
Eliminating Dummy Elimination

Jürgen Giesl1 and Aart Middeldorp2

1 Computer Science Department
University of New Mexico, Albuquerque, NM 87131, USA

giesl@cs.unm.edu

2 Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan

ami@is.tsukuba.ac.jp

Abstract. This paper is concerned with methods that automatically
prove termination of term rewrite systems. The aim of dummy elimina-
tion, a method to prove termination introduced by Ferreira and Zantema,
is to transform a given rewrite system into a rewrite system whose termi-
nation is easier to prove. We show that dummy elimination is subsumed
by the more recent dependency pair method of Arts and Giesl. More pre-
cisely, if dummy elimination succeeds in transforming a rewrite system
into a so-called simply terminating rewrite system then termination of
the given rewrite system can be directly proved by the dependency pair
technique. Even stronger, using dummy elimination as a preprocessing
step to the dependency pair technique does not have any advantages
either. We show that to a large extent these results also hold for the
argument filtering transformation of Kusakari et al.

1 Introduction

Traditional methods to prove termination of term rewrite systems are based
on simplification orders, like polynomial interpretations [6, 12, 17], the recursive
path order [7, 14], and the Knuth-Bendix order [9, 15]. However, the restriction
to simplification orders represents a significant limitation on the class of rewrite
systems that can be proved terminating. Indeed, there are numerous important
and interesting rewrite systems which are not simply terminating, i.e., their ter-
mination cannot be proved by simplification orders. Transformation methods
(e.g. [5, 10, 11, 16, 18, 20–22]) aim to prove termination by transforming a given
term rewrite system into a term rewrite system whose termination is easier to
prove. The success of such methods has been measured by how well they trans-
form non-simply terminating rewrite systems into simply terminating rewrite
systems, since simply terminating systems were the only ones where termination
could be established automatically.

In recent years, the dependency pair technique of Arts and Giesl [1, 2] emerged
as the most powerful automatic method for proving termination of rewrite sys-
tems. For any given rewrite system, this technique generates a set of constraints
which may then be solved by standard simplification orders. In this way, the

power of traditional termination proving methods has been increased signifi-
cantly, i.e., the class of systems where termination is provable mechanically by
the dependency pair technique is much larger than the class of simply terminat-
ing systems. In light of this development, it is no longer sufficient to base the
claim that a particular transformation method is successful on the fact that it
may transform non-simply terminating rewrite systems into simply terminating
ones. In this paper we compare two transformation methods, dummy elimination
[11] and the argument filtering transformation [16], with the dependency pair
technique. With respect to dummy elimination we obtain the following results:

1. If dummy elimination transforms a given rewrite system R into a simply
terminating rewrite system R′, then the termination of R can also be proved
by the most basic version of the dependency pair technique.

2. If dummy elimination transforms a given rewrite system R into a DP simply
terminating rewrite system R′, i.e., the termination of R′ can be proved by
a simplification order in combination with the dependency pair technique,
then R is also DP simply terminating.

These results are constructive in the sense that the constructions in the proofs
are solely based on the termination proof of R′. This shows that proving termi-
nation of R directly by dependency pairs is never more difficult than proving
termination of R′. The second result states that dummy elimination is useless
as a preprocessing step to the dependency pair technique. Not surprisingly, the
reverse statements do not hold. In other words, as far as automatic termination
proofs are concerned, dummy elimination is no longer needed.

The recent argument filtering transformation of Kusakari, Nakamura, and
Toyama [16] can be viewed as an improvement of dummy elimination by incor-
porating ideas of the dependency pair technique. We show that the first result
above also holds for the argument filtering transformation. The second result
does not extend in its full generality, but we show that under a suitable restric-
tion on the argument filtering applied in the transformation of R to R′, DP
simple termination of R′ also implies DP simple termination of R.

The remainder of the paper is organized as follows. In the next section we
briefly recall some definitions and results pertaining to termination of rewrite
systems and in particular, the dependency pair technique. In Section 3 we relate
the dependency pair technique to dummy elimination. Section 4 is devoted to
the comparison of the dependency pair technique and the argument filtering
transformation. We conclude in Section 5.

2 Preliminaries

An introduction to term rewrite systems (TRSs) can be found in [4], for example.
We first introduce the dependency pair technique. Our presentation combines
features of [2, 13, 16]. Apart from the presentation, all results stated below are
due to Arts and Giesl. We refer to [2, 3] for motivations and proofs. Let R
be a (finite) TRS over a signature F . As usual, all root symbols of left-hand

sides of rewrite rules are called defined, whereas all other function symbols are
constructors. Let F] denote the union of F and {f] | f is a defined symbol of R}
where f] has the same arity as f . Given a term t = f(t1, . . . , tn) ∈ T (F ,V) with
f defined, we write t] for the term f](t1, . . . , tn). If l→ r ∈ R and t is a subterm
of r with defined root symbol then the rewrite rule l] → t] is called a dependency
pair ofR. The set of all dependency pairs ofR is denoted by DP(R). In examples
we often write F for f].

