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Abstract

In this paper we investigate the concept of simple termination. A term
rewriting system is called simply terminating if its termination can be
proved by means of a simplification order. The basic ingredient of a sim-
plification order is the subterm property, but in the literature two different
definitions are given: one based on (strict) partial orders and another one
based on preorders (or quasi-orders). We argue that there is no reason to
choose the second one, while the first one has certain advantages.

Simplification orders are known to be well-founded orders on terms
over a finite signature. This important result no longer holds if we consider
infinite signatures. Nevertheless, well-known simplification orders like the
recursive path order are also well-founded on terms over infinite signatures,
provided the underlying precedence is well-founded. We propose a new
definition of simplification order, which coincides with the old one (based
on partial orders) in case of finite signatures, but which is also well-founded
over infinite signatures and covers orders like the recursive path order.
We investigate the properties of the ensuing class of simply terminating
systems.

This paper is a completely revised and extended version of [32]. A short abstract appeared
in [33]. The first author is partially supported by the Grant-in-Aid for Scientific Research
(C) 06680300 and the Grant-in-Aid for Encouragement of Young Scientists 06780229 of the
Ministry of Education, Science and Culture of Japan.



1 Introduction

One of the main problems in the theory of term rewriting is the detection of
termination: for a fixed system of rewrite rules, determine whether there exist
infinite reduction sequences or not. Huet and Lankford [18] showed that this
problem is undecidable in general. Dauchet [2] showed that termination is un-
decidable even for one-rule systems. However, there are several methods for
proving termination that are successful for many special cases. A well-known
method for proving termination is the recursive path order (Dershowitz [4]).
The basic idea of such a path order is that, starting from a given order (the so-
called precedence) on the operation symbols, in a recursive way a well-founded
order on terms is defined. If every reduction step in a term rewriting system
corresponds to a decrease according to this order, one can conclude that the
system is terminating. If the order is closed under contexts and substitutions
then the decrease only has to be checked for the rewrite rules instead of all
reduction steps. The bottleneck of this kind of method is how to prove that a
relation defined recursively on terms is indeed a well-founded order. Proving
irreflexivity and transitivity often turns out to be feasible, using some induc-
tion and case analysis. However, when stating an arbitrary recursive definition
of such an order, well-foundedness is very hard to prove directly. Fortunately,
the powerful Tree Theorem of Kruskal implies that if the order satisfies some
simplification property, well-foundedness is obtained for free. An order satisfy-
ing this property is called a simplification order. This notion of simplification
comprises two ingredients:
e a term decreases by removing parts of it, and
e aterm decreases by replacing an operation symbol with a smaller (according
to the precedence) one.
If the signature is infinite, both of these ingredients are essential for the appli-
cability of Kruskal’s Tree Theorem. It is amazing, however, that in the term
rewriting literature the notion of simplification order is motivated by the ap-
plicability of Kruskal’s Tree Theorem but only covers the first ingredient. For
infinite signatures one easily defines non-well-founded orders that are simpli-
fication orders according to that definition. Therefore, the usual definition of
simplification order is only helpful for proving termination of systems over fi-
nite signatures. Nevertheless, it is well-known that simplification orders like
the recursive path order are also well-founded on terms over infinite signatures
(provided the precedence on the signature is well-founded).

In this paper we propose a definition of a simplification order that matches
exactly the requirements of Kruskal’s Tree Theorem, since that is the basic
motivation for the notion of simplification order. According to this new def-
inition all simplification orders are well-founded, both over finite and infinite
signatures. For finite signatures the new and the old notion of simplification
order coincide. A term rewriting system is called simply terminating if there
is a simplification order that orients the rewrite rules from left to right. It
is straightforward from the definition that every recursive path order over a
well-founded precedence can be extended to a simplification order, and hence
is well-founded. Even if one is only interested in finite term rewriting systems



this is of interest: semantic labelling (Zantema [45]) often succeeds in prov-
ing termination of a finite but “difficult” (non-simply terminating) system by
transforming it into an infinite system over an infinite signature to which the
recursive path order readily applies.

In the literature simplification orders are sometimes based on preorders (or
quasi-orders) instead of (strict) partial orders. A main result of this paper is
that there are no compelling reasons for doing so. We prove (constructively)
that every term rewriting system that can be shown to be terminating by means
of a simplification order based on preorders, can be shown to be terminating
by means of a simplification order (based on partial orders). Since basing
the notion of simplification order on preorders is more susceptible to mistakes
and results in stronger proof obligations, simplification orders should be based
on partial orders. (As explained in Section 4 these remarks already apply to
finite signatures.) As a consequence, we prefer the partial order variant of
well-quasi-orders, the so-called partial well-orders, in case of infinite signatures.
By choosing partial well-orders instead of well-quasi-orders a great part of the
theory is not affected, but another part becomes cleaner. For instance, in
Section 5 we prove a useful result stating that a term rewriting system is simply
terminating if and only if the union of the system and a particular system that
captures simplification is terminating. Based on well-quasi-orders a similar
result does not hold.

The remainder of the paper is organized as follows. In a preliminary section
we review the basic notions of term rewriting. In Section 3 we study the sub-
term property—the basic ingredient of simplification orders—and the related
embedding notion. Section 4 is concerned with term rewriting systems over
finite signatures. In Section 5 we consider arbitrary signatures: we present our
definition of simplification order and state some basic properties of the ensuing
class of simply terminating term rewriting systems. In Section 6 we compare
our definition of simple termination with previous proposals and other restricted
notions of termination, among which the useful notion of total termination (see
[11, 43]). For finite signature one easily shows that total termination implies
simple termination. We show that for infinite signatures this does not hold any
more: we construct an infinite term rewriting system whose terminating can
be proved by a polynomial interpretation, but which is not simply terminat-
ing. The recursive path order and the Knuth-Bendix order, two well-known
techniques for proving termination, are addressed in Section 7. We pay special
attention to their behaviour over infinite signatures. In Section 8 we investi-
gate the behaviour of simple termination under combinations of term rewriting
systems. We show that our notion of simple termination is preserved under
constructor sharing combinations. This is not true for the earlier notion of
simple termination (Ohlebusch [36]). In two appendices we present some useful
facts about partial well-orders and, for completeness sake, a proof of Kruskal’s
Tree Theorem.



2 Preliminaries

In order to fix our notations and terminology, we start with a very brief in-
troduction to term rewriting. Term rewriting is surveyed in Dershowitz and
Jouannaud [7] and Klop [21].

A signature is a set F of function symbols. Associated with every f € F
is a natural number denoting its arity. Function symbols of arity 0 are called
constants. Let T (F,V) be the set of all terms built from F and a countably
infinite set V' of variables, disjoint from F. The set of variables occurring in a
term t is denoted by Var(t). A term t is called ground if Var(t) = &. The set
of all ground terms is denoted by 7 (F). The root symbol of a term ¢t is defined
as follows: root(t) =t if ¢ is a variable and root(t) =f if ¢t = f(t1,...,t,).

We introduce a fresh constant symbol [J, named hole. A context C is a
term in 7 (F U {J},V) containing precisely one hole. The designation term is
restricted to members of 7 (F,V). If C is a context and ¢ a term then C[t]
denotes the result of replacing the hole in C by t. A term s is a subterm of
a term ¢, denoted by s < ¢, if there exists a context C' such that t = C[s]. A
subterm s of t is proper if s # t. The proper subterm relation is denoted by
<. We assume familiarity with the position formalism for describing subterm
occurrences. A substitution is a map o from V to 7 (F,V) with the property
that the set {z € V | o(x) # x} is finite. If o is a substitution and ¢ a term then
to denotes the result of applying o to t. We call to an instance of t. A binary
relation R on terms is closed under contexts if C[s] R C[t] whenever s R t, for
all contexts C. A binary relation R on terms is closed under substitutions if
so R to whenever s R t, for all substitutions o. A rewrite relation is a binary
relation on terms that is closed under contexts and substitutions.

A rewrite rule is a pair (I,7) of terms such that the left-hand side [ is not
a variable and variables which occur in the right-hand side r occur also in [,
ie., Var(r) C Var(l). Since we are interested in (simple) termination in this
paper, these two restrictions rule out only trivial cases. Rewrite rules (I, r) will
henceforth be written as [ — r.

A term rewriting system (TRS for short) is a pair (F,R) consisting of a
signature F and a set R of rewrite rules between terms in 7(F,V). We often
present a TRS as a set of rewrite rules, without making explicit its signature,
assuming that the signature consists of the function symbols occurring in the
rewrite rules. The smallest rewrite relation on 7 (F,)) that contains R is
denoted by —x. So s —g t if there exists a rewrite rule [ — r in R, a
substitution o, and a context C' such that s = Cllo] and t = C[ro]. The
subterm lo of s is called a redexr and we say that s rewrites to ¢ by contracting
redex lo. We call s —g t a rewrite or reduction step. The transitive closure
of —x is denoted by —>7J5 and —7, denotes the transitive and reflexive closure
of —»g. If s =% t we say that s reduces to t. The converse of —% is denoted
by «%. A TRS (F,R) is called terminating if there are no infinite reduction
sequences t| —g to —R t3 —g -+ of terms in 7 (F,V). A TRS (F,R) is called
cyclic if ¢ —>7'§ t for some term ¢t € 7(F,V). Clearly every terminating TRS is
acyclic.

