a refutation. (The alternative binding {x 7→ x1} in the⇒[v]-
step results in a variable renaming of the above lnc-derivation.) Hence lnc is
not strongly complete.

This counterexample doesn’t refute the completeness of lnc. The goal
f(b) ≈ a can be solved, for instance, by adopting the selection function Sleft:

f(b) ≈ a ⇒[o], f(x)→g(h(x),x) b ≈ x, g(h(x), x) ≈ a
⇒[v], {x 7→b} g(h(b), b) ≈ a
⇒[o], g(x1,x1)→a h(b) ≈ x1, b ≈ x1, a ≈ a
⇒[v], {x1 7→h(b)} b ≈ h(b), a ≈ a
⇒[o], b→h(b) h(b) ≈ h(b), a ≈ a
⇒[d] b ≈ b, a ≈ a
⇒[d] a ≈ a
⇒[d] �.

In Section 5 we show that lnc is complete in the general case of confluent TRSs
and normalized solutions. In the next section we present sufficient conditions
for the strong completeness of lnc, which turns out to be simpler than proving
completeness.

4 Restoring Strong Completeness

Observe that the TRS R of Counterexample 10 satisfies none of the sufficient
conditions for the completeness of basic narrowing stated in Theorem 8. As
a matter of fact, basic narrowing is not able to solve the goal f(b) ≈ a, see
Middeldorp and Hamoen [17]. This suggests a surprising connection between
strong completeness of lnc and completeness of basic nc. In this section we
prove that lnc is strongly complete whenever basic nc is complete.

The basis of our proof is the specialization of the transformation process
used by Hölldobler in his proof of the (strong) completeness of trans. First we
formalize the intuitively clear propagation of equations along nc-derivations.

Definition 11 Let G θ, p, l→r G1 be an nc-step and e an equation in G. If e
is the selected equation in this step, then e is narrowed into the equation e[r]pθ
in G1. In this case we say that e[r]pθ is the descendant of e in G1. Otherwise,
e is simply instantiated to the equation eθ in G1 and we call eθ the descendant
of e. The notion of descendant extends to nc-derivations in the obvious way.

Observe that in an nc-refutation G ∗ > every equation e ∈ G has exactly
one descendant true in >. We now introduce six transformation steps on nc-
refutations. The first one states that non-empty nc-refutations are closed under
renaming.

Lemma 12 Let δ be a variable renaming. For every nc-refutation Π:G +
θ >

there exists an nc-refutation φδ(Π):Gδ  +
δ−1θ
>.
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Proof. Let G  τ1, e, p, l→r G1 be the first step of Π and let Π1:G1  ∗τ2 > be
the remainder of Π. We have τ1τ2 = θ. We show the existence of an nc-step
Gδ  δ−1τ1, eδ, p, lδ→rδ G1. First we show that δ−1τ1 is a most general unifier of
eδ|p and lδ. We have eδ|pδ−1τ1 = e|pτ1 = lτ1 = lδδ−1τ1, so δ−1τ1 is a unifier of
eδ|p and lδ. Let σ be an arbitrary unifier of eδ|p and lδ. Because δσ is a unifier
of e|p and l, and τ1 is a most general unifier of these two terms, it follows that
τ1 6 δσ and thus δ−1τ1 6 σ. We conclude that δ−1τ1 is a most general unifier
of eδ|p and lδ. Write G as G′, e, G′′. We obtain Gδ  (G′δ, eδ[rδ]p, G′′δ)δ−1τ1 =
(G′, e[r]p, G′′)τ1 = G1. Concatenating this nc-step with the nc-refutation Π1

yields the desired nc-refutation φδ(Π):Gδ  +
δ−1θ
>. �

Observe that Lemma 12 doesn’t hold for the empty nc-refutation Π:> ∗ε >
because δ−1ε is only equal to ε if δ = ε. In the following five lemmata Π denotes
an nc-refutation G  +

θ > with G = G′, e,G′′ such that e = s ≈ t is selected
in the first step of Π and V denotes a finite set of variables that includes all
variables in the initial goal G of Π.

Lemma 13 Suppose narrowing is applied to a descendant of e in Π at position
1. If l→ r is the applied rewrite rule in the first such step then there exists an
nc-refutation φ[o](Π):G′, s ≈ l, r ≈ t, G′′  ∗θ1 > such that θ1 = θ [V ].
Proof. Write l = f(l1, . . . , ln). The given refutation Π is of the form

G  ∗τ1 G′1, f(u1, . . . , un) ≈ t′, G′′1
 τ2, 1, l→r (G′1, r ≈ t′, G′′1)τ2

 ∗τ3 >
with τ1τ2τ3 = θ. Let x be a fresh variable (so x /∈ V ) and define the substitution
υ2 as the (disjoint) union of τ2 and {x 7→ lτ2}. Because υ2 is a most general
unifier of f(u1, . . . , un) ≈ l and x ≈ x, Π can be transformed into the refutation
φ[o](Π):

G′, s ≈ l, r ≈ t, G′′  ∗τ1 G′1, f(u1, . . . , un) ≈ l, r ≈ t′, G′′1
 υ2 (G′1, true, r ≈ t′, G′′1)υ2

= (G′1, true, r ≈ t′, G′′1)τ2

 ∗τ3 >.
Let θ1 = τ1υ2τ3. We have θ1 = θ ∪ {x 7→ lτ2τ3} and because x /∈ V we obtain
θ1 = θ [V ]. �

The tedious (and boring) proof of the next transformation lemma is omitted.
It is similar to the proof of Lemma 5, see e.g. [17].

Lemma 14 Let s = f(s1, . . . , sn) and t ∈ V. If root(tθ) = f then there ex-
ists an nc-refutation φ[i](Π):Gσ1  ∗θ1 > such that Π subsumes φ[i](Π), Πθ =
φ[i](Π)θ1 and σ1θ1 = θ [V ]. Here σ1 = {t 7→ f(x1, . . . , xn)} with x1, . . . , xn /∈
V . �

Lemma 15 Let s = f(s1, . . . , sn), t = f(t1, . . . , tn), and suppose that narrow-
ing is never applied to a descendant of e in Π at position 1 or 2. There exists an
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nc-refutation φ[d](Π):G′, s1 ≈ t1, . . . , sn ≈ tn, G′′  ∗θ1 > such that θ1 6 θ [V ].
Proof. The given refutation Π must be of the form

G  ∗τ1 G′1, s
′ ≈ t′, G′′1  τ2, ε (G′1, true, G

′′
1)τ2  ∗τ3 >

with s′ = f(s′1, . . . , s
′
n), t′ = f(t′1, . . . , t

′
n), and τ1τ2τ3 = θ. The first part of Π

can be transformed into Π1:

G′, s1 ≈ t1, . . . , sn ≈ tn, G′′  ∗τ1 G′1, s
′
1 ≈ t′1, . . . , s′n ≈ t′n, G′′1.

Consider the step from G′1, s
′ ≈ t′, G′′1 to (G′1, true, G

′′
1)τ2. Let x ≈ x → true

be the employed rewrite rule, so τ2 is a most general unifier of x ≈ x and s′ ≈ t′.
There clearly exists a rewrite sequence

(G′1, s
′
1 ≈ t′1, . . . , s′n ≈ t′n, G′′1)τ2 →∗ε (G′1,>, G′′1)τ2.

Lifting3 results in an nc-derivation Π2:

G′1, s
′
1 ≈ t′1, . . . , s′n ≈ t′n, G′′1  ∗υ2, ε (G′1,>, G′′1)υ2

such that υ2 6 τ2 [V ∪ I(τ1)]. We distinguish two cases.
(1) Suppose G′1, G

′′
1 = �. In this case τ3 = ε. We simply define φ[d](Π) =

Π1; Π2. Let θ1 = τ1υ2. From υ2 6 τ2 [V ∪ I(τ1)] we infer, using Lemma 1,
that θ1 6 τ1τ2 = θ [V ].

(2) The case G′1, G
′′
1 6= � is more involved. First observe that υ2 is a unifier of s′

and t′. Using the fact that τ2 is a most general unifier of s′ ≈ t′ and x ≈ x,
it is not difficult to show that τ2 6 υ2 [V\{x}]. Since x /∈ V ∪I(τ1) we have
in particular τ2 6 υ2 [V ∪ I(τ1)]. It follows that there exists a variable re-
naming δ such that υ2 = τ2δ [V ∪I(τ1)]. Clearly Var(G′1, G

′′
1) ⊆ V ∪I(τ1).

The last part of Π can be trivially transformed (by changing the number of
occurrences of true in each goal) into Π3: (G′1,>, G′′1)τ2  +

τ3 >. An applica-
tion of Lemma 12 results in the nc-refutation φδ(Π3): (G′1,>, G′′1)υ2  +

δ−1τ3

>. Define φ[d](Π) = Π1; Π2;φδ(Π3). Let θ1 = τ1υ2δ
−1τ3. We have

θ1 = τ1τ2τ3 = θ [V ].
�

It should be noted that in general we don’t have θ1 = θ [V ] in Lemma 15.
Consider for example the nc-refutation Π: a ≈ a  θ, x≈x→true true where we
used the (non-idempotent) most general unifier θ = {x 7→ a, y 7→ z, z 7→ y}.
Decomposition results in the empty goal, so φ[d](Π):� produces the empty
substitution θ1 = ε. Clearly θ1 6= θ [V ] if V contains y or z.

Lemma 16 Let t ∈ V, t /∈ Var(s), and suppose that the first step of Π takes
place at the root position. There exists an nc-refutation φ[v](Π): (G′, G′′)σ1  ∗θ1> with σ1 = {t 7→ s} such that σ1θ1 6 θ [V ].

3The lifting lemma for nc—Lemma 5—requires the normalization of the substitution τ2,
which is not necessarily the case here. The reason for requiring normalization is to avoid
rewrite sequences in which a term introduced by τ2 is rewritten, because such sequences
cannot be lifted. In the present situation there is no problem since we know that all steps in
the rewrite sequence take place at root positions.