For instance, consider the following well-known one-rule TRS R from [8]:

f(f(x))→ f(e(f(x))) (1)

Here f is defined, e is a constructor, and DP(R) consists of the two dependency
pairs

F(f(x))→ F(e(f(x))) F(f(x))→ F(x)

An argument filtering [2] for a signature F is a mapping π that associates with
every n-ary function symbol an argument position i ∈ {1, . . . , n} or a (possibly
empty) list [i1, . . . , im] of argument positions with 1 6 i1 < · · · < im 6 n.
The signature Fπ consists of all function symbols f such that π(f) is some list
[i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering π induces
a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =

t if t is a variable,
π(ti) if t = f(t1, . . . , tn) and π(f) = i,

f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im].

Thus, an argument filtering is used to replace function symbols by one of their
arguments or to eliminate certain arguments of function symbols. For example, if
π(f) = π(F) = [1] and π(e) = 1, then we have π(F(e(f(x)))) = F(f(x)). However,
if we change π(e) to [], then we obtain π(F(e(f(x)))) = F(e).

A preorder (or quasi-order) is a transitive and reflexive relation. A rewrite
preorder is a preorder % on terms that is closed under contexts and substitutions.
A reduction pair [16] consists of a rewrite preorder % and a compatible well-
founded order > which is closed under substitutions. Here compatibility means
that the inclusion % · > ⊆ > or the inclusion > · % ⊆ > holds. In practice,
> is often chosen to be the strict part � of % (or the order where s > t iff
sσ � tσ for all ground substitutions σ). The following theorem presents the
(basic) dependency pair approach of Arts and Giesl.

Theorem 1. A TRS R over a signature F is terminating if and only if there
exists an argument filtering π for F] and a reduction pair (%, >) such that
π(R) ⊆ % and π(DP(R)) ⊆ >.

Because rewrite rules are just pairs of terms, π(R) ⊆ % is a shorthand for
π(l) % π(r) for every rewrite rule l → r ∈ R. In our example, when using
π(e) = [], the inequalities f(f(x)) % f(e), F(f(x)) > F(e), and F(f(x)) > F(x)
resulting from the dependency pair technique are satisfied by the recursive path
order, for instance. Hence, termination of this TRS is proved.

Rather than considering all dependency pairs at the same time, like in the
above theorem, it is advantageous to treat groups of dependency pairs separately.
These groups correspond to clusters in the dependency graph of R. The nodes
of the dependency graph are the dependency pairs of R and there is an arrow
from node l]1 → t]1 to l]2 → t]2 if there exist substitutions σ1 and σ2 such that
t]1σ1 →∗R l]2σ2. (By renaming variables in different occurrences of dependency
pairs we may assume that σ1 = σ2.) The dependency graph of R is denoted by
DG(R). We call a non-empty subset C of dependency pairs of DP(R) a cluster
if for every two (not necessarily distinct) pairs l]1 → t]1 and l]2 → t]2 in C there
exists a non-empty path in C from l]1 → t]1 to l]2 → t]2.

Theorem 2. A TRS R is terminating if and only if for every cluster C in
DG(R) there exists an argument filtering π and a reduction pair (%, >) such
that π(R) ⊆ %, π(C) ⊆ % ∪ >, and π(C) ∩> 6= ∅.

Note that π(C) ∩> 6= ∅ denotes the situation that π(l]) > π(t]) for at least
one dependency pair l] → t] ∈ C.

In the above example, the dependency graph only contains an arrow from
F(f(x)) → F(x) to itself and thus {F(f(x)) → F(x)} is the only cluster. Hence,
with the refinement of Theorem 2 the inequality F(f(x)) > F(e) is no longer nec-
essary. See [3] for further examples which illustrate the advantages of regarding
clusters separately.

Note that while in general the dependency graph cannot be computed au-
tomatically (since it is undecidable whether t]1σ →∗R l]2σ holds for some σ),
one can nevertheless approximate this graph automatically, cf. [1–3, “estimated
dependency graph”]. In this way, the criterion of Theorem 2 can be mechanized.

Most classical methods for automated termination proofs are restricted to
simplification (pre)orders, i.e., to (pre)orders satisfying the subterm property
f(. . . t . . .) � t or f(. . . t . . .) % t, respectively. Hence, these methods cannot
prove termination of TRSs like (1), as the left-hand side of its rule is embedded
in the right-hand side (so the TRS is not simply terminating). However, with
the development of the dependency pair technique now the TRSs where an
automated termination proof is potentially possible are those systems where
the inequalities generated by the dependency pair technique are satisfied by
simplification (pre)orders.