A (strict) partial order - is a transitive and irreflexive relation. The reflexive



closure of > is denoted by . The converse of 3= is denoted by <. A partial
order > on a set A is well-founded if there are no infinite descending sequences
a1 > ag = --- of elements of A. A partial order > on A is total if for all
different elements a,b € A either a > b or b = a. A preorder (or quasi-order)
7 is a transitive and reflexive relation. The converse of =~ is denoted by =.
The strict part of a preorder =~ is the partial order > defined as 7= \ <. Every
preorder 7~ induces an equivalence relation ~ defined as =~ N 3. It is easy to
see that = = 7=~ \ ~. A preorder is said to be well-founded if its strict part is a
well-founded partial order.

A rewrite relation that is also a partial order is called a rewrite order. A
well-founded rewrite order is called a reduction order. We say that a TRS
(F,R) and a partial order > on 7 (F,V) are compatible if R is contained in >,
i.e., | = r for every rewrite rule [ — r of R. It is easy to show that a TRS is
terminating if and only if it is compatible with a reduction order.

3 Subterm Property and Embedding

Definition 3.1 We say that a binary relation R on terms has the subterm
property if C[t] Rt for all contexts C' # [0 and terms t.

The subterm property of a relation R can be expressed more concisely by
the inclusion > C R. The task of showing that a given transitive relation R has
the subterm property amounts to verifying f(¢1,...,t,) R t; for all function
symbols f of arity n > 1, terms ¢1,...,t,, and i € {1,...,n}. This observation
will be used freely in the sequel.

Definition 3.2 Let F be a signature. The TRS Emb(F) consists of all rewrite
rules

flz1,...,xn) — m

with f € F a function symbol of arity n > 1 and i € {1,...,n}. Here z1,...,z,
are pairwise different variables. We abbreviate _>;mb( ) to >emp and <—j§mb(}.)
to Jempb- The latter relation is called embedding.

The following easy result relates the subterm property to embedding.

Lemma 3.3 A rewrite order = on T (F,V) has the subterm property if and
only if >emp C =

Proof The “if” direction is trivial because > inherits the subterm property from
D>emb. For the “only if” direction we reason as follows. Since x; is a proper
subterm of f(z1,...,x,) the TRS Emb(F) is compatible with . Because > is
a transitive rewrite relation we obtain >¢pp = —%mb( 7) C>. U

It follows that e, is the smallest rewrite order with the subterm property.
Note that > is not a rewrite order as it lacks closure under contexts.
Embedding is a special case of homeomorphic embedding.



Definition 3.4 Let > be a partial order on a signature . The TRS Emb(F, >-)
consists of all rewrite rules of Emb(F) together with all rewrite rules

flz1, ..., xn) — g(miy, ..., xi,)

with f an m-ary function symbol in F, g an m-ary function symbol in F,
n=zm2>=20,f>=g and 1 < i < -+ < 4y < n whenever m > 1. Here
r1,...,T, are pairwise different variables. We abbreviate —>;mb(£>) to >emb
and <—§mb( F) t0 <empb- The latter relation is called homeomorphic embedding.
We denote Emb(F, >) \ Emb(F) by Emb*(F, >).

Since Emb(F, @) = Emb(F), homeomorphic embedding generalizes embed-
ding. Consider for instance the signature F consisting of constants a and b, a
unary function symbol ¢, and binary functions symbols f and h. Define the
partial order >= on F by a > b > f > g = h. In the TRS

a — b
. flz,y) — g(z)
£mb(F, >) = Emb(F) U flz,y) — g(v)
f(z,y) — h(z,y)

we have the reduction sequence f(h(a,b),g(a)) — f(a,g(a)) — f(a,a) —
f(a,b), hence the term f(a,b) is homeomorphically embedded in f(h(a (a))
Since there is no reduction sequence in the TRS Emb(F) from f(h(a,b),g(a))
to f(a,b), the term f(a,b) is not embedded in f(h(a,b),g(a)).

4 Simple Termination — Finite Signatures
Throughout this section we are dealing with finite signatures only.

Definition 4.1 A simplification order is a rewrite order with the subterm prop-
erty. A TRS (F,R) is simply terminating if it is compatible with a simplification
order on 7 (F,V).

Since we are only interested in signatures consisting of function symbols
with fixed arity, we have no need for the deletion property (cf. [4]). It should
also be noted that many authors (e.g. [3, 4, 5, 14, 19, 39]) do not require that
simplification orders are closed under substitutions. Since we don’t really want
to check whether a simplification order orients all instances of rewrite rules
from left to right in order to conclude termination, and concrete simplification
orders like the recursive path order are closed under substitutions, closure under
substitutions should be part of the definition. Moreover, it is easy to show that
the class of simply terminating TRSs is not affected by imposing closure under
substitutions.

Dershowitz [3, 4] showed that every simply terminating TRS is terminating.
The proof is based on the beautiful Tree Theorem of Kruskal [26].

Definition 4.2 An infinite sequence ti, to, t3, ... of terms in 7 (F,V) is self-
embedding if there exist 1 <7 < j such that ¢; Jepy, t5.



Theorem 4.3 (Kruskal’s Tree Theorem—Finite Version) FEvery infinite sequence
of ground terms is self-embedding. [J

We refrain from proving Theorem 4.3 since it is a special case of the general
version of Kruskal’s Tree Theorem, which is presented in the next section and
proved in Appendix B.

Theorem 4.4 Simplification orders are well-founded. [

Observe that simplification orders are well-founded on arbitrary—mnot nec-
essarily ground—terms over a finite signature. In the next section we generalize
this result to terms over arbitrary signatures.

Corollary 4.5 FEvery simply terminating TRS is terminating. U

The following well-known result is especially useful for showing that a given
TRS is not simply terminating. For instance, the terminating one-rule TRS
R =A{f(f(x)) — f(g(f(z)))} is not simply terminating because R U {f(z) —

,9(z) — x} admits a cycle: f(f(z)) — f(9(f(x))) — f(f(2)).

Lemma 4.6 The following statements are equivalent.

(1) The TRS (F,R) is simply terminating.

(2) The TRS (F,RUEmb(F)) is terminating.

(3) The TRS (F,R U Emb(F)) is acyclic.

Proof

(1) = (2) Let (F,R) be compatible with the simplification order > on 7 (F, V).
From Lemma 3.3 we learn that >y, € > and hence > is compatible with
the TRS Emb(F). Therefore (F,R U Emb(F)) is a simply terminating
TRS. Corollary 4.5 yields its termination.

(2) = (3) Obvious.

(3) = (1) Let > be the transitive closure of the rewrite relation of the TRS
(F,RUEmMDb(F)). Because (F,RUEmb(F)) is acyclic, > is irreflexive and
hence a rewrite order. Since >epp C >, > is a simplification order. Since
the TRS (F,R) is compatible with >, it is simply terminating.

O

In the term rewriting literature the notion of simplification order is some-
times based on preorders instead of partial orders. Dershowitz [4] obtained the
following result.

Theorem 4.7 Let (F,R) be a TRS. Let 7 be a preorder on T(F,V) which
is closed under contexts and has the subterm property. If lo > ro for every
rewrite rule | — r € R and substitution o then (F,R) is terminating. O

A preorder that is closed under contexts and has the subterm property is
sometimes called a quasi-simplification order. Observe that we require lo > ro
for all substitutions o in Theorem 4.7. It should be stressed that this require-
ment cannot be weakened to the compatibility of (F,R) and > (i.e., [ > r for



all rules [ — r € R) if we additionally require that 7 is closed under substi-
tutions, as is incorrectly done in Dershowitz and Jouannaud [7]. For instance,
the relation —7% associated with the TRS

flg(@) — f(f(=)

r_ ) fla@) — g(g(x))
fl@) —
g@) — =z

is a rewrite relation with the subterm property (because Emb({f,g}) C R).
Moreover, | —% r but not r —% [, for every rewrite rule | — r € R. So R is
included in the strict part of —%. Nevertheless, R is not terminating:

fg(9(2))) == f(f(9(x)) —=r flg(g(x))) —=r .

The point is that the strict part of —% is not closed under substitutions.
Hence to conclude termination from compatibility with - it is essential that
both > and 77 are closed under substitutions. A simpler TRS illustrating the
same point, due to Enno Ohlebusch (personal communication), is {f(z) —
f(a), flx) - x}.

Dershowitz [4] writes that Theorem 4.7 generalizes Theorem 4.5. We have
the following result.

Theorem 4.8 A TRS (F,R) is simply terminating if and only if there exists a
preorder 77, on T (F,V) that is closed under contexts, has the subterm property,
and satisfies lo - ro for every rewrite rule | — r € R and substitution o. [J

The proof is given in Section 5, where the above theorem is generalized to
TRSs over arbitrary, not necessarily finite, signatures.

So every TRS whose termination can be shown by means of Theorem 4.7
is simply terminating, i.e., its termination can be shown by a simplification
order. Since it is easier to check [ > r for finitely many rewrite rules [ — r than
lo 77 ro but not ro = lo for finitely many rewrite rules [ — 7 and infinitely
many substitutions o, there is no reason to base the definition of simplification
order on preorders.