11



Proof. The given refutation Π is of the form

G  τ1, ε, x≈x→true (G′, true, G′′)τ1  ∗τ2 >
with τ1τ2 = θ. Let υ1 be the (disjoint) union of {x 7→ s} and σ1. Clearly υ1 is a
unifier of the equations s ≈ t and x ≈ x. It is not too difficult to show that υ1

is a most general unifier of these two equations. Since also τ1 is a most general
unifier of s ≈ t and x ≈ x, there exists a variable renaming δ such that τ1δ = υ1.
If G′, G′′ = � then we let φ[v](Π) be the empty nc-refutation and thus θ1 = ε.
In this case we have σ1θ1 = υ1 6 τ1 = θ [V ]. If G′, G′′ 6= �, we reason as follows.
From the second part of Π we extract the nc-refutation Π1: (G′, G′′)τ1  +

τ2 >
by simply dropping a single occurrence of true in every goal of Π. Let θ1 =
δ−1τ2. From Lemma 12 we obtain an nc-refutation φδ(Π1): (G′, G′′)υ1  +

θ1
>.

Because x /∈ V we have σ1θ1 = υ1θ1 = τ1δδ
−1τ2 = τ1τ2 = θ [V ]. Moreover,

(G1, G2)υ1 = (G1, G2)σ1. Hence we can define φ[v](Π) = φδ(Π1). �

Lemma 17 Let t ∈ V, s = t, and suppose that the first step of Π takes place
at the root position. There exists an nc-refutation φ[t](Π):G′, G′′  ∗θ1 > such
that θ1 6 θ [V ].
Proof. The proof is obtained from the previous one by letting σ1 be the empty
substitution ε. �

The idea now is to repeatedly apply the above transformation steps to a
given nc-refutation, connecting the initial goals of (some of) the resulting nc-
refutations by lnc-steps, until we reach the empty goal. In order to guarantee
termination of this process, we need a well-founded order on nc-refutations that
is compatible with the transformation steps. One of the components of our
well-founded order is a multiset order. A multiset over a set A is an unordered
collection of elements of A in which elements may have multiple occurrences.
Every (strict) partial order � on A can be extended to a partial order �mul on
the set of finite multisets over A as follows: M �mul N if there exist multisets
X and Y such that ∅ 6= X ⊆M , N = (M −X)]Y , and for every y ∈ Y there
exists an x ∈ X such that x � y. Here ] denotes multiset sum and − denotes
multiset difference. Dershowitz and Manna [3] showed that multiset extension
preserves well-foundedness.

Definition 18 The complexity |Π| of an nc-refutation Π:G  ∗θ > is defined
as the triple (n,M, s) where n is the number of applications of narrowing in
Π at non-root positions (so the number of narrowing steps that do not use
the rewrite rule x ≈ x → true), M is the multiset |MVar(G)θ|, and s is the
number of occurrences of symbols different from ≈ and true in G (which is
the same as the total number of symbols in G minus the number of equations
in G). Here MVar(G) denotes the multiset of variable occurrences in G, and
for any multiset M = {t1, . . . , tn} of terms, Mθ and |M | denote the multiset
{t1θ, . . . , tnθ} and {|t1|, . . . , |tn|}, respectively. We define a (strict) partial order
� on nc-refutations as follows: Π1 � Π2 if

|Π1| lex(>,>mul, >) |Π2|.
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Here lex(>,>mul, >) denotes the lexicographic product of > (the standard order
on N), >mul, and >.

Lemma 19 The partial order � is a well-founded order on nc-refutations.
Proof. Both lexicographic product and multiset extension preserve well-foundedness. �

Our complexity measure on nc-refutations is different from the one in
Hölldobler [9, p. 188]. Since we are concerned with one-directional term rewrit-
ing and narrowing (as opposed to bi-directional equational reasoning and paramod-
ulation in [9]), our simpler definition suffices. The next lemma states that� is
compatible with the transformation steps defined above.

Lemma 20 Let Π be an nc-refutation and α ∈ {o, i, d, v, t}. We have Π �
φ[α](Π) whenever φ[α](Π) is defined.
Proof. According to the proof of Lemma 13 the number of narrowing steps at
non-root positions in the nc-refutation φ[o](Π) is one less than in Π. Hence
Π� φ[o](Π).

Next we consider φ[i]. By construction, Π and φ[i](Π) have the same num-
ber of narrowing steps at non-root positions. Let M1 and M2 be the second
components of the triples |Π| and |φ[i](Π)|. We claim that M1 >mul M2. Let X
be the multiset of all occurrences of the variable t in G, Y = MVar(G) − X,
and X ′ =MVar(Gσ1)− Y . Observe that X ′ is the multiset of all occurrences
of the variables x1, . . . , xn in Gσ1. We have M1 = |Xθ| ] |Y θ| and M2 =
|X ′θ1| ] |Y θ1|. We have |Y θ| = |Y θ1| because yθ1 = yσ1θ1 = yθ for all y ∈ Y .
Let tθ = f(t1, . . . , tn). We have f(x1θ1, . . . , xnθ1) = tσ1θ1 = tθ = f(t1, . . . , tn)
and thus |xθ1| < |tθ| for all x ∈ X ′. Therefore |Xθ| >mul |X ′θ1| and hence
M1 >mul M2. We conclude that Π� φ[i](Π).

According to the proof of Lemma 15 the number of narrowing steps at non-
root positions in φ[d](Π) is the same as in Π. Because the substitution produced
in φ[d](Π) subsumes the substitution produced in Π for the initial variables, the
second component of |φ[d](Π)| doesn’t exceed the second component of |Π|.
Since the initial goal of φ[d](Π) has less symbols different from ≈ and true
than the initial goal of Π (viz. two occurrences of the function symbol f), we
conclude that Π� φ[d](Π).

From the proof of Lemma 16 we learn that Π and φ[v](Π) have the same
number of narrowing steps at non-root positions. Let M1 and M2 be the second
components of the triples |Π| and |φ[v](Π)|. We claim that M1 >mul M2. We
partition MVar(G′, e,G′′) into the following three multisets: X the multiset
of all variables in MVar(G′, G′′) that belong to D(σ1), Y = MVar(G′, G′′) −
X, and Z = MVar(e). Let X ′ be the multiset of all variable occurrences in
the initial goal (G′, G′′)σ1 of φ[v](Π) that are introduced by σ1, so X ′ ] Y =
MVar((G′, G′′)σ1). We have M1 = |Xθ| ] |Y θ| ] |Zθ| and M2 = |X ′θ1| ] |Y θ1|.
Since yθ1 = yσ1θ1 6 yθ for all y ∈ Y , we have |Y θ| >=

mul |Y θ1|. Using the
inequality σ1θ1 6 θ [X], it is not difficult to see that |Xθ| >=

mul |X ′θ1|. Since
Z 6= ∅ it follows that M1 >mul M2 and therefore Π� φ[v](Π).

According to the proof of Lemma 17 the number of narrowing steps at non-
root positions in φ[t](Π) is the same in Π. Because the substitution produced
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in φ[t](Π) subsumes the substitution produced in Π for the initial variables,
the second component of |φ[t](Π)| doesn’t exceed the second component of |Π|.
Finally, the initial goal of φ[t](Π) has less symbols different from ≈ and true
than the initial goal of Π (viz. two occurrences of the same variable). �

Lemma 21 explains why we don’t need the symmetric versions of Lem-
mata 13, 14, and 16.

Lemma 21 For every nc-refutation Π:G′, s ≈ t, G′′  ∗θ > there exists an nc-
refutation φswap(Π):G′, t ≈ s,G′′  ∗θ > with the same complexity.
Proof. Simply swap the two sides in every descendant of s ≈ t in Π. This
doesn’t affect the complexity. �

The following example illustrates how the above results are used to trans-
form nc-refutations into lnc-refutations.

Example 22 Consider the TRS R = {f(g(y)) → y} and the nc-refutation
Π: g(f(x)) ≈ x {x7→g(y)} g(y) ≈ g(y) ε true. In Π the variable x is bound to
g(y), so the complexity of Π is (1, {2, 2}, 4). Transformation steps φ[o], φ[d], φ[v],
and φ[t] are not applicable to Π. Hence we try φ[i]. This yields the nc-refutation
Π1 = φ[i](Π): g(f(g(x1))) ≈ g(x1)  {x1 7→y} g(y) ≈ g(y)  ε true which has
complexity (1, {1, 1}, 6). Next we apply φ[d]. This gives the nc-refutation Π2 =
φ[d](Π1): f(g(x1)) ≈ x1  {x1 7→y} y ≈ y  ε true with complexity (1, {1, 1}, 4).
Observe that the initial goal of Π is transformed into the initial goal of Π2 by a
single ⇒[i]-step. In Π2 narrowing is applied to the initial equation at position
1. This calls for the transformation step φ[o], so Π3 = φ[o](Π2): f(g(x1)) ≈
f(g(y)), y ≈ x1  {x1 7→y} true, y ≈ y  ε >. nc-refutation Π3 has complexity
(0, {1, 1, 1, 1}, 8). If we apply φ[d] to Π3, we obtain the nc-refutation Π4 =
φ[d](Π3): g(x1) ≈ g(y), y ≈ x1  {x1 7→y} true, y ≈ y  ε > with complexity
(0, {1, 1, 1, 1}, 6). The initial goals of Π2 and Π4 are connected by an ⇒[o]-step.
In the first step of Π4 narrowing is applied at the root position of the selected
equation g(x1) ≈ g(y), so the terms g(x1) and g(y) are unifiable. A most
general unifier is obtained by an application of ⇒[d] followed by an application
of ⇒[v]. So first we use φ[d], yielding the nc-refutation Π5 = φ[d](Π4):x1 ≈
y, y ≈ x1  {x1 7→y} true, y ≈ y  ε > with complexity (0, {1, 1, 1, 1}, 4). Next
we use φ[v], yielding the nc-refutation Π6 = φ[v](Π5): y ≈ y  ε true with
complexity (0, {1, 1}, 2). The initial goals of Π4, Π5, and Π6 are connected by
the lnc-derivation g(x1) ≈ g(y), y ≈ x1 ⇒[d] x1 ≈ y, y ≈ x1 ⇒[v], {x1 7→y} y ≈ y.
An application of φ[t] results in the empty nc-refutation Π7 = φ[t](Π6):� which
has complexity (0,∅, 0). Clearly y ≈ y ⇒[t] �. Concatenating the various
lnc-sequences yields an lnc-refutation g(f(x)) ≈ x ⇒∗θ � whose substitution
θ satisfies xθ = g(y). In Figure 1 this transformation process is summarized.