A straightforward way to generate a simplification preorder � from a sim-
plification order � is to define s � t if s � t or s = t, where = denotes syn-
tactic equality. Such relations � are particularly relevant, since many existing
techniques generate simplification orders rather than preorders. By restricting
ourselves to this class of simplification preorders, we obtain the notion of DP
simple termination.

Definition 1. A TRS R is called DP simply terminating if for every cluster C
in DG(R) there exists an argument filtering π and a simplification order � such
that π(R∪ C) ⊆ � and π(C) ∩ � 6= ∅.

Simple termination implies DP simple termination, but not vice versa. For
example, the TRS (1) is DP simply terminating, but not simply terminating. The
above definition coincides with the one in [13] except that we use the real de-
pendency graph instead of the estimated dependency graph of [1–3]. The reason
for this is that we do not want to restrict ourselves to a particular computable
approximation of the dependency graph, for the same reason that we do not
insist on a particular simplification order to make the conditions effective.

3 Dummy Elimination

In [11], Ferreira and Zantema defined an automatic transformation technique
which transforms a TRS R into a new TRS dummy(R) such that termination
of dummy(R) implies termination of R. The advantage of this transformation
is that non-simply terminating systems like (1) may be transformed into simply
terminating ones. Thus, after the transformation, standard techniques may be
used to prove termination.

Below we define Ferreira and Zantema’s dummy elimination transformation.
While our formulation of dummy(R) is different from the one in [11], it is easily
seen to be equivalent.

Definition 2. Let R be a TRS over a signature F . Let e be a distinguished
function symbol in F of arity m > 1 and let � be a fresh constant. We write
F� for (F \ {e}) ∪ {�}. The mapping cap: T (F ,V) → T (F�,V) is inductively
defined as follows:

cap(t) =

t if t ∈ V,
� if t = e(t1, . . . , tm),
f(cap(t1), . . . , cap(tn)) if t = f(t1, . . . , tn) with f 6= e.

The mapping dummy assigns to every term in T (F ,V) a subset of T (F�,V), as
follows:

dummy(t) = {cap(t)} ∪ {cap(s) | s is an argument of an e symbol in t}.
Finally, we define

dummy(R) = {cap(l)→ r′ | l→ r ∈ R and r′ ∈ dummy(r)}.
The mappings cap and dummy are illustrated in Figure 1, where we assume

that the numbered contexts do not contain any occurrences of e. Ferreira and
Zantema [11] showed that dummy elimination is sound.

Theorem 3. Let R be a TRS. If dummy(R) is terminating then R is termi-
nating.

For the one-rule TRS (1), dummy elimination yields the TRS consisting of
the two rewrite rules

f(f(x))→ f(�) f(f(x))→ f(x)

1

e

2 3

e

4 5

e

6 7
t =

1

� �

cap(t) =

2

3

�

4

5

6

7

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;
= dummy(t)

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
Fig. 1. The mappings cap and dummy.

In contrast to the original system, the new TRS is simply terminating and its ter-
mination is easily shown automatically by standard techniques like the recursive
path order. Hence, dummy elimination can transform non-simply terminating
TRSs into simply terminating ones. However, as indicated in the introduction,
nowadays the right question to ask is whether it can transform non-DP simply
terminating TRSs into DP simply terminating ones. Before answering this ques-
tion we show that if dummy elimination succeeds in transforming a TRS into a
simply terminating TRS then the original TRS is DP simply terminating. Even
stronger, whenever termination of dummy(R) can be proved by a simplification
order, then the same simplification order satisfies the constraints of the depen-
dency pair approach. Thus, the termination proof using dependency pairs is not
more difficult or more complex than the one with dummy elimination.

Theorem 4. Let R be a TRS. If dummy(R) is simply terminating then R is
DP simply terminating.