5 Simple Termination — Infinite Signatures

Kurihara and Ohuchi [27] were the first to use the terminology simple termi-
nation. They call a TRS (F,R) simply terminating if it is compatible with a
rewrite order on 7 (F,V) that has the subterm property. Since compatibility
with a rewrite order that has the subterm property doesn’t ensure the termi-
nation of TRSs over infinite signatures, this definition of simple termination is
clearly not the right one. Consider for instance the TRS (F,R) consisting of
infinitely many constants a; and rewrite rules a; — a;41 for all ¢ € N. The
rewrite order —>7'; vacuously satisfies the subterm property, but (F,R) is not
terminating.

Ohlebusch [35] and others call a TRS (F,R) simply terminating if it is
compatible with a well-founded rewrite order on 7 (F,V) that has the subterm



property. The basic motivation for simple termination is that termination can
be concluded without explicitly testing for well-foundedness. This motivation
is not met anymore if the requirement of well-foundedness is included in the
definition.

We propose instead to bring the definition of simple termination in accor-
dance with (the general version of) Kruskal’s Tree Theorem.

Theorem 5.1 (Kruskal’s Tree Theorem—General Version) If - is a PWO on
a signature F then =emp is a PWO on T(F). O

A partial order > on a set A is called a partial well-order (PWO) if for every
infinite sequence a1, as, as, ... of elements of A there exist indices 1 < i < j
such that a; < a;. This is equivalent to stating that every partial order on
A that extends > (including > itself) is well-founded. In Appendix A several
other equivalent formulations of PWO are given. Using the terminology of
PWOs, Theorem 4.3 states that >y, is @ PWO on 7 (F) whenever F is finite.
Appendix B contains a proof of Theorem 5.1.

Definition 5.2 A simplification order is a rewrite order on 7 (F,V) that con-
tains >=emp for some PWO > on F. A TRS (F,R) is simply terminating if it
is compatible with a simplification order on 7 (F,V).

Because the empty relation @ is a PWO on any finite F and Demb = Semb,
this definition coincides with the one in Section 4 in case of finite signatures.

Theorem 5.3 Simplification orders are well-founded.

Proof Let O be a simplification order on 7 (F,V). So there exists a PWO
= on F such that >¢up, € 3. First we show that Var(t) C Var(s) whenever
s O t. Suppose to the contrary that there exists a variable z € Var(t) \ Var(s).
Define 0 = {z — s}. Closure under substitutions of 1 yields s = so I to.
Since s < to and thus s <¢mp, t We also have s C to, contradicting the fact
that T is a partial order. Now consider an infinite sequence t1 Jto J1t3 1 - - -
of terms in 7(F,V). Let Var(ti) = {xi1,...,Xn}. According to the above
observation we have Var(t;) C {x1,...,xy} for all i > 1. Choose fresh constants
C1,-..,cn and define the substitution 7 = {z; — ¢; | 1 < i < n}. The infinite
sequence t17, toT, t3T, ... contains only terms in 7 (F U {c1,...,¢cn}). From
Kruskal’s Tree Theorem we learn the existence of indices ¢, j with 1 < ¢ < j
such that ;7 <emp t;7. 1t is not difficult to see that ;7 <emp ¢;7 is equivalent
to t; <emb tj. Therefore ¢; C t;. Since ¢ < j we also have t; T ¢;. This is
impossible. We conclude that 1 is well-founded. [

Corollary 5.4 Fvery simply terminating TRS is terminating. O
The following result extends the very useful Lemma 4.6 to arbitrary TRSs.
Lemma 5.5 The following statements are equivalent.

(1) The TRS (F,R) is simply terminating.
(2) The TRS (F,RUEmb(F,>)) is terminating for some PWO = on F.



(3) The TRS (F,R U Emb(F,>)) is acyclic for some PWO ~ on F.
Proof Essentially the same as the proof of Lemma 4.6. [

In the remainder of this section we generalize Theorem 4.8 (and hence The-
orem 4.7) to arbitrary TRSs. Our proof is based on the elegant proof sketch
of Theorem 4.7 given by Plaisted [39]. The proof employs multiset extensions
of preorders. A multiset is a collection in which elements are allowed to occur
more than once. If A is a set then the set of all finite multisets over A is denoted
by M(A). The multiset extension of a partial order > on A is the partial order
=mu1 on M(A) defined as follows: My = Ms if My = (M7 — X)WY for some
multisets X, Y € M(A) that satisfy @ # X C M and for all y € Y there exists
an x € X such that = = y. Using Higman’s Lemma, it is quite easy to show
that multiset extension preserves PWO. From this we infer that the multiset
extension of a well-founded partial order is well-founded, using the well-known
facts that (1) every well-founded partial order can be extended to a total well-
founded order (in particular a PWO) and (2) multiset extension is monotonic
(i.e., if = C 3 then >y € Tmul). Using Konig’s Lemma, Dershowitz and
Manna [8] gave a direct proof that multiset extension preserves well-founded
partial orders.

Definition 5.6 Let - be a preorder on a set A. For every a € A, let [a] denote
the equivalence class with respect to the equivalence relation ~ containing a.
Let A/~ = {[a] | a € A} be the set of all equivalence classes of A. The preorder
2 on A induces a partial order > on A/~ as follows: [a] > [b] if and only if
a > b. (The latter > denotes the strict part of the preorder 7=.) For every
multiset M € M(A), let [M] € M(A/~) denote the multiset obtained from M
by replacing every element a by [a]. We now define the multiset extension 77,
of the preorder 7 as follows: My 21 Mo if and only if [M;] >, | [M>] where
=) denotes the reflexive closure of the multiset extension of the partial order
= on A/~.

It is easy to show that 7, is a preorder on M(A). The associated equiv-
alence relation ~pu = 22,00 N S €0 be characterized in the following sim-
ple way: M; ~pq Mo if and only if [M;] = [Ms]. Likewise, its strict part
Tl = fomul \ Smul = Zmual \ ~mul has the following simple characterization:
My 7 a Mz if and only if [M] = [Ma]. Observe that we denote the strict
part of 2, by 7, in order to avoid confusion with the multiset extension
>mul Of the strict part > of =, which is a smaller relation.

The above definition of multiset extension of a preorder can be shown to be
equivalent to the more operational ones in Dershowitz [5] and Gallier [14], but
since we define the multiset extension of a preorder in terms of the well-known
multiset extension of a partial order, we get all desired properties basically
for free. In particular, using the fact that multiset extension preserves well-
founded partial orders, it is very easy to show that the multiset extension of a
well-founded preorder is well-founded.

Definition 5.7 If t € T(F,V) then S(t) € M(T(F,V)) denotes the finite
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multiset of all subterm occurrences in t and F(t) € M(F) denotes the finite
multiset of all function symbol occurrences in t. Formally,

{t} if t is a variable,
S(t) = {t}wH-JS(ti) ift = f(t1,...,tn),
i=1
o if t is a variable,
F(t) =

{f} e L—ljF(tl-) if t = ft1,... tn).

Lemma 5.8 Let - be a preorder on T(F,V) with the subterm property. If
s =t then S(s) Zmu S(t)-

Proof We show that s = t' for all ¢’ € S(t). This implies {s} 7 S(t) and
hence also S(s) 77,4 S(t). If t' =t then s > t' by assumption. Otherwise #'
is a proper subterm of ¢ and hence t 7~ ' by the subterm property. Combining

this with s = t yields s = ¢/. 0O

Lemma 5.9 Let 7 be a preorder on T (F,V) which is closed under contexts.
Suppose s 7~ t and let C' be an arbitrary context.

(1) If S(8) Zomu S(t) then S(Cls]) 1 S(CE])-

(2) 17 5(s) Zau S(t) then S(Cls) Zpm S(CE])-

Proof Let S; = S(CJ[s]) — S(s) and Sy = S(CJt]) — S(t). For both statements
it suffices to prove that S1 72,4 S2. Let p € Pos(C[s]) be the position of the
displayed s in C[s|. There is a one-to-one correspondence between terms in
S1 (S2) and positions in Pos(C) \ {p}. Hence it suffices to show that s" = ¢/
where s' = C[s], and ' = C[t]|, are the terms in S; and Sz corresponding
to position ¢, for all ¢ € Pos(C) \ {p}. If p and ¢ are disjoint positions then
s’ =t'. Otherwise ¢ < p and there exists a context C’ such that s’ = C'[s] and
t'" = C'[t]. By assumption s - t. Closure under contexts yields s’ = /. We
conclude that Sy 7,y S2. O

After these two preliminary results we are ready for the generalization of
Theorem 4.8 to arbitrary TRSs.

Theorem 5.10 A TRS (F,R) is simply terminating if and only if there exists
a preorder -, on T (F,V) that is closed under contexts, contains the relation
Temb for some PWO 1 on F, and satisfies lo = ro for every rewrite rule
Il —r e R and substitution o.

Proof The “only if” direction is obvious since the reflexive closure 3= of the sim-
plification order > used to prove simple termination is a preorder with the de-
sired properties. For the “if” direction it suffices to show that (F, RUEmb(F, 3
)) is a terminating TRS, according to Lemma 5.5. First we show that either
S(5) Zpu S(t) or S(s) ~mu S(t) and F(s) Opw F(t) whenever s — ¢ is a
reduction step in the TRS (F,RUEmb(F, 0)). So let s = Cllo] and t = C[ro]
with [ — 7 € RUEmb(F, 0). We distinguish three cases.
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(1) If I — r € R then lo = ro by assumption and S(lo) 7, S(ro) according
to Lemma 5.8. The first part of Lemma 5.9 yields S(s) 7,4 S(t).