Unfortunately, the simulation of nc by lnc illustrated above doesn’t always
work, as shown in the following example.

14



Π : g(f(x)) ≈ x  g(y) ≈ g(y)  true

⇓[i], {x 7→g(x1)}
Π2 : f(g(x1)) ≈ x1  y ≈ y  true

⇓[o]

Π4 : g(x1) ≈ g(y), y ≈ x1  true, y ≈ y  >
⇓[d]

Π5 : x1 ≈ y, y ≈ x1  true, y ≈ y  >
⇓[v], {x1 7→y}

Π6 : y ≈ y  true

⇓[t]

Π7 : �

Figure 1: The transformation in Example 22.

Example 23 Consider the TRS

R =





f(x) → x
a → b
b → g(b)

and the nc-refutation Πfail:

f(a) ≈ g(a)  f(a) ≈ g(b)  a ≈ g(b)  b ≈ g(b)
 g(b) ≈ g(b)  true.

Because we apply narrowing at position 1 in the descendant f(a) ≈ g(b) of the
initial equation f(a) ≈ g(a), using the rewrite rule f(x) → x, we transform
Πfail using φ[o] and φ[d]. This yields the nc-refutation φ[d](φ[o](Πfail)):

a ≈ x, x ≈ g(a)  a ≈ x, x ≈ g(b)  true, a ≈ g(b)
 true, b ≈ g(b)  true, g(b) ≈ g(b)  >.

Observe that the initial goals of Πfail and φ[d](φ[o](Πfail)) are connected by an
⇒[o]-step. Since in the refutation φ[d](φ[o](Πfail)) narrowing is applied at po-
sition 1 in the descendant a ≈ g(b) of the selected equation x ≈ g(a) in the
initial goal a ≈ x, x ≈ g(a), we would like to use once more the transformation
steps φ[o] and φ[d]. This is however impossible since the subterm of x ≈ g(a) at
position 1 is a variable.

The reason why Πfail cannot be transformed to an lnc-refutation by the
transformation steps in this section is that in φ[d](φ[o](Πfail)) narrowing is ap-
plied to a subterm introduced by a previous narrowing substitution. One might
be tempted to think that this problem cannot occur if we restrict ourselves to
normalized solutions. This is not true, however, because Πfail computes the
empty substitution ε, which is clearly normalized, but φ[d](φ[o](Πfail)) computes
the non-normalized solution {x 7→ a}. So the transformation steps do not pre-
serve normalization of the computed nc-solutions (restricted to the variables
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in the initial goal). However, it turns out that basicness (cf. Definition 7) is
preserved. This is one of the two key observations for the connection between
strong completeness of lnc and completeness of basic nc.

Lemma 24 Let Π be a basic nc-refutation and α ∈ {o, i, d, v, t}. The nc-
refutation φ[α](Π) is basic whenever it is defined.
Proof (sketch). It is not difficult to see that narrowing is never applied to
subterms introduced by previous narrowing substitutions in φ[o](Π) and φ[d](Π)
whenever this is true for Π. Hence φ[o](Π) and φ[d](Π) are basic provided that
Π is basic. Since φ[i](Π)θ1 = Πθ, φ[i](Π) inherits basicness from Π. Because
φ[v](Π) and Π1—Π minus its first step—are the same modulo renaming, the
transformation φ[v] trivially preserves basicness. This reasoning also applies to
φ[t]. �

We are now ready for the main lemma, which can be diagrammatically
depicted as follows:

∀ basic Π : G  +
θ >

∃ Ψ1 : ⇓σ1

∃ basic Π1 : G1  ∗θ1 >
such that

{
σ1θ1 6 θ [V ]
Π� Π1

Lemma 25 For every non-empty basic nc-refutation Π:G  +
θ > there exist

an lnc-step Ψ1:G ⇒σ1 G1 and a basic nc-refutation Π1:G1  ∗θ1 > such that
σ1θ1 6 θ [V ], Π� Π1, and the equation selected in the first step of Π is selected
in Ψ1.
Proof. We distinguish the following cases, depending on what happens to the
selected equation e = s ≈ t in the first step of Π. Let G = G′, e, G′′.
(1) Suppose narrowing is never applied to a descendant of s ≈ t at position 1

or 2. We distinguish four further cases.
(a) Suppose s, t /∈ V. We may write s = f(s1, . . . , sn) and t = f(t1, . . . , tn).

LetG1 = G′, s1 ≈ t1, . . . , sn ≈ tn, G′′. We have Ψ1:G⇒[d] G1. Lemma 15
yields an nc-refutation φ[d](Π):G1  ∗θ1 > such that θ1 6 θ [V ]. Take
σ1 = ε.

(b) Suppose t ∈ V and s = t. In this case the first step of Π1 must take
place at the root of e. Let G1 = G′, G′′. We have Ψ1:G ⇒[t] G1.
Lemma 17 yields an nc-refutation φ[t](Π):G1  ∗θ1 > such that θ1 6
θ [V ]. Take σ1 = ε.

(c) Suppose t ∈ V and s 6= t. We distinguish two further cases, depending
on what happens to e in the first step of Π.
(i) Suppose narrowing is applied to e at the root position. Let

σ1 = {t 7→ s} and G1 = (G′, G′′)σ1. We have Ψ1:G ⇒[v], σ1
G1.

Lemma 16 yields an nc-refutation φ[v](Π):G1  ∗θ1 > such that
σ1θ1 6 θ [V ].

(ii) Suppose narrowing is not applied to e at the root position. This
implies that s /∈ V. Hence we may write s = f(s1, . . . , sn). Let
σ1 = {t 7→ f(x1, . . . , xn)}, G1 = (G′, s1 ≈ x1, . . . , sn ≈ xn, G′′)σ1,
and G2 = Gσ1. Here x1, . . . , xn are fresh variables. We have
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Ψ1:G ⇒[i], σ1
G1. From Lemma 14 we obtain an nc-refutation

Π2 = φ[i](Π):G2  ∗θ2 > such that σ1θ2 = θ [V ]. Let V2 = V ∪
{x1, . . . , xn}. Clearly Var(G2) ⊆ V2. An application of Lemma 15
to Π2 results in an nc-refutation Π1 = φ[d](Π2):G1  ∗θ1 > such
that θ1 6 θ2 [V2]. Using the inclusion (V \D(σ1))∪I(σ1�V ) ⊆ V2

we obtain σ1θ1 6 σ1θ2 = θ [V ] from Lemma 1.
(d) In the remaining case we have t /∈ V and s ∈ V. This case reduces to

case (1)(c) by an appeal to Lemma 21.
(2) Suppose narrowing is applied to a descendant of e at position 1. Let

l = f(l1, . . . , ln) → r be the used rewrite rule the first time this hap-
pens. Because Π is basic, s cannot be a variable, for otherwise nar-
rowing would be applied to a subterm introduced by previous narrow-
ing substitutions. Hence we may write s = f(s1, . . . , sn). Let G1 =
G′, s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, G′′ and G2 = G′, s ≈ l, r ≈ t, G′′. We
have Ψ1:G ⇒[o] G1. From Lemma 13 we obtain an nc-refutation Π2 =
φ[o](Π):G2  ∗θ2 > such that θ2 = θ [V ]. Let V2 = V ∪ Var(l). Clearly
Var(G2) ⊆ V2. An application of Lemma 15 to Π2 results in an nc-
refutation Π1 = φ[d](Π2):G1  ∗θ1 > such that θ1 6 θ2 [V2]. Using V ⊆ V2

we obtain θ1 6 θ [V ]. Take σ1 = ε.
(3) Suppose narrowing is applied to a descendant of e at position 2. This case

reduces to the previous one by an appeal to Lemma 21.
The above case analysis is summarized in Table 1. In all cases we obtain
Π1 from Π by applying one or two transformation steps φ[o], φ[i], φ[d], φ[v],
φ[t] together with an additional application of φswap in case (1)(d) and (3).
According to Lemma 24 Π1 is basic. According to Lemmata 20 and 21 Π1 has
smaller complexity than Π. �

case lnc-step transformation(s)
(1)(a) ⇒[d] φ[d]

(1)(b) ⇒[t] φ[t]

(1)(c)(i) ⇒[v] φ[v]

(1)(c)(ii) ⇒[i] φ[d] ◦ φ[i]

(1)(d) ⇒[v] or ⇒[i] φ[v] ◦ φswap or φ[d] ◦ φ[i] ◦ φswap

(2) ⇒[o] φ[d] ◦ φ[o]

(3) ⇒[o] φ[d] ◦ φ[o] ◦ φswap

Table 1: Case analysis in the proof of Lemma 25.

The other key observation for the connection between strong completeness of
lnc and completeness of basic nc is the fact that for basic nc, strong complete-
ness and completeness coincide. This is an easy consequence of the following
switching lemma, whose proof can be found in the appendix.

Lemma 26 Let G1 be a goal containing distinct equations e1 and e2. For every
nc-derivation

G1  τ1, e1, p1, l1→r1 G2  τ2, e2τ1, p2, l2→r2 G3
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with p2 ∈ PosF (e2) there exists an nc-derivation

G1  υ2, e2, p2, l2→r2 H2  υ1, e1υ2, p1, l1→r1 H3

such that G3 = H3 and τ1τ2 = υ2υ1. �

Observe that the requirement p2 ∈ PosF (e2) in Lemma 26 is always satisfied
if the two steps are part of a basic narrowing derivation. Moreover, the exchange
of the two steps preserves basicness. This is used in the proof below.