Proof. Let F be the signature of R. We show that R is DP simply terminating
even without considering the dependency graph refinement. So we define an
argument filtering π for F] and a simplification order � on T (F]π,V) such that
π(R) ⊆ � and π(DP(R)) ⊆ �. The argument filtering π is defined as follows:
π(e) = [] and π(f) = [1, . . . , n] for every n-ary symbol f ∈ (F \{e})]. Moreover,
if e is a defined symbol, we define π(e]) = []. Let = be any simplification order
that shows the simple termination of dummy(R). We define the simplification
order � on T (F]π,V) as follows: s � t if and only if s′ = t′ where (·)′ denotes the
mapping from T (F]π,V) to T (F�,V) that first replaces every marked symbol F
by f and afterwards replaces every occurrence of the constant e by �. Note that �
and = are essentially the same. It is very easy to show that π(t)′ = π(t])′ = cap(t)
for every term t ∈ T (F ,V). Let l→ r ∈ R. Because cap(l)→ cap(r) is a rewrite
rule in dummy(R), we get π(l)′ = cap(l) = cap(r) = π(r)′ and thus π(l) � π(r).
Hence π(R) ⊆ � and thus certainly π(R) ⊆ �. Now let l] → t] be a dependency
pair of R, originating from the rewrite rule l → r ∈ R. From t E r (E denotes
the subterm relation) we easily infer the existence of a term u ∈ dummy(r)
such that cap(t) E u. Since cap(l)→ u is a rewrite rule in dummy(R), we have

π(l])′ = cap(l) = u. The subterm property of = yields u w cap(t) = π(t])′. Hence
π(l])′ = π(t])′ and thus π(l]) � π(t]). We conclude that π(DP(R)) ⊆ �. ut

The previous result states that dummy elimination offers no advantage com-
pared to the dependency pair technique. On the other hand, dependency pairs
succeed for many systems where dummy elimination fails [1, 2] (an example is
given in the next section). One could imagine that dummy elimination may
nevertheless be helpful in combination with dependency pairs. Then to show
termination of a TRS one would first apply dummy elimination and afterwards
prove termination of the transformed TRS with the dependency pair technique.
In the remainder of this section we show that such a scenario cannot handle
TRSs which cannot already be handled by the dependency pair technique di-
rectly. In short, dummy elimination is useless for automated termination proofs.
We proceed in a stepwise manner. First we relate the dependency pairs of R to
those of dummy(R).

Lemma 1. If l] → t] ∈ DP(R) then cap(l)] → cap(t)] ∈ DP(dummy(R)).

Proof. In the proof of Theorem 4 we observed that there exists a rewrite rule
cap(l)→ u in dummy(R) with cap(t) E u. Since root(cap(t)) is a defined symbol
in dummy(R), cap(l)] → cap(t)] is a dependency pair of dummy(R). ut

Now we prove that reducibility in R implies reducibility in dummy(R).

Definition 3. Given a substitution σ, the substitution σcap is defined as cap◦σ
(i.e., the composition of cap and σ where σ is applied first).

Lemma 2. For all terms t and substitutions σ, we have cap(tσ) = cap(t)σcap.

Proof. Easy induction on the structure of t. ut
Lemma 3. If s→∗R t then cap(s)→∗dummy(R) cap(t).

Proof. It is sufficient to show that s →R t implies cap(s) →∗dummy(R) cap(t).
There must be a rule l → r ∈ R and a position p such that s|π = lσ and
t = s[rσ]p. If p is below the position of an occurrence of e, then we have
cap(s) = cap(t). Otherwise, cap(s)|p = cap(lσ) = cap(l)σcap by Lemma 2. Thus,
cap(s)→dummy(R) cap(s)[cap(r)σcap]p = cap(s)[cap(rσ)]p = cap(t). ut

Next we show that if there is an arrow between two dependency pairs in
the dependency graph of R then there is an arrow between the corresponding
dependency pairs in the dependency graph of dummy(R).

Lemma 4. Let s, t be terms with defined root symbols. If s]σ →∗R t]σ for some
substitution σ, then cap(s)]σcap →∗dummy(R) cap(t)]σcap.

Proof. Let s = f(s1, . . . , sn). We have s]σ = f](s1σ, . . . , snσ). Since f] is a
constructor, no step in the sequence s]σ →∗R t]σ takes place at the root position
and thus t] = f](t1, . . . , tn) with siσ →∗R tiσ for all 1 6 i 6 n. We obtain
cap(si)σcap = cap(siσ) →∗dummy(R) cap(tiσ) = cap(ti)σcap for all 1 6 i 6 n by
Lemmata 2 and 3. Hence cap(s)]σcap →∗dummy(R) cap(t)]σcap. ut

Finally we are ready for the main theorem of this section.

Theorem 5. Let R be a TRS. If dummy(R) is DP simply terminating then R
is DP simply terminating.