(2)If I - r € Emb(F) then lo = f(t1,...,ty) and ro = t; for some i €
{1,...,n}. Therefore S(lo) .1 S(ro) since S(t;) is properly contained in
S(f(t1,...,tn)). Clearly lo Jemp 7o and thus also lo 7 ro. An application
of the first part of Lemma 5.9 yields S(s) 7., S(t).

(3) If | = r € Emb*(F, ) then lo = f(t1,...,ty) and ro = g(ti,, ..., t;,,) with
fOdg,n>2m>=20,and 1 <i; <--- <1y, <n whenever m > 1. We have of
course [0 Temp 7o and thus also lo 77 ro. Since the multiset {¢;,,...,%;,,}
is contained in the multiset {¢,...,t,}, we obtain S(lo) 7,4 S(ro) and
F(lo) Omu F(ro). The second part of Lemma 5.9 yields S(s) 2, S(t)-
We obtain F(s) Jyu F(t) from F(lo) DOpa F(ro).

Kruskal’s Tree Theorem shows that Jepp, is a PWO on 7 (F). Hence 7 is

a well-founded preorder on 7 (F). Since multiset extension preserves well-

founded preorders, 7, ., is a well-founded preorder on M(7(F)). Because

1 is a PWO on the signature F it is a well-founded partial order. Hence its

multiset extension Ty, is a well-founded partial order on M(F). We conclude

that (F, R U Emb(F, J)) is a terminating TRS. O

6 Comparison

In this section we investigate the relationships between our definition of simple
termination, the previous definitions of simple termination [27, 35], and other
restricted kinds of termination as introduced in [43]. Let us first rename the
previous notions of simple termination.

Definition 6.1 A TRS (F,R) is simplifying if it is compatible with a rewrite
order on 7 (F,V) that has the subterm property. We call (F,R) pseudo-simply
terminating if it is compatible with a well-founded rewrite order on 7 (F,V)
that has the subterm property.

The following well-known lemma (e.g. [27]) states that simplifyingness is
equivalent to property (3) in Lemma 4.6.

Lemma 6.2 A TRS (F,R) is simplifying if and only if the TRS (F,R U
Emb(F)) is acyclic. O

Pseudo-simple termination is equivalent to property (2) in Lemma 4.6.

Lemma 6.3 A TRS (F,R) is pseudo-simply terminating if and only if the
TRS (F,RUEmb(F)) is terminating. O

Figure 1 shows the relationship between the classes of simplifying (S),
pseudo-simply terminating (PST), simply terminating (ST), and terminating
(T) TRSs. The two dashed areas consist of all TRSs over finite signatures. So
for TRSs over finite signatures the notions of simplifyingness, pseudo-simple
termination, and simple termination coincide. All areas are inhabited. The
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TRS R1 = {a; — a;+1 | i € N} we encountered before. For Ry we can
take {fi(a) — fit1(g(a)) | i« € N}. This TRS, due to Ohlebusch [35, 36], is
simplifying but not pseudo-simply terminating because the extension with the
embedding rules {f;(z) — = | ¢ € N} U {g(x) — =} results in an acyclic TRS
that is not terminating. Clearly R is terminating. Note that not every pseudo-
simply terminating TRS is simply terminating. Later in this section and in the
final section we present examples of such TRSs, among which Rg.

- T ~

7 N
/ \
\ 1
\ /

~ = e
Rs3|Rz2|R1
[ ] [ ] [ ]
—T

Figure 1: Comparison between different notions of simple termination.

Before we can compare simple termination to other restricted notions of
termination we give a semantic characterization of termination. Let F be a
signature. A monotone F-algebra (A, >) consists of a non-empty F-algebra
A= (A,{fa}ter) and a partial order > on the carrier A of A such that every
algebra operation is strictly monotone in all its coordinates, i.e., if f € F has
arity n then

falar,...;aiy ... an) = falar,...,b,... an)

for all ay,...,an,b € A with a; > b (i € {1,...,n}). A monotone F-algebra
(A, >) is said to be well-founded if > is well-founded. Every monotone F-
algebra (A, =) induces a rewrite order >4 on 7 (F,V) as follows: s =4 t if
[a](s) > [a](t) for all assignments a: )V — A. Here [ denotes the homomorphic
extension of a, i.e.,

f a(?) if t is a variable,
[ () = { £ (), [0d(6)) GEE = F(t,. .. tn).

If (A, >) is in addition well-founded then >4 is a reduction order. We say
that a TRS (F,R) and a monotone F-algebra (A, >) are compatible if and
only if (F,R) and >4 are compatible. It is straightforward to show that a
TRS (F,R) is terminating if and only if it is compatible with a well-founded
monotone F-algebra. Simple termination can be characterized semantically as
follows.
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Definition 6.4 A monotone F-algebra is called simple if it is compatible with
the TRS Emb(F, ) for some PWO > on F.

It is straightforward to show that a TRS (F,R) is simply terminating if and
only if it is compatible with a simple monotone F-algebra.

Definition 6.5 A TRS (F,R) is called totally terminating if it is compatible
with a well-founded monotone F-algebra (A, =) such that > is a total order on
the carrier set of A. If the carrier set of A is the set of natural numbers and >~
is the standard order then the TRS is called w-terminating. If in addition the
operation f4 is a polynomial for every f € F, the TRS is called polynomially
terminating.

Total termination has been extensively studied in [11, 12]. In [12] the fol-
lowing non-semantical characterization is proved: a TRS (F,R) is totally ter-
minating if and only if it admits a compatible total reduction order on ground
terms 7 (F). Here F has to be extended by a constant if it does not contain
one.

Clearly every polynomially terminating TRS is w-terminating and every
w-terminating TRS is totally terminating. For both assertions the converse
does not hold, as can be shown by the counterexamples Ry = {f(g(h(z))) —
g(F(h(g(x))))} and Rs = {F(g(x)) — g(f(f(x)))} respectively. An easy ob-
servation ([43]) shows that every totally terminating TRS is pseudo-simply
terminating. Hence every totally terminating TRS over a finite signature is
simply terminating. Again the converse does not hold as is shown by the well-
known example Rg = {f(a) — f(b),g(b) — g(a)}. Somewhat surprisingly, for
infinite signatures total termination does no longer imply simple termination:
we prove that the non-simply terminating TRS (F,R7) is even polynomially
terminating. Here F is the signature {f;,¢; | # € N} and R7 consists of all
rewrite rules f;(gj(z)) — f;j(gj(x)) where i,j € N with ¢ < j. First we prove
that (F,R7) is not simply terminating. Let > be any PWO on F. Consider
the infinite sequence (f;);>1. Since > is a PWO we have f; >~ f; for some i < j.
Hence Emb(F, ) contains the rewrite rule f;(z) — fi(z), yielding the cycle
filgj(z)) — fi(g;(x)) — fi(gj(x)) in the TRS (F, R7UEmb(F,>)). Lemma 5.5
shows that (F,R7) is not simply terminating. For proving polynomial termi-
nation of (F,R7), interpret the function symbols as the following polynomials
over N:

fz’A(SU) = :c?’—i;v2+i23:,
gialz) = w42

for all 7,z € N. Let ¢« € N. The interpretation g; 4 of g; is clearly strictly
monotone in its single argument. The same holds for the interpretation of f;
since

fialw+1) = fiqlx) = (@+1—i)*+22° +a+i
> 0

14



for all x € N. It remains to show that f;4(g; 4(7)) > fj4(gj4(x)) for all
i,j,x € N with i < j. Fix 4, j, z and let y = g; 4,(x) =  + 2j. Then
fia(954(@) = Fialgia(2) = fialy) = fi4()
= y(—))ly—Jj—i)
> 0

since j > i and y > 2j > j + i > 0. We conclude that (F,R7) is polynomially
terminating.

—TT
—wT
—PT
R7|Rs|Ro
R
-~ 7] ‘\\ -~ _—‘\\
g AN //'RG Rs|R4L>
‘/ . ‘/ oo | e \
\\ /' \\ /
AN /// N ///
L R3|R2|R
ST 03 02 01
- PST
—S
—T

Figure 2: Comparison between different notions of termination.

Incorporating total termination (TT), w-termination (wT), and polynomial
termination (PT) into Figure 1 gives us Figure 2; for R3, Rg, and Ry we
simply take the union of R7 with Rg, R4, and R5 respectively. Uwe Waldmann
(personal communication) was the first to prove total termination of a non-
simply terminating system similar to R4, using a much more complicated total
well-founded order.

We conclude this section with a few remarks on (un)decidability. In the
introduction we already mentioned that termination is an undecidable prop-
erty of one-rule TRSs (Dauchet [2]). Caron [1] showed the undecidability of
termination for the class of length-preserving string rewriting systems. Since
for length-preserving string rewriting systems termination and simple termina-
tion coincide, simple termination is an undecidable property. Middeldorp and
Gramlich [30] showed that simple termination is undecidable for one-rule TRSs.
Recently, Zantema [44] showed the undecidability of total termination for finite
TRSs.
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7 Examples of Simplification Orders

In this section we discuss some well-known simplification orders suitable for
mechanizing termination proofs: the recursive path order and the Knuth-Bendix
order. Several extensions of these orders, in particular of the recursive path or-
der, have been proposed; see Steinbach [41] for an extensive overview. The
power of these orders is that they are computable: given a finite TRS it is
decidable and practically feasible to check whether an instance of the order ex-
ists for which all left-hand sides of the TRS are greater than the corresponding
right-hand sides. If such an instance has been found, termination of the TRS
is established. For the recursive path order this decision procedure is straight-
forward from the definition, for the basic version of the Knuth-Bendix order a
procedure is described in [9]. Rather than presenting all variations of the orders
as in [41] we concentrate on the general behaviour of these two typical orders.
In particular we are interested in infinite signatures and in the comparison with
the restricted kinds of termination discussed in the previous section.