Lemma 27 Let S be an arbitrary selection function. For every basic nc-
refutation Π:G  ∗θ > there exists a basic nc-refutation φS(Π):G  ∗θ > re-
specting S with the same complexity.
Proof. Using the basicness of the given nc-refutation Π, we can transform Π
into a basic refutation φS(Π):G  ∗θ > that respects S by a finite number of
applications of Lemma 26. Since the transformation in Lemma 26 preserves
the number of narrowing steps at non-root positions as well as the computed
substitution, it follows that the complexities of Π and φS(Π) are the same. �

Now we can state and prove the main result of this section.

Theorem 28 Let R be an arbitrary TRS and Π:G ∗θ > a basic nc-refutation.
For every selection function S there exists an lnc-refutation Ψ:G ⇒∗σ � re-
specting S such that σ 6 θ [Var(G)].
Proof. We use well-founded induction on the complexity of the given basic
nc-refutation Π, which is possible because of Lemma 19. In order to make the
induction work we prove σ 6 θ [V ] for a finite set of variables V that includes
Var(G) instead of σ 6 θ [Var(G)]. The base case is trivial: G must be the empty
goal. For the induction step we proceed as follows. First we use Lemma 27 to
transform Π into a basic nc-refutation φS(Π):G +

θ > respecting S with equal
complexity. According to Lemma 25 there exist an lnc-step Ψ1:G ⇒σ1 G1

respecting S and a basic nc-refutation Π1:G1  ∗θ1 > such that σ1θ1 6 θ [V ]
and φS(Π) � Π1. Let V1 = (V \ D(σ1)) ∪ I(σ1�V ) ∪ Var(G1). Clearly V1 is a
finite set of variables that includes Var(G1). The induction hypothesis yields an
lnc-refutation Ψ′:G1 ⇒∗σ′ � respecting S such that σ′ 6 θ1 [V1]. Now define
σ = σ1σ

′. From σ1θ1 6 θ [V ], σ′ 6 θ1 [V1], and (V \ D(σ1)) ∪ I(σ1�V ) ⊆ V1,
we infer—using Lemma 1—that σ 6 θ [V ] and thus also σ 6 θ [Var(G)].
Concatenating the lnc-step Ψ1 and the lnc-refutation Ψ′ yields the desired
lnc-refutation Ψ. �

A related result for lazy paramodulation calculi is given by Moser [19]. He
showed the completeness of his calculus TBP , a refined version of the calculus T
of Gallier and Snyder [5], by a reduction to the basic superposition calculus S
of [1]. Strong completeness (of TBP ) follows because TBP satisfies the so-called
“switching lemma” ([13]). Since from every TBP -refutation one easily extracts
a T -refutation respecting the same selection function, strong completeness of
T is an immediate consequence.

Combining Theorem 28 with Theorem 8 yields the following result.
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Corollary 29 Let R be a confluent TRS, S a selection function, and G a goal.
For every normalized solution θ of G there exists an lnc-refutation G ⇒∗σ �
respecting S such that σ 6 θ [Var(G)], provided one of the following conditions
is satisfied:
(1) R is terminating,
(2) R is orthogonal and Gθ has an R-normal form, or
(3) R is right-linear.
�

The converse of Theorem 28 does not hold, as witnessed by the confluent
TRS

R =





f(x) → g(x, x)
a → b

g(a, b) → c
g(b, b) → f(a)

from Middeldorp and Hamoen [17]. They show that the goal f(a) ≈ c cannot
be solved by basic narrowing. Straightforward calculations reveal that for any
selection function S there exists an lnc-refutation f(a) ≈ c ⇒∗ � respecting
S.

5 Completeness

In this section we show the completeness of lnc for confluent TRSs with respect
to normalized solutions. Actually we show a stronger result: all normalized so-
lutions are subsumed by substitutions produced by lnc-refutations that respect
Sleft. Basic narrowing is of no help because of its incompleteness [17] for this
general case. If we are able to define a class of nc-refutations respecting Sleft

that
(1) includes all nc-refutations respecting Sleft that produce normalized solu-

tions, and
(2) which is closed under the transformations φ[o], φ[i], φ[d], φ[v], φ[t], and φswap,
then completeness with respect to Sleft follows along the lines of the proof of
Theorem 28. We didn’t succeed in defining such a class, the main problem being
the fact that an application of φ[o] or φ[d] to an nc-refutation that respects Sleft

may result in an nc-refutation that doesn’t respect Sleft. We found however
a class of nc-refutations respecting Sleft that satisfies the first property and
which is closed under φ[o] ◦ φ1, φ[i], φ[d] ◦ φ2, φ[v], φ[t], and φswap. Here φ1

and φ2 are transformations that preprocess nc-refutations in such a way that
a subsequent application of φ[o] and φ[d] results in an nc-refutation respecting
Sleft. The following definition introduces our class of nc-refutations.

Definition 30 An nc-refutation Π:G  ∗θ > is called normal if it respects
Sleft and satisfies the following property: if narrowing is applied to the left-
hand side (right-hand side) of a descendant of an equation s ≈ t in G then
θ2�Var(sθ1) (θ2�Var(tθ1)) is normalized. Here θ1 and θ2 are defined by writing Π
as G = G′, s ≈ t, G′′  ∗θ1 >, (s ≈ t, G′′)θ1  ∗θ2 >.
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Before introducing the transformations φ1 and φ2 we present a switching
lemma which is used in the existence proofs. For the proof of this switching
lemma we refer to the appendix.

Lemma 31 Let G1 be the goal e,G′. For every normal nc-refutation

G  ∗θ1 G1  τ1, p1, l1→r1 G2  τ2, p2, l2→r2 G3  ∗θ2 >
with p1 6= ε and p1 ⊥ p2 there exists a normal nc-refutation

G  ∗θ1 G1  υ2, p2, l2→r2 H2  υ1, p1, l1→r1 H3  ∗θ2 >
with the same complexity such that G3 = H3 and θ1τ1τ2θ2 = θ1υ2υ1θ2. �

Lemma 32 For every normal nc-refutation Π:

e,G  ∗τ1 e1, Gτ1  τ2, 1 e2, Gτ1τ2  ∗τ3 >
with the property that narrowing is not applied to a descendant of e at position
1 in the subderivation that produces substitution τ1, there exists a normal nc-
refutation φ1(Π):

e,G  ∗υ1
e′1, Gυ1  υ2, 1 e′2, Gυ1υ2  ∗υ3

>
with the same complexity such that υ1υ2υ3 = τ1τ2τ3 and narrowing is neither
applied at position 1 nor in the right-hand side of a descendant of e in the
subderivation that produces the substitution υ1.
Proof. Let Π′ be the subderivation e,G  ∗τ1 e1, Gτ1  τ2, 1 e2, Gτ1τ2 of Π.
Because Π respects Sleft all steps in Π′ take place in a descendant of e. If there
are steps in Π′ such that narrowing is applied to the right-hand side of the
descendant of e then there must be two consecutive steps in Π′ such that the
first one applies narrowing at the right-hand side and the second one at the
left-hand side. The order of these two steps can be changed by an appeal to
Lemma 31, resulting in a normal nc-refutation that has the same complexity
and produces the same substitution as Π. This process is repeated until there
are no more steps before the step in which position 1 is selected that apply
narrowing at the right-hand side. Termination of this process is not difficult to
see. We define φ1(Π) as an outcome of this (non-deterministic) transformation
process. �

Lemma 33 Let e = f(s1, . . . , sn) ≈ f(t1, . . . , tn). For every normal nc-
refutation Π: e,G  ∗τ1 true, Gτ1  ∗τ2 > with the property that narrowing is
never applied to a descendant of e at position 1 or 2, there exists a normal
nc-refutation φ2(Π): e,G  ∗τ1 true, Gτ1  ∗τ2 > with the same complexity such
that in the subderivation producing substitution τ1 narrowing is applied to the
subterms s1, . . . , sn, t1, . . . , tn in the order s1, t1, s2, t2, . . . , sn, tn.
Proof. By a similar transformation process as in the proof of the preceding
lemma. �

The next result states that the transformation steps φ[o] ◦ φ1, φ[i], φ[d] ◦ φ2,
φ[v], φ[t], and φswap preserve normality.
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Lemma 34 Let Π be a normal nc-refutation. The nc-refutations φ[o](φ1(Π)),
φ[i](Π), φ[d](φ2(Π)), φ[v](Π), φ[t](Π), and φswap(Π) are normal whenever they
are defined.
Proof. First we will show the normality of φ[o](φ1(Π)). From Lemma 32 it
follows that φ1(Π), which we can write as

s ≈ t, G  ∗τ1 s′ ≈ tτ1, Gτ1  τ2, 1, l→r (r ≈ tτ1, Gτ1)τ2  ∗τ3 >,
is normal. This nc-refutation is transformed by φ[o] into

s ≈ l, r ≈ t, G  ∗τ1 s′ ≈ l, r ≈ tτ1, Gτ1

 υ2, x≈x→true true, (r ≈ tτ1, Gτ1)υ2

= true, (r ≈ tτ1, Gτ1)τ2

 ∗τ3 >.
Here υ2 is the substitution τ2 ∪ {x 7→ lτ2}. We have to show that the condition
of Definition 30 holds for every equation in the initial goal s ≈ l, r ≈ t, G of
the nc-refutation φ[o](φ1(Π)). Consider the equation s ≈ l. By construction
φ[o](φ1(Π)) doesn’t contain steps in which narrowing is applied to l. Suppose
there is a step in which narrowing is applied to the left-hand side of a descendant
of s ≈ l. (This is equivalent to saying that the derivation from s ≈ l to s′ ≈ l is
non-empty.) We have to show that τ1υ2τ3�Var(s) is normalized. Because in φ1(Π)
narrowing is applied to the left-hand side of a descendant of s ≈ t, we obtain
the normalization of τ1τ2τ3�Var(s) from the normality of φ1(Π). This implies
that τ1υ2τ3�Var(s) is normalized since τ1τ2�Var(s) = τ1υ2�Var(s). By construction,
the descendants of the equation r ≈ t and the equations in G are only selected
in the common subrefutation (r ≈ tτ1, Gτ1)τ2  ∗τ3 > of φ1(Π) and φ[o](φ1(Π)).
We conclude that φ[o](φ1(Π)) is normal.