Proof. Let C be a cluster in the dependency graph of R. From Lemmata 1 and 4
we infer the existence of a corresponding cluster, denoted by dummy(C), in
the dependency graph of dummy(R). By assumption, there exists an argument
filtering π′ and a simplification order = such that π′(dummy(R)∪dummy(C)) ⊆
w and π′(dummy(C)) ∩ = 6= ∅. Let F be the signature of R. We define an
argument filtering π for F] as follows: π(f) = π′(f) for every f ∈ (F \ {e})],
π(e) = [] and, if e is a defined symbol of R, π(e]) = []. Slightly different from
the proof of Theorem 4, let (·)′ denote the mapping that just replaces every
occurrence of the constant e by � and every occurrence of e] by �]. It is easy to
show that π(t)′ = π′(cap(t)) for every term t ∈ T (F ,V) and π(t])′ = π′(cap(t)])
for every term t ∈ T (F ,V) with a defined root symbol. Similar to Theorem 4,
we define the simplification order � on Fπ as s � t if and only if s′ = t′.
We claim that π and � satisfy the constraints for C, i.e., π(R ∪ C) ⊆ � and
π(dummy(C)) ∩ � 6= ∅. If l → r ∈ R, then cap(l) → cap(r) ∈ dummy(R) and
thus π(l)′ = π′(cap(l)) w π′(cap(r)) = π(r)′. Hence π(l) � π(r). If l] → t] ∈ C,
then cap(l)] → cap(t)] ∈ dummy(C) by Lemma 1 and thus π(l])′ = π′(cap(l)]) w
π′(cap(t)]) = π(t])′. Hence π(l]) � π(t]) and if π′(cap(l)]) = π′(cap(t)]), then
π(l]) � π(t]). ut

We stress that the proof is constructive in the sense that a DP simple termi-
nation proof of dummy(R) can be automatically transformed into a DP simple
termination proof of R (i.e., the orders and argument filterings required for the
DP simple termination proofs of dummy(R) and R are essentially the same).
Thus, the termination proof of dummy(R) is not simpler than a direct proof for
R.

Theorem 5 also holds if one uses the estimated dependency graph of [1–3]
instead of the real dependency graph. As mentioned in Section 2, such a com-
putable approximation of the dependency graph must be used in implementa-
tions, since constructing the real dependency graph is undecidable in general.
The proof is similar to the one of Theorem 5, since again for every cluster in the
estimated dependency graph of R there is a corresponding one in the estimated
dependency graph of dummy(R).

4 Argument Filtering Transformation

By incorporating argument filterings, a key ingredient of the dependency pair
technique, into dummy elimination, Kusakari, Nakamura, and Toyama [16] re-
cently developed the argument filtering transformation. In their paper they
proved the soundness of their transformation and they showed that it improves
upon dummy elimination. In this section we compare their transformation to
the dependency pair technique. We proceed as in the previous section. First we
recall the definition of the argument filtering transformation.

Definition 4. Let π be an argument filtering, f a function symbol, and 1 6 i 6
arity(f). We write f ⊥π i if neither i ∈ π(f) nor i = π(f). Given two terms s
and t, we say that s is a preserved subterm of t with respect to π and we write
s Eπ t, if s E t and either s = t or t = f(t1, . . . , tn), s is a preserved subterm of
ti, and f 6⊥π i.
Definition 5. Given an argument filtering π, the argument filtering π̄ is defined
as follows:

π̄(f) =

{
π(f) if π(f) = [i1, . . . , im],
[π(f)] if π(f) = i.

The mapping AFTπ assigns to every term in T (F ,V) a subset of T (Fπ,V), as
follows:

AFTπ(t) = {π(t) | π̄(t) contains a defined symbol} ∪
⋃

s∈S
AFTπ(s)

with S denoting the set of outermost non-preserved subterms of t. Finally, we
define

AFTπ(R) = {π(l)→ r′ | l→ r ∈ R and r′ ∈ AFTπ(r) ∪ {π(r)}}.
Consider the term t of Figure 1. Figure 2 shows AFTπ(t) for the two argument

filterings with π(e) = [1] and π(e) = 2, respectively, and π(f) = [1, . . . , n] for
every other n-ary function symbol f . Here we assume that all numbered contexts
contain defined symbols, but no occurrence of e.

1

e

2

e

6

π(t) =

3

e

4

5

7

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;

= AFTπ(t) =

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

1

3

5

7

= π(t)

2

4

6

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;
π(e) = [1] π(e) = 2

Fig. 2. The mappings π and AFTπ.

So essentially, AFTπ(t) contains π(s) for s = t and for all (maximal) sub-
terms s of t which are eliminated if the argument filtering π is applied to t.
However, one only needs terms π(s) in AFTπ(t) where s contained a defined

symbol outside eliminated arguments (otherwise the original subterm s can-
not have been responsible for a potential non-termination). Kusakari et al. [11]
proved the soundness of the argument filtering transformation.

Theorem 6. If AFTπ(R) is terminating then R is terminating.

We show that if AFTπ(R) is simply terminating then R is DP simply termi-
nating and again, a termination proof by dependency pairs works with the same
argument filtering π and the simplification order used to orient AFTπ(R). Thus,
the argument filtering transformation has no advantage compared to dependency
pairs. We start with two easy lemmata.1

Lemma 5. Let s and t be terms. If s Eπ t then π(s) E π(t).