Both recursive path order and Knuth-Bendix order depend on an order >
on the signature, the so-called precedence. We restrict to the case where this
precedence is a (strict) partial order; it can easily be generalized to quasi-orders.
Further, a status function 7 is assumed, mapping every f € F to either mul
or lex, for some permutation m on n elements, where n is the arity of f. For
a partial order > on terms the partial order >=7) is defined on sequences of
length n: 7(f) = mul describes multiset extension and 7(f) = lex, describes
lexicographic comparison according to the permutation . Note that any status
satisfies the following monotonicity properties:

o ifs>tthen (...,s,...) =" (.. ,t,..),
o if¢:T(F,V)— T(F,V)isstrictly increasing and (sy, ..., 5,) =" (t1,...,t,)
then (¢(s1), - 9(s0) =D (B(t1), .., Bltn))-

7.1 Recursive Path Order

The recursive path order with only multiset status goes back to Dershowitz [3];
its generalization to arbitrary status was first described in Kamin and Lévy [20].

Definition 7.1 For a precedence > on F and a status 7 the recursive path
order =,po on T (F,V) is recursively defined as follows: s >y, t if and only if
s= f(s1,...,5n) and
® 5;=10rSs; >t for some 1 <i<n,or
o t=g(ti,...,tm), s >rpo t; for all 1 <i < m, and either

o f>g, or

e f=gand (s1,...,8) >—;I§£) (t1,. .. tn).

This relation is well-defined, irreflexive, transitive, and closed under sub-
stitutions and contexts. In particular well-definedness is not trivial: what is
meant by a multiset lifting or a lexicographic lifting of a relation that is still to
be defined? A proof of all these properties using some CPO-theory is given in
Ferreira [10, section 4.2]; there the notion of status is generalized to an arbitrary
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lifting of relations satisfying some preservation properties and a continuity re-
quirement. Anyhow, we conclude that >, is a rewrite order. By definition it
satisfies the subterm property. Hence for finite signatures it is a simplification
order, and thus well-founded.

For infinite signatures at least well-foundedness of the precedence > is nec-
essary for concluding that >, is well-founded: if ¢; > c3 > c3 = - - then also
€1 >rpo €2 >rpo €3 >rpo - -- The next theorem states that well-foundedness of
> is also sufficient. First a lemma.

Lemma 7.2 For every well-founded precedence = on F there exists a PWO 1
on F satisfying = C 3 and >po € Trpo-

Proof (sketch) By structural induction it can be proved that if > C 7 then
>rpo € Trpo- (This well-known property is known as the incrementality of the
recursive path order.) Next one can prove that every well-founded precedence
is contained in a total well-founded precedence; this statement is equivalent to

the Axiom of Choice. Now the lemma follows since every total well-founded
order is a PWO. O

Theorem 7.3 If = is a well-founded precedence then =,p, s a reduction order.

Proof As remarked above >, is a rewrite order. It remains to prove well-
foundedness. This follows directly from Lemma 7.2, Theorem 5.3, and the
following theorem. [

A direct proof of Theorem 7.3, independent of Lemma 7.2 and Kruskal’s
Tree Theorem, is given in Ferreira and Zantema [13].

Theorem 7.4 If = is a PWO on F then >,p, is a simplification order.
Proof It suffices to show that =¢mp € =1po. We already observed that >,
has the subterm property. Hence it remains to show that f(z1,...,2n) >po
9(xiyy .o yxi,)if f = gand 1 < i < -+ < iy < n, where n and m are the
arities of f and ¢g. This is immediate from the definition. [J

Let us call a TRS RPO-terminating if it is compatible with >.,, for some
well-founded precedence > and a status 7. From Lemma 7.2 and Theorem 7.4
we conclude that RPO-termination implies simple termination. It was shown
in Ferreira and Zantema [12] that RPO-termination implies total termination.
If the TRS is finite then RPO-termination implies w-termination, provided all
function symbols have multiset status (Hofbauer [17]).

The latter result does not extend to infinite TRSs. Consider for example
the TRS R consisting of the rules

g(f(=)) — fC--(flg(x))--)
—

n
for all n € N. RPO-termination of R follows by choosing the precedence g > f.
If R is w-terminating then there exist strictly increasing functions f,g:N — N
satisfying g(f(z)) > f™(g(z)) for all n,z € N. From g(f(x)) > g(x) one
concludes f(z) > x, for all x € N. Hence

g(£(0)) > f(9(0)) > f"(9(0)) > -~ > f(9(0))
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for all n, which is impossible in N. Hence R is not w-terminating.
RPO-termination does not imply polynomial termination, not even for one-
rule string rewriting systems. As an example we mention

flg(h(=@))) — g(f(h(g(x))))-

RPO-termination can be shown by the precedence f > g > h. In [43] it was
shown that this TRS is not polynomially terminating.

Conversely, neither w-termination nor polynomial termination implies RPO-
termination: the TRS {f(f(z)) — g(z),g(x) — f(z)} is not RPO-terminating,
while f4(x) = x4+ 2, ga(xz) = x + 3 is a very simple polynomial interpretation
for this system.

7.2 Knuth-Bendix Order

The order we describe here is a generalization of the original Knuth-Bendix or-
der (Knuth and Bendix [22]). An essentially similar version as the one described
here has been mentioned in Dershowitz [5].

A weakly monotone F-algebra (A,) consists of a non-empty F-algebra
A= (A, {fa}rer) and a partial order J on the carrier A of A such that

falar,...,a4...0an) 3 falar,...,b,... an)

for all n-ary f € F, i € {1,...,n}, and ay,...,a,,b € A with a; > b. Here
_ stands for the reflexive closure of 1. The rewrite order 14 is defined as in
Section 6. We write s J 4 t if [o](s) 3 [«](t) for all assignments a:V — A. We
say that (A, 0) has the subterm property if fa(aq,...,a,) 3 a; for every n-ary
feF, ar,...,;ap€ Ayand i € {1,...,n}.

Definition 7.5 For a precedence > on F, a weakly monotone F-algebra (A, J
), and a status 7, the generalized Knuth-Bendiz order >yn, on T (F, V) is defined
as follows: s >ypo t if and only if s = f(s1,...,s,) and
e syt or
e sdat, t=g(ti,..., tm), and either

e f>g,or

o f=gand(s1,...,5n) >££];) (L1, tn).

Theorem 7.6 The relation >y, is a rewrite order.

Proof (sketch) Irreflexivity and transitivity follow by induction on the struc-
ture of terms, using irreflexivity and transitivity of 1, >, and >£g)) . Closure
under contexts of >y, follows from weak monotonicity of (A, 1) and the first
monotonicity property of the status 7. For closure under substitutions we need
the property that [«](to) = [[a] o o](t), which is easily proved by induction on
the term ¢t. Closure under substitutions of =y, then follows from the second
monotonicity property of 7 by induction on the structure of terms. [

Theorem 7.7 If F is finite and (A, 1) satisfies the subterm property then =ino
s a simplification order.

Proof It is easy to see that »yp, inherits the subterm property from (A, ).
Hence >y is a simplification order. [
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In the original Knuth-Bendix order [22] for every f € F a weight w(f) € N
is defined, while w(xz) = N for some positive constant N for every x € V. The
resulting order is a special case of our order by choosing A to be the set of
natural numbers greater than or equal to NV equipped with the usual order >
and the interpretations

fa(ma, ... omp) =w(f)+ Y mi
=1

for all n-ary f € F and mq,...,m, = N, and 7 to be lexicographic (from left
to right) status. For this case one easily verifies

s>t ifand only if V(t) C V(s) and W(s) > W (t),

where W (u) is defined to be the total weight of a term u and V' (u) denotes the
multiset of variables occurrences in u. For the well-definedness of A we need
the requirement that w(c) > N for all constants ¢; for the subterm property
of (A, >) we need the requirement that w(f) > 0 for unary function symbols
f. These are exactly the requirements as they appear in the original Knuth-
Bendix order. Actually, the order defined in [22] is somewhat stronger: for at
most one unary symbol fj it is allowed that w(fy) = 0, provided that fy > g
for all g € F\ {fo}. In this case the clause

o s>yt teV, and s = f¥(t) for some k > 0

is added to the definition of >y, in order to achieve the subterm property.
However, restricted to ground terms the order is not affected by adding this
clause and is still a special case of our definition.

Since >kpo is a simplification order (for terms over finite signatures), it is
well-founded and thus suitable for giving termination proofs. For using it for
mechanizing termination proofs, one needs a procedure to find suitable A, 1,
>, and 7 such that [ >y, 7 for every rewrite rule [ — r. For the restricted
version described above such a procedure has been given in Dick et al. [9], based
on the simplex method from linear programming.