Next we consider φ[i]. Let e = s ≈ t be an arbitrary equation in the initial
goal of the normal nc-refutation Π. We may write Π as

G′, e,G′′  ∗τ1 >, (e,G′′)τ1  ∗τ2 >.
By construction, φ[i](Π) can be written as

(G′, e,G′′)σ1  ∗υ1
>, (e,G′′)σ1υ1  ∗υ2

>.
Suppose narrowing is applied to the left-hand side of a descendant of eσ1 in
φ[i](Π). (If narrowing is applied to the right-hand side of a descendant of eσ1

in φ[i](Π), the desired result follows in exactly the same way.) We have to show
that the substitution υ2�Var(sσ1υ1) is normalized. We know that τ2�Var(sτ1) is
normalized since narrowing is applied to the left-hand side of a descendant of
e in the normal nc-refutation Π. Because Πτ1τ2 = φ[i](Π)υ1υ2, the terms sτ1τ2

and sσ1υ1υ2 are equal. Since φ[i](Π) subsumes Π, sσ1υ1 is an instance of sτ1 and
hence the normalization of υ2�Var(sσ1υ1) is a consequence of the normalization
of τ2�Var(sτ1).

Now consider φ[d] ◦ φ2. According to Lemma 33 the transformation φ2

preserves normality. We may write φ2(Π) as

s ≈ t, G  ∗τ1 Gτ1  ∗τ2 >
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and φ[d](φ2(Π)) as

s1 ≈ t1, . . . , sn ≈ tn, G  ∗υ1
Gυ1  ∗υ2

>
with s = f(s1, . . . , sn), t = f(t1, . . . , tn), and υ1υ2 6 τ1τ2 [V ]. By construction
φ[d](φ2(Π)) respects Sleft. Suppose narrowing is applied to the left-hand side of
a descendant of si ≈ ti in φ[d](φ2(Π)), for some 1 6 i 6 n. This implies that
narrowing is applied to the left-hand side of a descendant of s ≈ t in φ2(Π).
Because narrowing is applied to s ≈ t in the first step of φ2(Π), it follows from
the normality of φ2(Π) that τ1τ2�Var(s) is normalized. From υ1υ2 6 τ1τ2 [V ]
we infer the normalization of υ1υ2�Var(si). The first part of φ[d](φ2(Π)) can be
written as

s1 ≈ t1, . . . , sn ≈ tn, G  ∗σ1
>, (si ≈ ti, . . . , sn ≈ tn, G)σ1

 ∗σ2
Gσ1σ2

with σ1σ2 = υ1. The normalization of σ2υ2�Var(siσ1)—which is what we have to
show—follows from the normalization of σ1σ2υ2�Var(si) by Lemma 2. Narrowing
steps applied to the right-hand side of a descendant of si ≈ ti with 1 6 i 6 n in
φ[d](φ2(Π)) are treated similarly. The equations in G don’t pose any problems
since the subrefutations Gτ1  ∗τ2 > and Gυ1  ∗υ2

> of φ2(Π) and φ[d](φ2(Π))
differ at most a renaming.

The transformations φ[v] and φ[t] are easily seen to preserve normality. Fi-
nally, φswap trivially preserves normality. �

Example 35 Consider again the nc-refutation Πfail of Example 23. This refu-
tation is easily seen to be normal. An application of φ[o] results in the nc-
refutation φ[o](Πfail):

f(a) ≈ f(x), x ≈ g(a)  f(a) ≈ f(x), x ≈ g(b)
 true, a ≈ g(b)
 true, b ≈ g(b)
 true, g(b) ≈ g(b)
 >

which doesn’t respect Sleft. If we first apply φ1 we obtain the nc-refutation
φ1(Πfail):

f(a) ≈ g(a)  a ≈ g(a)  a ≈ g(b)  b ≈ g(b)
 g(b) ≈ g(b)  true.

An application of φ[o] to this normal nc-refutation yields φ[o](φ1(Πfail)):

f(a) ≈ f(x), x ≈ g(a)  true, a ≈ g(a)  true, a ≈ g(b)
 true, b ≈ g(b)  true, g(b) ≈ g(b)
 >.

This nc-refutation is normal even though the produced substitution restricted
to the variables in the initial goal is not normalized.
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Now we are ready to prove the counterpart of Lemma 25 for normal nc-
refutations:

∀ normal Π : G  +
θ >

∃ Ψ1 : ⇓σ1

∃ normal Π1 : G1  ∗θ1 >
such that





σ1θ1 6 θ [V ]
Ψ1 respects Sleft

Π� Π1

Lemma 36 For every non-empty normal nc-refutation Π:G  +
θ > there ex-

ist an lnc-step Ψ1:G ⇒σ1 G1 respecting Sleft and a normal nc-refutation
Π1:G1  ∗θ1 > such that σ1θ1 6 θ [V ] and Π� Π1.
Proof. The proof is very similar to that of Lemma 25. Since we refer to the
proof in the next section, we nevertheless present it in full detail. We distin-
guish the following cases, depending on what happens to the selected equation
e = s ≈ t in the first step of Π. Let G = e,G′.
(1) Suppose narrowing is never applied to a descendant of e at position 1 or

2. We distinguish four further cases.
(a) Suppose s, t /∈ V. We may write s = f(s1, . . . , sn) and t = f(t1, . . . , tn).

Let G1 = s1 ≈ t1, . . . , sn ≈ tn, G′. We have Ψ1: G ⇒[d] G1. An ap-
plication of Lemma 33 followed by Lemma 15 yields an nc-refutation
φ[d](φ2(Π)):G1  ∗θ1 > such that θ1 6 θ [V ]. Take σ1 = ε.

(b) Suppose t ∈ V and s = t. In this case the first step of Π1 must take
place at the root of e. LetG1 = G′. We have Ψ1:G⇒[t] G1. Lemma 17
yields an nc-refutation φ[t](Π):G1  ∗θ1 > such that θ1 6 θ [V ]. Take
σ1 = ε.

(c) Suppose t ∈ V and s 6= t. We distinguish two further cases, depending
on what happens to e in the first step of Π.
(i) Suppose narrowing is applied to e at the root position. Let σ1 =
{t 7→ s} and G1 = G′σ1. We have Ψ1:G ⇒[v], σ1

G1. Lemma 16
yields an nc-refutation φ[v](Π):G1  ∗θ1 > such that σ1θ1 6 θ [V ].

(ii) Suppose narrowing is not applied to e at the root position. This
implies that s /∈ V. Hence we may write s = f(s1, . . . , sn). Let
σ1 = {t 7→ f(x1, . . . , xn)}, G1 = (s1 ≈ x1, . . . , sn ≈ xn, G′)σ1,
and G2 = Gσ1. Here x1, . . . , xn are fresh variables. We have
Ψ1:G ⇒[i], σ1

G1. From Lemma 14 we obtain an nc-refutation
Π2 = φ[i](Π):G2  ∗θ2 > such that σ1θ2 = θ [V ]. Let V2 = V ∪
{x1, . . . , xn}. Clearly Var(G2) ⊆ V2. An application of Lemma 33
to Π2 followed by Lemma 15 results in an nc-refutation Π1 =
φ[d](φ2(Π2)):G1  ∗θ1 > such that θ1 6 θ2 [V2]. Using the inclusion
(V \ D(σ1)) ∪ I(σ1�V ) ⊆ V2 we obtain σ1θ1 6 σ1θ2 = θ [V ] from
Lemma 1.

(d) In the remaining case we have t /∈ V and s ∈ V. This case reduces to
case (1)(c) by an appeal to Lemma 21.

(2) Suppose narrowing is applied to a descendant of e at position 1. Let
l = f(l1, . . . , ln) → r be the used rewrite rule the first time this happens.
Because Π is normal, s cannot be a variable. Hence we may write s =
f(s1, . . . , sn). Let G1 = s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, G′ and G2 = s ≈ l, r ≈
t, G′. We have Ψ1:G ⇒[o] G1. An application of Lemma 32 followed by
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Lemma 13 yields an an nc-refutation Π2 = φ[o](φ1(Π)):G2  ∗θ2 > such that
θ2 = θ [V ]. Let V2 = V ∪ Var(l). Clearly Var(G2) ⊆ V2. An application
of Lemma 33 followed by Lemma 15 to Π2 results in an nc-refutation
Π1 = φ[d](φ2(Π2)):G1  ∗θ1 > such that θ1 6 θ2 [V2]. Using V ⊆ V2 we
obtain θ1 6 θ [V ]. Take σ1 = ε.

(3) Suppose narrowing is applied to a descendant of e at position 2. This case
reduces to the previous one by an appeal to Lemma 21.

The above case analysis is summarized in Table 2. In all cases we obtain Π1

from Π by applying one or more transformations φ[o] ◦ φ1, φ[i], φ[d] ◦ φ2, φ[v],
φ[t] together with an additional application of φswap in case (1)(d) and (3).
According to Lemma 34 Π1 is normal. According to Lemmata 20, 21, 32, and
33 Π1 has smaller complexity than Π. �

case lnc-step transformation(s)
(1)(a) ⇒[d] φ[d] ◦ φ2

(1)(b) ⇒[t] φ[t]

(1)(c)(i) ⇒[v] φ[v]

(1)(c)(ii) ⇒[i] φ[d] ◦ φ2 ◦ φ[i]

(1)(d) ⇒[v] or ⇒[i] φ[v] ◦ φswap or φ[d] ◦ φ2 ◦ φ[i] ◦ φswap

(2) ⇒[o] φ[d] ◦ φ2 ◦ φ[o] ◦ φ1

(3) ⇒[o] φ[d] ◦ φ2 ◦ φ[o] ◦ φ1 ◦ φswap

Table 2: Case analysis in the proof of Lemma 36.