Proof. By induction on the definition of Eπ. If s = t then the result is trivial.
Suppose t = f(t1, . . . , tn), s Eπ ti, and f 6⊥π i. The induction hypothesis yields
π(s) E π(ti). Because f 6⊥π i, π(ti) is a subterm of π(t) and thus π(s) E π(t) as
desired. ut
Lemma 6. Let r be a term. For every subterm t of r with a defined root symbol
there exists a term u ∈ AFTπ(r) such that π(t) E u.

Proof. We use induction on the structure of r. In the base case we must have
t = r and we take u = π(r). Note that π(r) ∈ AFTπ(r) because root(π̄(r)) =
root(r) is defined. In the induction step we distinguish two cases. If t Eπ r then
we also have t Eπ̄ r and hence π̄(t) E π̄(r) by Lemma 5. As root(π̄(t)) = root(t)
is defined, the term π̄(r) contains a defined symbol. Hence π(r) ∈ AFTπ(r) by
definition and thus we can take u = π(r). In the other case t is not a preserved
subterm of r. This implies that t E s for some outermost non-preserved subterm
s of r. The induction hypothesis, applied to t E s, yields a term u ∈ AFTπ(s)
such that π(t) E u. We have AFTπ(s) ⊆ AFTπ(r) and hence u satisfies the
requirements. ut
Theorem 7. Let R be a TRS and π an argument filtering. If AFTπ(R) is simply
terminating then R is DP simply terminating.

Proof. Like in the proof of Theorem 4 there is no need to consider the dependency
graph. Let � be a simplification order that shows the (simple) termination of
AFTπ(R). We claim that the dependency pair constraints are satisfied by π and
�, where π and � are extended to F] by treating each marked symbol F in the
same way as the corresponding unmarked f . For rewrite rules l→ r ∈ R we have
π(l) � π(r) as π(l)→ π(r) ∈ AFTπ(R). Let l] → t] be a dependency pair of R,
originating from the rewrite rule l → r. We show that π(l) � π(t) and hence,
π(l]) � π(t]) as well. We have t E r. Since root(t) is a defined function symbol
1 Argumentations similar to the proofs of Lemma 6 and Theorem 7 can also be found

in [16, Lemma 4.3 and Theorem 4.4]. However, [16] contains neither Theorem 7
nor our main Theorem 8, since the authors do not compare the argument filtering
transformation with the dependency pair approach.

by the definition of dependency pairs, we can apply Lemma 6. This yields a term
u ∈ AFTπ(r) such that π(t) E u. The subterm property of � yields u � π(t).
By definition, π(l) → u ∈ AFTπ(R) and thus π(l) � u by compatibility of �
with AFTπ(R). Hence π(l) � π(t) as desired. ut

Note that in the above proof we did not make use of the possibility to treat
marked symbols differently from unmarked ones. This clearly shows why the
dependency pair technique is much more powerful than the argument filtering
transformation; there are numerous DP simply terminating TRSs which are no
longer DP simply terminating if we are forced to interpret a defined function
symbol and its marked version in the same way. As a simple example, consider

R1 =

x− 0 → x 0÷ s(y)→ 0
x− s(y)→ p(x− y) s(x)÷ s(y)→ s((x− y)÷ s(y))
p(s(x))→ x

 .

Note that R1 is not simply terminating as the rewrite step s(x) ÷ s(s(x)) →
s((x−s(x))÷s(s(x))) is self-embedding. To obtain a terminating TRS AFTπ(R1),
the rule p(s(x))→ x enforces p 6⊥π 1 and s 6⊥π 1. From p 6⊥π 1 and the rules for −
we infer that π(−) = [1, 2]. But then, for all choices of π(÷), the rule s(x)÷s(y)→
s((x−y)÷s(y)) is transformed into one that is incompatible with a simplification
order. So AFTπ(R1) is not simply terminating for any π. (Similarly, dummy
elimination cannot transform this TRS into a simply terminating one either.) On
the other hand, DP simple termination of R1 is easily shown by the argument
filtering π(p) = 1, π(−) = 1, π(−]) = [1, 2], and π(f) = [1, . . . , arity(f)] for
every other function symbol f in combination with the recursive path order.
This example illustrates that treating defined symbols and their marked versions
differently is often required in order to benefit from the fact that the dependency
pair approach only requires weak decreasingness for the rules of R1.