In Theorem 7.7 we don’t require that 11 is a well-founded order on the carrier
of A. Rather, the subterm property of (4, J) turns out to be essential. For
instance, let A consist of the natural numbers with the usual order > and the
interpretations a4 = 1, bg = 0, and faq(m,n) = m + n for m,n € N. This
(weakly) monotone algebra is well-founded but it doesn’t have the subterm
property. Now, if 7(f) compares lexicographically from left to right then for
any precedence > we have the following infinite descending sequence:

f(a7 a) ~kbo f(bv f(a7 a)) ~kbo f(bv f(b7 f(a7 a))) ~kbo " °

An interesting question is how the generalized Knuth-Bendix order behaves for
infinite signatures. We have the following results.

Theorem 7.8 Let > be a well-founded order on F and 1 a well-founded order
on the carrier of A. If (A, 3) has the subterm property then =i is a reduction
order.

Proof We have to prove well-foundedness. Suppose to the contrary that there
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are infinite descending sequences with respect to the order »y,. Let us call a
term well-founded if it is not the first element of an infinite descending sequence.
So there exist non-well-founded terms. We construct a particular infinite de-
scending sequence t1 =kpo t2 >kbo - - + inductively as follows:

For t; we take any non-well-founded term of minimal size. Suppose
we already chose the first n terms ¢y, ...,t, (n > 1). Define t,,11 to
be a smallest non-well-founded term u such that ¢, =ypo u.

Choose a:V — A arbitrarily. Since [a|(t;) 2 [@](ti+1) for all ¢ > 1 and 3
is well-founded, there exists an index N > 1 such that [a](t;) = [&](ti+1) for
all i > N. For every i > N, let f; be the root symbol of t;. Let i > N.
Since [ (t;) = [@](ti+1) we obtain from the definition of >y, that f; = fit1
or fi = fi+1. Since > is a well-founded order on F, there exist M > N and
f € F such that f; = f for all i > M. Let n be the arity of f and write

ti = f(uii,...,un) for i > M. From the definition of >y, we conclude that

(Wis .oy Uin) FE](D{,) (Wit1,15 - -+ Yit1n) (1)

for all 7 > M. We claim that every w;; is well-founded: if u;; is non-well-
founded for some i > M and 1 < j < n then we obtain a contradiction with
the minimality of t; as ¢; >ubo u;; by the subterm property of >ip,. Let
U={u,;|i>Mand1l < j < n}, so the restriction of >y, to U is well-
founded. Since 7(f) is either the multiset extension or a lexicographic extension,
it preserves well-foundedness. Hence the restriction of >-;(JJ;) to U" is well-
founded. This contradicts (1). O

This theorem can also be proved using the more general theorems in [13].
The minimality construction is inspired by the proof of Higman’s Lemma as
given in Appendix B.

The question arises whether >4, is a simplification order. Without further
restrictions this is not the case, even if both (F,>) and (A4, 1) are total orders.
Consider for example the signature F = {f;, g; | ¢ € N} and let A consist of the
natural numbers with the usual order > and the interpretations

fialz) = 2 —ix? 4 ix,

gialr) = z+2i
for all 4,2 € N. In Section 6 we proved that f;(g;(z)) >4 fj(gj(z)) and hence
fi(gj(z)) >xbo fi(gj(x)) for all i < j. Therefore, independent of 7 and >, »yp,
is neither a simplification order nor contained in one.
However, if we require the additive behaviour of the weights as in the original
Knuth-Bendix order, we can conclude that the order is a simplification order.
Before we can state this we need a precise definition of this additive behaviour.

Definition 7.9 A weakly monotone algebra (A, 1) is called additive if there
exists a ¢ € A such that for every m-ary f € F and m-ary g € F with
fale,...,c) D gale,...,c) we have

falay, ... an) 3 galas, ..., ai,)
forall ai,...,ap € Aand 1 <i1 <+ <y < N.
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Clearly the weakly monotone algebra (A, >) induced by the original Knuth-
Bendix order is additive as fa(mi,...,my) = w(f) +my+ -+ my.

Theorem 7.10 Let >~ be a PWO on F and 3 a PWO on the carrier of A. If
(A, D) is additive and has the subterm property then =y, is a simplification
order.

Proof We define a new precedence ' on F as follows: f =’ g if and only
if f > gand falc,...,c¢) 3 gua(e,...,c). Since (F,>) and (A,) are PWOs
we can apply Lemma A.4 in Appendix A, choosing ¢(f) = fa(c,...,c), to
conclude that =’ is again a PWQO. We shall prove that =i}, is a simplification
order with respect to the PWO ='. We already observed that =y, satisfies the
subterm property. Let f =" gand 1 <14y < --+ < i, < n, where n and m are
the arities of f and g, respectively. It remains to show that f(z1,...,2n) >kbo
9(xiy, ..., 2,,). Let @V — A be an arbitrary assignment. Because [ >’ g we
have fa(c,...,c¢) J galc,...,c). Hence, using the fact that A is additive, we
obtain

[a](f(xh'"?xn)) = fA([a](xl)w"?[aKmn))
- gA([Ol] (xfh)? R [CY]((L‘Z'M))
= lof(g(zir, ... 2i,))-

Since we also have f - g we conclude that

flx1,.. o xn) =xbo 9(Tiy,-.. i, ).

Observe that in the above proof we show that >y, is a simplification order
with respect to a restriction of the given precedence . This is essential because
under the conditions of this theorem the inclusion >¢mp € >xbo does not hold
in general. For instance, if f > g for unary function symbols f and g with
w(g) > w(f), then the required inequality f(z) >ipo g(x) does not hold.

This subsection is concluded by comparing the Knuth-Bendix order with
other kinds of termination. Termination of any simply terminating TRS can be
proved by means of the generalized Knuth-Bendix order by choosing A to be
any compatible simple monotone algebra, choosing > to be an arbitrary well-
founded precedence, and applying Theorem 7.8. A TRS is totally terminating
if and only if it is compatible with a generalized Knuth-Bendix order induced
by a total well-founded precedence and a total monotone algebra. The “if”
part was essentially proved in [12]. The “only if” part follows by taking A to
be a compatible total monotone algebra. In case the subterm property is not
satisfied it can easily be forced by taking the lexicographic product with the
algebra in which a term is interpreted by its size.

Of more interest is a decidable version of the Knuth-Bendix order. We take
the original version extended to arbitrary status: a TRS (F,R) is called KBO-
terminating if it is compatible with >y, for some well-founded precedence
>, some status 7, and a monotone F-algebra (A, >) consisting of the natural
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numbers greater than or equal to some N € N, equipped with the usual order
> and the interpretations

falmy,...,my) :w(f)—i—Zmi
i=1

for all n-ary f € F and myq,...,m, > N. Here w(f) has to be non-negative, for
constants it has to be at least N, and for only one unary symbol fj it is allowed
that w(fy) = 0, provided that fy = g for all g € F\ {fo}. In the case that such
an foy occurs, an extra clause is added to definition, as described before. Now
KBO-termination implies both simple and total termination. However, KBO-
termination is incomparable with any of the notions RPO, w, and polynomial
termination, as shown by the following two examples. The TRS {f(g(x)) —
g(g(f(x)))} is not KBO-terminating, but it is RPO-terminating by choosing
f > g, and polynomially (and hence w-)terminating by choosing f4(z) = 3x
and ga(x) =z + 1. The TRS {f(g(x)) — g(f(f(x)))} is KBO-terminating by
choosing w(f) =0, w(g) =1, and f > g, but it is not w-terminating (and hence
not polynomially terminating) as was shown in [43].

8 Modularity

In this section we explain why simple termination has a better modular be-
haviour than pseudo-simple termination. We refer to Ohlebusch [37] for a recent
overview of the area of modularity.

Definition 8.1 A property of TRSs is called modular if the union of two TRSs
that do not share function symbols inherits the property from the two TRSs.

Toyama [42] showed that termination is not modular by means of the fol-
lowing celebrated example:

Rl = {f(a,b,x) _)f(ma$a‘r)}a

7€2 = {g(xay) - .’E,g(ﬂ?,y) - y}
Kurihara and Ohuchi [27] observed that R; is not simplifying. They proved
the following result.

Theorem 8.2 Simplifyingness is modular. O

Hence (pseudo-)simple termination is modular for TRSs over finite signa-
tures. Gramlich [15] showed that pseudo-simple termination is modular for
finitely branching TRSs. A TRS (F,R) is called finitely branching if the set
{t | s —gr t} of one-step reducts of s is finite, for any term s € 7T (F,V).
Ohlebusch [36] extended this result to arbitrary TRSs.

Theorem 8.3 Pseudo-simple termination is modular. [

We have the following result. We refrain from giving the proof because later
we prove a more general result.
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Theorem 8.4 Simple termination is modular. [

Because of the disjointness requirement, modularity is a rather restricted
property. If we allow the sharing of certain function symbols among TRSs, we
might hope for more useful results.

Definition 8.5 With every TRS (F,R) we associate the set D = {root(l) |
1 —r € R} of defined symbols and the set C = F \ D of constructors. We say
that two TRSs (F1,R1) and (Fa, R2) share constructors if Dy, Dy, and C; Uy
are pairwise disjoint. A property of TRSs is called constructor sharing modular
if the union of two TRSs that share constructors inherits the property from the
two TRSs.

A constructor sharing modular property is clearly modular. Kurihara and
Ohuchi [28] were the first to study constructor sharing modularity. They proved
the following result.