Lemma 38 below is the counterpart of Lemma 27 for normal nc-refutations.
The proof is an easy consequence of the following switching lemma, whose proof
can be found in the appendix.

Lemma 37 Let G1 be a goal containing distinct equations e1 and e2. For every
nc-refutation

G  ∗θ1 G1  τ1, e1, p1, l1→r1 G2  τ2, e2τ1, p2, l2→r2 G3  ∗θ2 >
with θ1τ1τ2θ2�Var(G) normalized there exists a nc-refutation

G  ∗θ1 G1  υ2, e2, p2, l2→r2 H2  υ1, e1υ2, p1, l1→r1 H3  ∗θ2 >
with the same complexity such that G3 = H3 and θ1τ1τ2θ2 = θ1υ2υ1θ2. �

Lemma 38 For every nc-refutation Π:G  ∗θ > that produces a normalized
substitution there exists a normal nc-refutation φnormal(Π):G  ∗θ > with the
same complexity.
Proof. Repeated applications of Lemma 37 results in an nc-refutation φnormal(Π):G ∗θ
> that respects Sleft with the same complexity as Π. Because θ�Var(G) is nor-
malized, it follows that φnormal(Π) is normal. �

Putting all the pieces together, the following result can be proved along the
lines of the proof of Theorem 28.
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Theorem 39 For every nc-refutation Π:G ∗θ > with the property that θ�Var(G)

is normalized there exists an lnc-refutation Ψ:G ⇒∗σ > respecting Sleft such
that σ 6 θ [Var(G)].
Proof. Very similar to the proof of Theorem 28. The only difference is the use
of normal rather than basic nc-refutations, and Lemmata 36 and 38 instead of
25 and 27. �

Corollary 40 Let R be a confluent TRS and G a goal. For every normalized
solution θ of G there exists an lnc-refutation G⇒∗σ � respecting Sleft such that
σ 6 θ [Var(G)]. �

6 Eager Variable Elimination

lnc has three sources of non-determinism: the choice of the equation in the
given goal, the choice of the inference rule, and the choice of the rewrite rule
(in the case of [o]). In Section 4 we were concerned with the first kind of non-
determinism. In this section we address the second kind of non-determinism.
The non-deterministic application of the various inference rules to selected equa-
tions causes lnc to generate many redundant derivations. Consider for example
the (orthogonal hence confluent) TRS

R =
{
f(g(x)) → a

b → g(b)

Figure 2 shows all lnc-refutations issued from the goal f(b) ≈ a that respect the
selection function Sleft. There are infinitely many such refutations. Because the

f(b) ≈ a
⇓[o]

b ≈ g(x), a ≈ a
⇓[o]

g(b) ≈ g(x), a ≈ a
⇓[d]

b ≈ x, a ≈ a ⇒[o] g(b) ≈ x, a ≈ a ⇒[i] b ≈ x1, a ≈ a ⇒[o] · · ·
⇓[v] ⇓[v] ⇓[v]

a ≈ a a ≈ a a ≈ a
⇓[d] ⇓[d] ⇓[d]

� � �

Figure 2: The lnc-refutations starting from f(b) ≈ a that respect Sleft.

initial goal is ground, one of them suffices for completeness. At several places
in the literature it is mentioned that this type of redundancy can be greatly
reduced by applying the variable elimination rule [v] prior to other applicable
inference rules, although to the best of our knowledge there is no supporting
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proof of this so-called eager variable elimination problem for the general case
of confluent systems.

In this section we show that a restricted version of the eager variable elim-
ination strategy is complete with respect to Sleft for orthogonal TRSs. Before
we can define our strategy, we need to extend the concept of descendant to
lnc-derivations. Descendants of non-selected equations are defined as in Defi-
nition 11. The selected equation f(s1, . . . , sn) ' t in the outermost narrowing
rule [o] has the body equation r ≈ t as only (one-step) descendant. In the imi-
tation rule [i], all equations siθ ≈ xi (1 6 i 6 n) are descendants of the selected
equation f(s1, . . . , sn) ' x. The selected equation f(s1, . . . , sn) ' f(t1, . . . , tn)
in the decomposition rule [d] has all equations s1 ≈ t1, . . . , sn ≈ tn as (one-
step) descendants. Finally, the selected equations in [v] and [t] have no descen-
dants. Observe that every equation in an lnc-derivation descends from either
a parameter-passing equation or an equation in the initial goal.

Definition 41 An equation of the form x ' t, with x /∈ Var(t), is called solved.
An lnc-derivation Ψ is called eager if the variable elimination rule [v] is applied
to all selected solved equations that are descendants of a parameter-passing
equation in Ψ.

Note that the above concept of eager lnc-derivation doesn’t cover the full
eager variable elimination problem due to the restriction to descendants of
parameter-passing equations that we impose. Of the infinitely many lnc-
refutations in Figure 2 only the leftmost one is eager since all others apply the
outermost narrowing rule [o] to the solved descendant b ≈ x of the parameter-
passing equation b ≈ g(x) introduced in the first ⇒[o]-step.

In this section we prove that eager lnc is complete with respect to Sleft for
orthogonal TRSs (with respect to normalized solutions). The outline of our
proof is as follows.
(1) We define outside-in nc-derivations. These are the narrowing counterpart

to the outside-in rewrite sequences of Huet and Lévy [10].
(2) We show that the completeness of outside-in nc for orthogonal TRSs with

respect to normalized solutions is an easy consequence of Huet and Lévy’s
standardization theorem.

(3) We show that the translation steps φ1, φ2, φ[o], φ[i], φ[d], φ[v], φ[t], and
φswap preserve the outside-in property.

(4) We verify that the lnc-refutation obtained from an outside-in nc-refutation
by means of the transformation described in the previous section is in fact
eager.

Definition 42 Let R be an orthogonal TRS. An R+-rewrite sequence

e1 →p1, l1→r1 · · · →pn−1, ln−1→rn−1 en

is called outside-in if the following condition is satisfied for all 1 6 i < n− 1: if
there exists a j with i < j < n such that ε < pj < pi then pi\pj ∈ PosF (lj) for
the least such j.
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In an outside-in sequence every redex contraction pi contributes either di-
rectly to the final result (if there is no j with i < j < n such that ε < pj < pi)
or to the creation of a redex at a position ε < pj < pi with i < j < n. (The
exclusion of ε in Definition 42 stems from the fact that the only applicable
rewrite rule at that position is not left-linear.)

The above definition is equivalent to the one given by Huet and Lévy in
their seminal paper [10] on call-by-need computations in orthogonal TRSs. The
following result is an immediate consequence of their standardization theorem
(Theorem 3.19 in [10]).

Theorem 43 Let R be an orthogonal TRS and e an equation. For every
rewrite sequence e→∗R+

true there exists an outside-in rewrite sequence e→∗R+

true. �

Definition 44 Let R be an orthogonal TRS. An nc-refutation Π:G  ∗θ > is
called outside-in if for every equation e ∈ G the rewrite sequence eθ →∗ true in
Πθ is outside-in. In this case we say also that the rewrite sequence Πθ:Gθ →∗ >
is outside-in.

Example 45 Consider the orthogonal TRS

R =
{
f(x) → x

a → b

The nc-refutation Π:

f(a) ≈ y, f(y) ≈ b  a ≈ y, f(y) ≈ b  a ≈ y, y ≈ b
 true, a ≈ b  true, b ≈ b  >

is outside-in, because the two rewrite sequences f(a) ≈ a→ a ≈ a→ true and
f(a) ≈ b→ a ≈ b→ b ≈ b→ true are outside-in. The nc-refutation Π′:

f(a) ≈ y, f(y) ≈ b  a ≈ y, f(y) ≈ b  true, f(a) ≈ b
 true, f(b) ≈ b  true, b ≈ b  >

is not outside-in since the rewrite sequence f(a) ≈ b → f(b) ≈ b → b ≈ b →
true isn’t.

Theorem 46 Let R be an orthogonal TRS and G a goal. For every normal-
ized solution θ of G there exists an outside-in nc-refutation G ∗θ′ > such that
θ′ 6 θ [Var(G)].
Proof. Let Gθ = e1, . . . , en. The rewrite sequence Gθ →∗R+

> can be parti-
tioned into rewrite sequences from ei to true for 1 6 i 6 n. To each of these n
rewrite sequences we apply Theorem 43, yielding outside-in rewrite sequences
from ei to true (1 6 i 6 n). Putting these n outside-in rewrite sequences to-
gether results in a outside-in rewrite sequence from Gθ to >. Let θ1 = θ�Var(G).
Evidently, Gθ1 = Gθ and θ1 is normalized. An application of the lifting lemma
for nc—Lemma 5—to the outside-in rewrite sequence Gθ1 →∗R+

> results in
an outside-in nc-refutation G ∗θ′ > with θ′ 6 θ1 = θ [Var(G)]. �
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The above theorem extends and simplifies the main result of You [23]: the
completeness of outer narrowing for orthogonal constructor-based TRSs with
respect to constructor-based solutions. One easily verifies that outer narrowing
coincides with outside-in narrowing in the case of orthogonal constructor-based
TRSs and that constructor-based substitutions are a special case of normalized
substitutions. Hence You’s completeness result (Theorem 3.13 in [23]) is a
consequence of Theorem 46. Since You doesn’t use the powerful standardization
theorem of Huet and Lévy, his completeness proof is (much) more complicated
than the proof presented above, which covers a larger class of TRSs.