The next question we address is whether the argument filtering transforma-
tion can be useful as a preprocessing step for the dependency pair technique.
Surprisingly, the answer to this question is yes. Consider the TRS

R2 =

f(a) → f(c(a)) f(a) → f(d(a)) e(g(x))→ e(x)
f(c(x))→ x f(d(x))→ x
f(c(a)) → f(d(b)) f(c(b)) → f(d(a))

 .

This TRS is not DP simply terminating which can be seen as follows. The
dependency pair E(g(x)) → E(x) constitutes a cluster in the dependency graph
of R2. Hence, if R2 were DP simply terminating, there would be an argument
filtering π and a simplification order � such that (amongst others)

π(f(a)) � π(f(c(a))) π(f(a)) � π(f(d(a)))
π(f(c(x))) � x π(f(d(x))) � x
π(f(c(a))) � π(f(d(b))) π(f(c(b))) � π(f(d(a)))

From π(f(c(x))) � x and π(f(d(x))) � x we infer that f 6⊥π 1, c 6⊥π 1, and
d 6⊥π 1. Hence π(f(a)) � π(f(c(a))) and π(f(a)) � π(f(d(a))) can only be satisfied

if π(c) = π(d) = 1. But then π(f(c(a))) � π(f(d(b))) and π(f(c(b))) � π(f(d(a)))
amount to either f(a) � f(b) and f(b) � f(a) (if π(f) = [1]) or a � b and b � a
(if π(f) = 1). Since f(a) 6= f(b) and a 6= b the required simplification order does
not exist.

On the other hand, if π(e) = 1 then AFTπ(R2) consists of the first six rewrite
rules of R together with g(x)→ x. One easily verifies that there are no clusters
in DG(AFTπ(R2)) and hence AFTπ(R2) is trivially DP simply terminating.

Definition 6. An argument filtering π is called collapsing if π(f) = i for some
defined function symbol f .

The argument filtering in the previous example is collapsing. In the remainder
of this section we show that for non-collapsing argument filterings the implication
“AFTπ(R) is DP simply terminating ⇒ R is DP simply terminating” is valid.
Thus, using the argument filtering transformation with a non-collapsing π as a
preprocessing step to the dependency pair technique has no advantages.

First we prove a lemma to relate the dependency pairs of R and AFTπ(R).

Lemma 7. Let π be a non-collapsing argument filtering. If l] → t] ∈ DP(R)
then π(l)] → π(t)] ∈ DP(AFTπ(R)).

Proof. By definition there is a rewrite rule l→ r ∈ R and a subterm t E r with
defined root symbol. According to Lemma 6 there exists a term u ∈ AFTπ(r)
such that π(t) E u. Thus, π(l) → u ∈ AFTπ(R). Since π is non-collapsing,
root(π(t)) = root(t). Hence, as root(t) is defined, π(l)] → π(t)] is a dependency
pair of AFTπ(R). ut

Example R2 shows that the above lemma is not true for arbitrary argument
filterings. The reason is that e(g(x))] → e(x)] is a dependency pair of R, but
with π(e) = 1 there is no corresponding dependency pair in AFTπ(R).

The next three lemmata will be used to show that clusters in DG(R) corre-
spond to clusters in DG(AFTπ(R)).

Definition 7. Given an argument filtering π and a substitution σ, the substitu-
tion σπ is defined as π ◦ σ (i.e., σ is applied first).

Lemma 8. For all terms t, argument filterings π, and substitutions σ, π(tσ) =
π(t)σπ.

Proof. Easy induction on the structure of t. ut
Lemma 9. Let R be a TRS and π a non-collapsing argument filtering. If s→∗R t
then π(s)→∗AFTπ(R) π(t).

Proof. It suffices to show that π(s)→∗AFTπ(R) π(t) whenever s→∗R t consists of
a single rewrite step. Let s = C[lσ] and t = C[rσ] for some context C, rewrite
rule l → r ∈ R, and substitution σ. We use induction on C. If C is the empty
context, then π(s) = π(lσ) = π(l)σπ and π(t) = π(rσ) = π(r)σπ according to

Lemma 8. As π(l) → π(r) ∈ AFTπ(R), we have π(s) →AFTπ(R) π(t). Suppose
C = f(s1, . . . , C

′, . . . , sn) where C ′ is the i-th argument of C. If f ⊥π i then
π(s) = π(t). If π(f) = i (which is possible for constructors f) then π(s) =
π(C ′[lσ]) and π(t) = π(C ′[rσ]), and thus we obtain π(s)→∗AFTπ(R) π(t) from the
induction hypothesis. In the remaining case we have π(f) = [i1, . . . , im] with ij =
i for some j and hence π(s) = f(π(si1), . . . , π(C ′[lσ]), . . . , π(sim)) and π(t) =
f(π(si1), . . . , π(C ′[rσ]), . . . , π(sim)). In this case we obtain π(s) →∗AFTπ(R) π(t)
from the induction hypothesis as well. ut

The following lemma states that if two dependency pairs are connected inR’s
dependency graph, then the corresponding pairs are connected in the dependency
graph of AFTπ(R) as well.