Theorem 8.6 Simplifyingness is constructor sharing modular. [

So (pseudo-)simple termination is constructor sharing modular for TRSs
over finite signatures. Gramlich [15] showed that pseudo-simple termination
is constructor sharing modular for finitely branching TRSs. Surprisingly, the
latter result does not extend to arbitrary TRSs, as shown by the following
example of Ohlebusch [36]:

R1 = {filci,z) = fiya(w,2) [ i € N},
Re = {a—c¢|ieN}L
Both TRSs are pseudo-simply terminating. Actually they are polynomially

terminating. For R this is obvious, for R this can be shown by the following
polynomials over N:

fialzy) = w+y® —i® +i%y,
cia = PP+2i+2
for all 4, z,y € N. The two TRSs share constructors ¢; for ¢ € N, but their union
is not (pseudo-simply) terminating:

fl(claa) —R1 fQ(CL,CL) —Ro f2(627a’) —R1 f3(a,a) —Ro "
Observe that Ro is not finitely branching. We claim that R; is not simply

terminating. Let > be an arbitrary PWO on the signature F of Ri. We
must have f; > f; for some i < j. Hence Emb(F, ) contains the rewrite rule

fi(xz,y) — fi(z,y). Now consider the term ¢t = fi(c;, fi(cit1, fi(-. . ¢i-1)))-
Since ¢ —>2’mb(f) e for all i < k < j—1, the term f;(¢,t) is cyclic in the TRS

Ry U Emb(F,~):
filt,t) =T filci,t) = firr(t,t) =T - — fi(t,t) — filt,t).

According to Lemma 5.5 R4 is not simply terminating. We show below that
simple termination is constructor sharing modular for arbitrary TRSs. Actually,
we show a stronger result.
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Definition 8.7 Let (F,R) be a TRS and F’ be a set of function symbols. We
denote the set {I — r € R | root(l) € F'} by R | F'. So R | F' consists of those
rules of R that define the symbols in F'. We say that two TRSs (Fi, R1) and
(F2, R2) are composable if Ry | Fo = Ra | F1. A property of TRSs is called
decomposable if the union of two composable TRSs inherits the property from
the two TRSs.

This definition originates from Middeldorp and Toyama [31]. There it was
defined for constructor systems. A constructor system is a TRS with the prop-
erty that the arguments ti,...,¢, of the left-hand side f(¢i1,...,t,) of every
rewrite rule do not contain defined symbols. It is not difficult to see that
composable TRSs may share not only constructors but also defined symbols,
provided the common defined symbols have the same defining rewrite rules in
both TRSs. Hence every decomposable property is constructor sharing modu-
lar. Ohlebusch [37, 38] extended Theorem 8.6 to composable TRSs.

Theorem 8.8 Simplifyingness is decomposable. [

Very recently Kurihara and Ohuchi [29] showed that pseudo-simple termina-
tion is a decomposable property of finitely branching TRSs, thereby extending
Gramlich’s result.

Theorem 8.9 Simple termination is decomposable.

Proof Let (F1,R1) and (F2, R2) be composable and simply terminating TRSs.
According to Lemma 5.5 there exist PWOs =1 on F; and >3 on F5 such that
the TRSs R1 U Emb(Fy, =1) and Re U Emb(F2, 1) are acyclic. For i € {1,2}
let 3% be the restriction of >=; to F; N F2 and TJ; the restriction of >; to
Fi \ (F1 N F2). These four relations are clearly PWOs. Because PWOs are
closed under intersection (Corollary A.5), the relation J, = 3¢ N 3§ is a PWO
on F1 N Fy. Let I be the (disjoint) union of J1, J9, and .. It is easy to
see that 3 is a PWO on the combined signature F = F; U Fa. We claim
that the TRS R; U Ro U Emb(F, 1) is acyclic, thereby establishing the simple
termination of R U R2 using Lemma 5.5. Clearly Emb(F, J) is the union of
Emb* (F1, 1) U Emb* (Fa, J2) U Emb* (F1 N Fa, Jc) and Emb(F). Define the
TRSs (F1,S81) and (Fa, S2) as follows:

ST = R U 5mb*(.7:1, :Il) U 5mb*(f1 N Fo, :IC),
Sy = Ry U 5mb*(.7'—2, :|2) U 5mb*(.¢1 N Fo, :IC).

We have S; U Emb(F;) € R; U Emb(F;, ;) for ¢ € {1,2}. Hence S; and Sy are
simplifying. They are also composable:

S1|Fr = Ri| FoUEmb*(Fi,01) | Fo UEmMb*(Fi N Fo, 1e) | Fo
R1 | Fo U@ UEmMb*(F N Fa, Je)

Ro | F1 U@ UEMb*(Fy N Fo, J¢e)

Ro | F1 UEmMb*(Fa, o) | F1 UEmMb* (F1 N Fa, ) | Fi
= S| F.
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According to Theorem 8.8 &1 U S is simplifying. Lemma 6.2 shows that S U
Sy U Emb(F) is acyclic. Since §; U Sy U Emb(F) = Ry URe U Emb(F, ) we
are done. [J

Concerning the other restricted termination notions introduced in Section 6,
it is very easy to see that polynomial and w-termination are modular. At present
it is an open problem whether total termination is a modular property. Ferreira
and Zantema [11] showed that the disjoint union of totally terminating TRSs is
totally terminating whenever one the systems lacks duplicating rules. A rewrite
rule [ — r is called duplicating if its right-hand side r contains more occurrences
of some variable than its left-hand side [. Using completely different techniques,
Rubio [40] obtained the same result. None of the properties polynomial, w,
and total termination is constructor sharing modular, as shown by partitioning
the non-totally terminating TRS R = {f(a) — f(b),g(b) — g(a)} into the
polynomially terminating and constructor sharing TRSs Ry = {f(a) — f(b)}
and Ro = {g(b) — g(a)}.

Recently hierarchical combinations of TRSs entered the spotlight of modu-
larity research [6, 25, 23, 24]. Krishna Rao [23] showed that simplifyingness is
modular for a certain class of hierarchical combinations. This result can be used
to prove the modularity of simple termination for the same class of hierarchi-
cal combinations, similar to the proof of Theorem 8.8 (Krishna Rao, personal
communication).
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A Partial Well-Orders

Throughout this appendix and the next we deal with infinite sequences of some
kind. We find it convenient to abbreviate an infinite sequence (ai)@l = aq,
ag, as, ... to a. Moreover, we denote (f(a;))i>1 by f(a), (ay@))i=1 by ay, and
(ai)ign by aA>np.-

Definition A.1 Let > be a partial order on a set A and suppose that a is an
infinite sequence of elements of A. The sequence a is called good if there exist
indices 1 < 7 < j with a; < aj, otherwise it is called bad. We say that a is
a chain if a; < a;41 for all ¢ > 1. We say that a contains a chain if it has a
subsequence that is a chain. The sequence a is called an antichain if neither
a; < a;j nor a; <X a;, for all 1 <@ < j.

Lemma A.2 Let >~ be a partial order on a set A. The following statements
are equivalent.
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(1) Every partial order that extends = (including > itself) is well-founded.
(2) Every infinite sequence over A is good.
(3)
(

(1) = (2) Suppose a is a bad sequence. Define 3 = (= U {(a;,a;+1) | i > 1})T.
Assume a J a for some a € A. Since > is irreflexive there is a non-empty
sequence of numbers 41, ...,4, such that

= Qjyy Qg 41 = Qs Qig41 = Qigy - vy Qg 141 = Ay G +1 = a.

Since a is bad, a; = a; is only possible for ¢ < j. Hence we obtain the
impossible

<t +1<ie<io+1<iz< - <ip1+1<0, <ip+1<0.

We conclude that 7 is irreflexive. By definition it is transitive, hence it is
a partial order extending . However, since a; Jag Jasz 1 ---, it is not
well-founded.

(2) = (3) Let a be any infinite sequence over A. Consider the subsequence
consisting of all elements a; with the property that a; < a; holds for no
j > i. If this subsequence is infinite then it is a bad sequence, contradicting
(2). Hence it is finite, and thus there exists an index N > 1 such that for
every ¢ > N there exists a j > 4 with a; < aj. Define inductively

(b(i)—{N ifi=1,
min {] ‘ j> ¢(’L — 1) and Ag(i—1) < aj} if i > 1.
Now ay is a chain.

(3) = (4) If = is not well-founded then there exists an infinite sequence
ai = ag = ---. Clearly a; < a; doesn’t hold for any 1 < ¢ < j. Hence
this sequence doesn’t contain a chain. If > admits an antichain then this
antichain is an infinite sequence not containing a chain.

(4) = (1) For a proof by contradiction, let > be a well-founded order that
doesn’t satisfy (1). So there is an extension 1 of > that is not well-founded.
Hence there exists an infinite sequence a; 3 ag 3 ---. Since > is well-
founded, the sequence a contains an element a; with the property that for
no j >4 a; > a; holds. Actually, a contains infinitely many such elements.
We claim that the infinite subsequence a, consisting of those elements is
an antichain (with respect to >). Let 1 < < j. By construction Ag(iy =
ag(j) is impossible. If ay) < ag(;) then also ag;y T ag(j), contradicting
ag(i) I ag(;)- Hence > admits a anti-chain.

O

Definition A.3 A partial order > on a set A is called a partial well-order
(PWO for short) if it satisfies one of the four equivalent assertions of Lemma A.2.