Lemma 47 The transformations φ1, φ2, φ[o], φ[i], φ[d], φ[v], φ[t], φswap, and
φnormal preserve the outside-in property.
Proof. Straightforward by inspecting the various transformations. �

We define a property P of equations in the initial goal of nc-refutations in
Definition 48. In Lemma 49 we show that parameter-passing equations intro-
duced in the transformation proof of Lemma 36 satisfy this property, provided
we start from an nc-refutation Π that is outside-in. In Lemma 51 the property
is shown to be preserved by lnc-descendants obtained during the transforma-
tion proof. Finally, in Lemma 52 it is shown that Ψ1 in Lemma 36 consists of a
⇒[v]-step whenever the selected (leftmost) equation in Π is solved and satisfies
the property.

Definition 48 Let Π:G  ∗ > be an nc-refutation and e ∈ G. We say that e
has property P in Π if the following two conditions are satisfied:
(1) narrowing is not applied to the right-hand side of a descendant of e in Π,

and
(2) if narrowing is applied to the left-hand side of a descendant of e in Π and

1·p is a narrowing position in a descendant of e such that later steps in
the left-hand side of descendants of e do not take place above 1·p, then
2·p ∈ PosF (e).

A position 1·p satisfying the condition in part (2) will be called critical.

In the following three lemmata, Ψ1 and Π1 refer to the lnc-step and the
nc-refutation constructed in Lemma 36.

Lemma 49 Let Π:G  + > be a normal outside-in nc-refutation. If Ψ1 con-
sists of an ⇒[o]-step then every parameter-passing equation has property P in
Π1.
Proof. According to Table 2 we have to consider cases (2) and (3) in the proof
of Lemma 36. We consider here only case (2). Consider a parameter-passing
equation si ≈ li in Π1. The first part of property P holds by construction.
Suppose narrowing is applied to the left-hand side of a descendant of si ≈ li in
Π1. Let 1·p be a critical position. We have to show that 2·p ∈ PosF (si ≈ li).
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The nc-refutation φ1(Π) can be written as

e,G′  ∗τ1 e1, G
′τ1

 τ2, 1·i·p e2, G
′τ1τ2

 ∗τ3 e3, G
′τ1τ2τ3

 τ4, 1, l→r e4, G
′τ1τ2τ3τ4

 ∗τ5 >
where all narrowing steps in the subderivation e2, G

′τ1τ2  ∗τ3 e3, G
′τ1τ2τ3 don’t

take place at positions above 1·i·p. According to Lemma 47 φ1(Π) is outside-
in. Hence, by definition, 1·i·p\1 ∈ PosF (l) = PosF (f(l1, . . . , ln)). Therefore
p ∈ PosF (li) and thus 2·p ∈ PosF (si ≈ li). �

The following example shows the necessity of the outside-in property in
Lemma 49.

Example 50 Consider the TRS of Example 45. We have

Π : f(a) ≈ b  f(b) ≈ b  b ≈ b  true

Ψ1 : ⇓[o]

Π1 : a ≈ x, x ≈ b  b ≈ x, x ≈ b  true, b ≈ b  >
The nc-refutation Π is not outside-in and the parameter-passing equation a ≈ x
does not satisfy property P in Π1 as position 1 is critical while 2 /∈ PosF (a ≈ x).
Transforming Π into the outside-in nc-refutation Π′ results in the following
diagram:

Π′ : f(a) ≈ b  a ≈ b  b ≈ b  true

Ψ′1 : ⇓[o]

Π′1 : a ≈ x, x ≈ b  true, a ≈ b  true, b ≈ b  >

The parameter-passing equation a ≈ x does have property P in Π′1.

Lemma 51 Suppose Π:G + > is a normal nc-refutation and let e ∈ G have
property P. If e′ is a Ψ1-descendant of e then e′ has property P in Π1.
Proof. First we consider the case that e ∈ G is the selected equation in Ψ1.
Consider the case analysis in the proof of Lemma 36. In cases (1)(b), (1)(c)(i),
(1)(d), and (3) there is nothing to show: either e has no Ψ1-descendants or
the first part of the property P doesn’t hold. In case (1)(a) we have Π1 =
φ[d](φ2(Π)). It is easy to see that equation e has property P in φ2(Π). We have
e′ = si ≈ ti for some 1 6 i 6 n. The first part of property P clearly holds for
e′ in Π1. Suppose narrowing is applied to the left-hand side of a descendant
of e′ in Π1. Let 1·p be a critical position. By construction of φ[d], 1·i·p is
a critical position in φ2(Π). Hence we obtain 2·i·p ∈ PosF (e) from the fact
that e has property P in φ2(Π). This implies 2·p ∈ PosF (e′). We conclude
that e′ has property P in Π1. In case (1)(c)(ii) narrowing is applied to the
left-hand side s of e in Π. This implies that there is a critical position 1·p.
Since the right-hand side t of e is a variable, 2·p /∈ PosF (e). Therefore the
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equation e doesn’t have the property P. It remains to consider case (2). We
have Π1 = φ[d](φ2(Π2)) = φ[d](φ2(φ[o](φ1(Π)))). It is not difficult to see that
e has property P in φ1(Π). From the construction of φ[o] we learn that the
equation r ≈ t in the initial goal G2 of Π2 inherits the property P from e in
Π. Since the rewrite sequence (r ≈ t)θ1 →∗ true in Π1θ1 subsumes the rewrite
sequence (r ≈ t)θ2 →∗ true in Π2θ2, it follows that the (unique) Ψ1-descendant
e′ = r ≈ t of e has the property P in Π1.

Next suppose that e ∈ G is not selected in Ψ1. By comparing the rewrite
sequences eθ →∗ true in Πθ and e′θ1 →∗ true in Π1θ1, one easily concludes
that in all cases in the proof of Lemma 36 the (unique) Ψ1-descendent e′ of e
inherits the property P of e. �

Lemma 52 Suppose Π:G + > is a normal nc-refutation and let the selected
(leftmost) equation e have the property P. If e is solved then Ψ1 consists of a
⇒[v]-step.
Proof. Consider the case analysis in the proof of Lemma 36. In cases (1)(a) and
(1)(b) the selected equation e is not solved. In case (1)(c)(i) Ψ1 consists indeed
of a ⇒[v]-step. In the proof of Lemma 51 we already observed that in case
(1)(c)(ii) the equation e doesn’t have the property P. In case (1)(d) either Ψ1

consists of a ⇒[v]-step or e doesn’t have the property P, just as in case (1)(c).
In case (2), the equation e is not solved or doesn’t have property P. The latter
follows as in case (1)(c)(ii). Finally, in case (3) the selected equation e doesn’t
have the property P because narrowing is applied to the right-hand side of a
descendant of e. �

Theorem 53 For every outside-in nc-refutation G  ∗θ > with θ�Var(G) nor-
malized there exists an eager lnc-refutation G⇒∗σ > respecting Sleft such that
σ 6 θ [Var(G)].
Proof. Let Π be the given outside-in nc-refutation G  ∗θ >. From Theo-
rem 39 we obtain an lnc-refutation Ψ:G ⇒∗σ > respecting Sleft such that
σ 6 θ [Var(G)]. From Lemmata 49–52 we learn that the variable elimina-
tion rule [v] is applied to all selected solved descendants of parameter-passing
equations in Ψ, i.e., Ψ is eager. �

The combination of Theorems 46 and 53 yields the final result of this paper.

Corollary 54 Let R be an orthogonal TRS and G a goal. For every normalized
solution θ of G there exists an eager lnc-refutation G ⇒∗σ > respecting Sleft

such that σ 6 θ [Var(G)]. �

7 Suggestions for Further Research

This paper leaves many questions unanswered. We mention some of them below.
(1) We have seen that lnc lacks strong completeness. This does not mean that

all selection functions result in incompleteness. We already showed that
lnc is complete (for confluent TRSs and normalized solutions) with respect
to Sleft. Extending this to selection functions that never select descendants
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of a body equation before all descendants of the corresponding parameter-
passing equations have been selected shouldn’t be too difficult.

(2) In Section 4 we have shown the strong completeness of lnc in the case
of orthogonal TRSs, using the completeness of basic nc. In Section 6 we
showed the completeness of eager lnc with respect to Sleft for orthogo-
nal TRSs, using the completeness of outside-in nc. A natural question is
whether these two results can be combined, i.e., is eager lnc strongly com-
plete for orthogonal TRSs. Consider the orthogonal TRS R of Example 45
and the goal f(a) ≈ b. There are two different nc-refutations starting from
this goal:

Π1: f(a) ≈ b  a ≈ b  b ≈ b  true
and

Π2: f(a) ≈ b  f(b) ≈ b  b ≈ b  true.
Refutation Π1 is not basic and refutation Π2 is not outside-in. Hence basic
outside-in nc is not complete for orthogonal TRSs. This suggests that it is
not obvious whether or not eager lnc is strongly complete for orthogonal
TRSs.

(3) The orthogonality assumption in our proof of the completeness of eager
lnc is essential since we make use of Huet and Lévy’s standardization
theorem. We didn’t succeed in finding a non-orthogonal TRS for which
eager lnc is not complete. Hence it is an open problem whether our
restricted variable elimination strategy is complete for arbitrary confluent
TRSs with respect to normalized solutions. A more general question is of
course whether the variable elimination rule can always be eagerly applied,
i.e., is the restriction to solved descendants of parameter-passing equations
essential?

(4) In Section 6 we addressed non-determinism between the variable elimi-
nation rule on the one hand and the outermost narrowing and imitation
rules on the other hand. This is not the only non-determinism between
the inference rules. For instance, there are conflicts among the outermost
narrowing, imitation, and decomposition rules. A question that arises here
is whether it is possible to remove all non-determinism between the various
inference rules. (This does not prohibit the generation of different solutions
to a given goal, because the outermost rule is non-deterministic in itself
due to the various rewrite rules that may be applied.) The very simple
orthogonal constructor-based TRS {f(a) → f(b)} together with the goal
f(x) ≈ f(b) show that the restrictions for ensuring the completeness of a
truly deterministic subset of lnc have to be very strong. Observe that the
solution {x 7→ a} can only be produced by outermost narrowing, whereas
decomposition is needed for obtaining the unrelated solution {x 7→ b}. Re-
cently Middeldorp and Okui [18] showed that all non-determinism in the
choice of the inference rule for descendants of parameter-passing equations
can be removed for orthogonal constructor-based TRSs, whereas complete
determinism in the choice of the inference rule for descendants of equations
in the initial goal can be achieved for arbitrary confluent TRSs if we inter-
pret ≈ as strict equality, meaning that we only require completeness with
respect to solutions θ of G that have the property that sθ and tθ have the
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same ground constructor normal form, for every equation s ≈ t ∈ G.
(5) The results reported in this paper should be extended to conditional TRSs.