By definition every PWO is a well-founded order, but the reverse does not
hold. For instance, the empty relation on an infinite set is a well-founded order
but not a PWO. Clearly every total well-founded order (or well-order) is a
PWO. Any partial order extending a PWO is a PWO. The following lemma
states how new PWOs can be obtained by restricting existing PWOs.
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Lemma A.4 Let > be a PWO on a set A and let 3 be a PWO on a set B. Let
p: A — B be any function. The partial order =" on A defined by a =" b if and
only if a = b and p(a) 3 ¢(b) is a PWO.

Proof Let a be any infinite sequence over A. Since > is a PWO this sequence
admits a chain as. Since 3 is a PWO on B there exist 1 < ¢ < j with
p(ags)) E @lagy). Transitivity of < yields aguy < ag(;). Hence aguy <" ag(jy,
while ¢(i) < ¢(j). We conclude that a is a good sequence with respect to >/,
so =’ is a PWO. O

Corollary A.5 The intersection of two PWQOs on a set A is a PWO on A.
Proof Choose the function ¢ in Lemma A.4 to be the identity on A. [

B Kruskal’s Tree Theorem

For the sake of completeness, below we present a proof of this beautiful theo-
rem, even though it is very similar to the proof of the Kruskal’s Tree Theorem
formulated in terms of well-quasi-orders (see e.g. Gallier [14]). First we show a
related result for strings, known as Higman’s Lemma (Higman [16]).

Definition B.1 Let > be a partial order on a set A. We define a relation >*
on A* as follows: if wi = ajas---a, and wyg = b1by---b,, are elements of A*
then wy =* ws if and only if wy # wse and either m = 0, or n > m > 0 and
there exist indices i1,...,%,, such that 1 <i; < --- < s < n and ai; = b; for
all1 <7 <m.

The next result can be viewed as an alternative definition of =*.

Lemma B.2 Let = be a partial order on a set A. The relation =" is the least
partial order 1 on A* satisfying the following two properties:

(1) wiaws Jwiws for all wi,ws € A* and a € A,

(2) wrawe Jwibwsy for all wy,we € A* and a,b € A with a > b.

Proof First we show that >=* is a partial order. Irreflexivity is obvious. Let
Wy = a1 Ay, wo = by by, and wg = c¢1---¢ be elements of A* such that
wy =" wy =* ws. If | =0 then m > 0 (because wy # w3) and n = m > 0.
Hence wy =* ws. Suppose [ > 0. We have n > m > [. There exist indices

i1,...,% and ji,...,Jm such that 1 < 43 < --- < 4 < m, b;, *» ¢ for all
I1<ESL 1< 51 < < jm<n,and aj, = b, for all 1 < k < m. Since
1 < g < -+ < Jj <nand aj, 7 bi, = c for all 1 < k < [, we have

wy =% ws. This concludes the proof of the transitivity of >=*. It is very easy
to see that >-* satisfies properties (1) and (2). Conversely, let 7 be any partial
order on A* that satisfies properties (1) and (2). We will show that =* C .
Suppose w1 = a1 ---an = b1 by, = wo. If m = 0 then n > 0 and hence the
sequence wy = ajp - Ay Jag--ay J--- Jay &= wsy is non-empty, showing
that w1 T we. If n > m > 0 then there exist indices i1,...,4, such that
1< <---<im<nandaij =0b; for all 1 < j <m. Let w3 = a;, ---a;,,. We
have w; 3 w3 by successively removing elements a; from w; whose index ¢ does
not belong to the set {i1,...,imn}. (Clearly wy = ws if and only if n = m.) We
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have ws J wo by replacing a;, with b; whenever aj; = bj. Therefore w1 3 wa
and since wi # wy we obtain wy; J wy. [J

Lemma B.3 (Higman’s Lemma) If > is a PWO on a set A then =* is a PWO
on A*.
Proof The following proof is essentially due to Nash-Williams [34]. We have
to show that there are no bad sequences over A*. Suppose to the contrary that
there exist bad sequences over A*. We construct a minimal bad sequence w as
follows:

Suppose we already chose the first n—1 strings w, ..., w,—1. Define
wy, to be a shortest string such that there are bad sequences that
start with wq, ..., wy.

Because ¢ <* w for all w € A*, we have w; # ¢ for all i > 1. Hence we
may write w; = a;v; (i > 1). Since > is a PWO on A, the infinite sequence
a contains a chain, say a,. Because vg(y) is shorter than wg), the sequence
W1, -, We(1)—1, Vg must be good. Clearly w; <™ w; (1 <i<j<¢(l)—1)is
impossible as (w;)i>1 is bad. Likewise, w; <™ vy;) (1 <@ < @(1) —1 and 1 < j)
contradicts the badness of w since V() <* We(5) and therefore w; <* We(5)-
Hence we must have vg;) <™ vg(;) for some 1 < ¢ < j. Combining this with
Api) = Qg(y) easily yields We(i) = Gep(i) V(i) <* Ap(5)Vs(5) = We(5)s contradicting
the badness of w. We conclude that there are no bad sequences over A*. [

Proof of Kruskal’s Tree Theorem—General Version The proof, essen-
tially due to Nash-Williams [34], has the same structure as the proof of Higman’s
Lemma. We have to show that there are no bad sequences of terms in 7 (F).
Suppose to the contrary that there exist bad sequences of ground terms. We
construct a minimal bad sequence t as follows:

Suppose we already chose the first n — 1 terms ¢q,...,t,—1. Define
tn to be a smallest (with respect to size) term such that there are
bad sequences that start with t1,...,¢,.

For every ¢ > 1, let f; be the root symbol of ¢; and let A; be the set of arguments
of t; (if ¢; is a constant then A; = &). Moreover, let w; be the string of arguments
(from left to right) of ;. Finally, let A = |J,~; 4.

We claim that >emp is a PWO on the subset A of T(F). For a proof
by contradiction, suppose a is a bad sequence over A. Let a; € Ag. Since
A = U;:ll A; is a finite set and all elements of a are different, only finitely
many elements of a belong to A’. Thus there exists an index [ > 1 such that
a; € A\ A’ for all i > . Because a; is a proper subterm of t;, the sequence
t1,...,tk—1,a1,a5; must be good. Clearly #; <emb t; (1 < i< j<k—1)is
impossible as t is bad. Likewise, ¢; <emp @5 (1 <i<k—1and j=1or!l<j)
contradicts the badness of t since a; <emp tm for some m > k—recall that aq
is a proper subterm of t; and if j > [ then a; € A\ A —and thus ¢; <emp tj.
Hence we must have a; <emp @ for some 1 < i < j (and 7,5 ¢ {2,...,1—1}),
contradicting the badness of a. Hence >¢pp, is a PWO on A. From Higman’s
Lemma we infer that >~* , is a PWO on A*.
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Since = is a PWO on F, the infinite sequence f contains a chain, say fy.
Consider the infinite sequence wg over A*. Since > . is a PWO on A*, we
have wg;y <5, We(y) for some 1 <@ < j. A straightforward case analysis
reveals that fo) < fo@) and wei) Ko, Wes) IMPLY L) Semb to(j)- Hence we
obtained a contradiction with the badness of t. We conclude that there are no
bad sequences over 7 (F). O

Kruskal’s Tree Theorem is usually presented in terms of WQOs. A well-
quasi-order (WQQO) is a preorder that contains a PWO. This definition is equiv-
alent to all other definitions of WQO found in the literature. The WQO ver-
sion of Kruskal’s Tree Theorem is not more powerful than the PWO version:
notwithstanding the fact that the strict part of a WQO is not necessarily a
PWO, it is very easy to show that the WQO version of Kruskal’s Tree Theorem
is a corollary of Theorem 5.1, and vice-versa.

Let = be a PWO on a signature F. A natural question is whether we
can restrict >=emnp while retaining the property of being a PWO on 7 (F). In
particular, do we really need all rewrite rules in Emb(F, >)? In case there is
a uniform bound on the arities of the function symbols in F, we can greatly
reduce the set Emb(F, ). That is, suppose there exists an N > 0 such that
all function symbols in F have arity less than or equal to N. Now we can
apply Lemma A.4: choose ¢ to be the function that assigns to every function
symbol its arity and take I to be the empty relation on {1,...,N}. Hence
the partial order =’ on F defined by f =’ g if and only if f and g have the
same arity and f > g is a PWO. The corresponding set Emb(F, ') consists,
besides all rewrite rules of the form f(x1,...,2,) — x;, of all rewrite rules
flx1,...,2n) — g(z1,...,2,) with f and g n-ary function symbols such that
f > g. This construction does not work if the arities of function symbols in F
are not uniformly bounded. Consider for instance a signature F consisting of
a constant a and n-ary function symbols f,, for every n > 1 (and let > be any
PWO on F). The sequence

fl(a)v fQ(av a)v f3(a7 a, a)a

is bad with respect to >/ .. Finally, one may wonder whether the restriction

to all rewrite rules f(z1,...,2n) — g(Tit1, ..., Titm) With f an n-ary function
symbol, g an m-ary function symbol, n > m >0, n—m > ¢ >0, and f > g is
sufficient. This is also not the case, as can be seen by extending the previous
signature with a constant b and considering the sequence

f2(b,b), f3(b,a,b), fa(b,a,a,b), ....

Of course, if the signature F is finite then the rules of Emb(F) are sufficient
since the empty relation is a PWO on any finite set.
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