Incorporating conditional rewrite rules into lnc is easy: simply add the
conditions of the rewrite rule used in the outermost narrowing rule [o] to
the resulting goal. Of the three main results in this paper—Theorems 28,
39, and 53—we expect that the first one can be lifted to conditional TRSs
without much difficulties, although extra variables in the right-hand sides
of the conditional rewrite rules might prove to be a complication. The
second result should also hold in the conditional case, but it is less clear
whether the proof technique developed in Section 5 can be extended. We
do not know whether Theorem 53 holds for conditional TRSs.
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Appendix

This appendix contains proofs of Lemmata 26, 31, and 37.

Lemma 26. Let G1 be a goal containing distinct equations e1 and e2. For
every nc-derivation

G1  τ1, e1, p1, l1→r1 G2  τ2, e2τ1, p2, l2→r2 G3

with p2 ∈ PosF (e2) there exists an nc-derivation

G1  υ2, e2, p2, l2→r2 H2  υ1, e1υ2, p1, l1→r1 H3

such that G3 = H3 and τ1τ2 = υ2υ1.
Proof. LetG1 = G′, e1, G

′′, e2, G
′′′. ClearlyG3 = ((G′, e1[r1]p1 , G

′′)τ1, e2τ1[r2]p2 , G
′′′τ1)τ2.

Since we may assume that the variables in l2 are fresh, we have D(τ1)∩Var(l2) =
∅. Hence

e2|p2
τ1τ2 = e2τ1|p2

τ2 = l2τ2 = l2τ1τ2.

So e2|p2
and l2 are unifiable. Let υ2 be an idempotent most general unifier

of these two terms. We have H2 = (G′, e1, G
′′, e2[r2]p2 , G

′′′)υ2. There exists
a substitution ρ such that υ2ρ = τ1τ2. We have D(υ2) ⊆ Var(e2|p2

) ∪ Var(l2).
Because we may assume that Var(l1)∩Var(e2) = ∅, we obtain D(υ2)∩Var(l1) =
∅. Hence

e1υ2|p1
ρ = e1|p1

υ2ρ = e1|p1
τ1τ2 = l1τ1τ2 = l1υ2ρ = l1ρ.

So the terms e1υ2|p1
and l1 are unifiable. Let σ be an idempotent most general

unifier. We have σ 6 ρ. It follows that υ2σ 6 τ1τ2. Using D(υ2) ∩ Var(l1) = ∅
we obtain

e1|p1
υ2σ = e1υ2|p1

σ = l1σ = l1υ2σ,

so υ2σ is a unifier of e1|p1
and l1. Because τ1 is a most general unifier of these two

terms, we must have τ1 6 υ2σ. Let γ be any substitution satisfying τ1γ = υ2σ.
With help of D(τ1) ∩ Var(l2) = ∅ we obtain

e2τ1|p2
γ = e2|p2

τ1γ = e2|p2
υ2σ = l2υ2σ = l2τ1γ = l2γ.

(In the first equality we used the assumption p2 ∈ PosF (e2).) Hence we obtain
τ2 6 γ from the fact that τ2 is a most general unifier of e2τ1|p2

and l2. Therefore
τ1τ2 6 τ1γ = υ2σ. Since we also have υ2σ 6 τ1τ2, there is a variable renaming
δ such that υ2σδ = τ1τ2. Now define υ1 = σδ. Since most general unifiers are
closed under variable renaming, υ1 is a most general unifier of e1υ2|p1

and l1.
So H3 = (G′υ2, e1υ2[r1]p1 , (G

′′, e2[r2]p2 , G
′′′)υ2)υ1. From τ1τ2 = υ2υ1 we infer

that G3 = H3. This proves the lemma. �
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Lemma 31. Let G1 be the goal e,G′. For every normal nc-refutation

G  ∗θ1 G1  τ1, p1, l1→r1 G2  τ2, p2, l2→r2 G3  ∗θ2 >
with p1 6= ε and p1 ⊥ p2 there exists a normal nc-refutation

G  ∗θ1 G1  υ2, p2, l2→r2 H2  υ1, p1, l1→r1 H3  ∗θ2 >
with the same complexity such that G3 = H3 and θ1τ1τ2θ2 = θ1υ2υ1θ2.
Proof. First we show that p2 ∈ PosF (e). Suppose to the contrary that p2 /∈
PosF (e). That means that p2 > q for some q ∈ PosV(e). Without loss of
generality we assume that q > 1. Let e|q be the variable x. The term eτ1|p2

is a subterm of xτ1. Hence eτ1|p2
τ2 is a subterm of xτ1τ2. Because p1 ⊥ p2

we have eτ1|p2
τ2 = e[r1]p1τ1|p2

τ2 = l2τ2. So xτ1τ2 is not a normal form. Hence
xτ1τ2θ2 is also not a normal form. There exists a reduction sequence from e′θ1

to e consisting of non-root reduction steps. Here e′ is the leftmost equation
in G. Hence x ∈ Var(e|1) ⊆ Var(e′θ1|1). From the normality of Π we infer
that θ1τ1τ2θ2�Var(e′|1) is normalized. This yields a contradiction with Lemma 2.
Therefore p2 ∈ PosF (e).

The remainder of the proof is similar to the proof of Lemma 26. We have
G3 = (e[r1]p1τ1[r2]p2 , G

′τ1)τ2. Since the variables in l2 are fresh, we have D(τ1)∩
Var(l2) = ∅. Hence

e|p2
τ1τ2 = eτ1|p2

τ2 = l2τ2 = l2τ1τ2.

So τ1τ2 is a unifier of e|p2
and l2. Hence there exists an idempotent most

general unifier υ2 of e|p2
and l2 such that υ2 6 τ1τ2. Let ρ be a substitution

satisfying υ2ρ = τ1τ2. We obtain H2 = (e[r2]p2 , G
′)υ2. Since υ2 is idempotent,

D(υ2) ∩ Var(l1) = ∅. Hence

eυ2|p1
ρ = e|p1

υ2ρ = e|p1
τ1τ2 = l1τ1τ2 = l1υ2ρ = l1ρ,

i.e., ρ is a unifier of eυ2|p1
and l1. Let σ be an idempotent most general unifier

of these two terms. We have σ 6 ρ and thus υ2σ 6 υ2ρ = τ1τ2. Using
D(υ2) ∩ Var(l1) = ∅ we obtain

e|p1
υ2σ = eυ2|p1

σ = l1σ = l1υ2σ.

Since τ1 is a most general of e|p1
and l1, we have τ1 6 υ2σ, so there exists a

substitution γ such that τ1γ = υ2σ. Using D(τ1) ∩ Var(l2) = ∅ we obtain

eτ1|p2
γ = e|p2

τ1γ = e|p2
υ2σ = l2υ2σ = l2τ1γ = l2γ.

Because τ2 is a most general unifier of eτ1|p2
and l2, we must have τ2 6 γ and

hence τ1τ2 6 τ1γ = υ2σ. So τ1τ2 and υ2σ are variants. Hence there exists a
variable renaming δ such that υ2σδ = τ1τ2. Now define υ1 = σδ. Since σ is a
most general unifier of eυ2|p1

and l1, and most general unifiers are closed under
variable renaming, we infer that also υ1 is a most general unifier of these two
terms. So H3 = (e[r2]p2υ2[r1]p1 , G

′υ2)υ1. We clearly have τ1τ2 = υ2υ1. With
help of p1 ⊥ p2 we infer that G3 = H3. Because the number of narrowing steps
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at non-root positions is the same in the two nc-refutations, it follows that they
have the same complexity. It is also easy to see that normality is preserved. �

Lemma 37. Let G1 be a goal containing distinct equations e1 and e2. For
every nc-derivation

G  ∗θ1 G1  τ1, e1, p1, l1→r1 G2  τ2, e2τ1, p2, l2→r2 G3  ∗θ2 >
with θ1τ1τ2θ2�Var(G) normalized there exists a nc-refutation

G  ∗θ1 G1  υ2, e2, p2, l2→r2 H2  υ1, e1υ2, p1, l1→r1 H3  ∗θ2 >
with the same complexity such that G3 = H3 and θ1τ1τ2θ2 = θ1υ2υ1θ2.
Proof. We show that p2 ∈ PosF (e2). Suppose to the contrary that p2 /∈
PosF (e2). That means that p2 > q for some q ∈ PosV(e2). Without loss of
generality we assume that q > 1. Let e2|q be the variable x. The term e2τ1|p2

is
a subterm of xτ1. Hence e2τ1|p2

τ2 is a subterm of xτ1τ2. Since e2τ1|p2
τ2 = l2τ2,

we conclude that xτ1τ2 is not a normal form. Hence xτ1τ2θ2 is also not a normal
form. There exists a reduction sequence from eθ1 to e2 for some equation e ∈ G
consisting of non-root reduction steps. Hence x ∈ Var(e2|1) ⊆ Var(eθ1|1). Now
the normalization of θ1τ1τ2θ2�Var(e2|1) yields a contradiction with Lemma 2.
Hence we have p2 ∈ PosF (e2). Now we apply Lemma 26 to the subderivation
G1  G2  G3, resulting in a refutation of the desired shape with θ1τ1τ2θ2 =
θ1υ2υ1θ2. We already observed that the transformation of Lemma 26 doesn’t
affect the complexity. �
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