Lemma 10. Let R be a TRS, π a non-collapsing argument filtering, and s, t
be terms with defined root symbols. If s]σ →∗R t]σ for some substitution σ then
π(s)]σπ →∗AFTπ(R) π(t)]σπ.

Proof. We have s = f(s1, . . . , sn) and t = f(t1, . . . , tn) for some n-ary defined
function symbol f with siσ →∗R tiσ for all 1 6 i 6 n. Let π(f) = [i1, . . . , im].
This implies π(sσ)] = f](π(si1σ), . . . , π(simσ)) and π(tσ)] = f](π(ti1σ), . . . ,
π(timσ)). From the preceding lemma we know that π(sijσ) →∗AFTπ(R) π(tijσ)
for all 1 6 j 6 m. Hence, using Lemma 8, π(s)]σπ = π(sσ)] →∗AFTπ(R) π(tσ)] =
π(t)]σπ. ut

Now we can finally prove the main theorem of this section.

Theorem 8. Let R be a TRS and π a non-collapsing argument filtering. If
AFTπ(R) is DP simply terminating then R is DP simply terminating.

Proof. Let C be a cluster in DG(R). According to Lemmata 7 and 10, there is a
corresponding cluster in DG(AFTπ(R)), which we denote by π(C). By assump-
tion, there exist an argument filtering π′ and a simplification order � such that
π′(AFTπ(R)∪π(C)) ⊆ � and π′(π(C))∩� 6= ∅. We define an argument filtering
π′′ for R as the composition of π and π′. For a precise definition, let [denote
the unmarking operation, i.e., f [= f and (f])[= f for all f ∈ F . Then for all
f ∈ F] we define

π′′(f) =

[ij1 , . . . , ijk] if π(f [) = [i1, . . . , im] and π′(f) = [j1, . . . , jk],
ij if π(f [) = [i1, . . . , im] and π′(f) = j,

i if π(f) = i.

It is not difficult to show that π′′(t) = π′(π(t)) and π′′(t]) = π′(π(t)]) for all
terms t without marked symbols. We claim that π′′ and � satisfy the constraints
for C, i.e., π′′(R∪C) ⊆ � and π′′(C)∩� 6= ∅. These two properties follow from the
two assumptions π′(AFTπ(R)∪π(C)) ⊆ � and π′(π(C))∩� 6= ∅ in conjunction
with the obvious inclusion π(R) ⊆ AFTπ(R). ut

Theorem 8 also holds for the estimated dependency graph instead of the real
dependency graph.

5 Conclusion

In this paper, we have compared two transformational techniques for termination
proofs, viz. dummy elimination [11] and the argument filtering transformation
[16], with the dependency pair technique of Arts and Giesl [1–3]. Essentially, all
these techniques transform a given TRS into new inequalities or rewrite systems
which then have to be oriented by suitable well-founded orders. Virtually all well-
founded orders which can be generated automatically are simplification orders.
As our focus was on automated termination proofs, we therefore investigated the
strengths of these three techniques when combined with simplification orders.

To that end, we showed that whenever an automated termination proof is
possible using dummy elimination or the argument filtering transformation, then
a corresponding termination proof can also be obtained by dependency pairs.
Thus, the dependency pair technique is more powerful than dummy elimination
or the argument filtering transformation on their own.

Moreover, we examined whether dummy elimination or the argument fil-
tering transformation would at least be helpful as a preprocessing step to the
dependency pair technique. We proved that for dummy elimination and for an
argument filtering transformation with a non-collapsing argument filtering, this
is not the case. In fact, whenever there is a (pre)order satisfying the dependency
pair constraints for the rewrite system resulting from dummy elimination or a
non-collapsing argument filtering transformation, then the same (pre)order also
satisfies the dependency pair constraints for the original TRS.

As can be seen from the proofs of our main theorems, this latter result
even holds for arbitrary (i.e., non-simplification) (pre)orders. Thus, in particular,
Theorems 5 and 8 also hold for DP quasi-simple termination [13]. This notion
captures those TRSs where the dependency pair constraints are satisfied by
an arbitrary simplification preorder % (instead of just a preorder � where the
equivalence relation is syntactic equality as in DP simple termination).

Future work will include a further investigation on the usefulness of collaps-
ing argument filtering transformations as a preprocessing step to dependency
pairs. Note that our counterexample R2 is DP quasi-simply terminating (but not
DP simply terminating). In other words, at present it is not clear whether the
argument filtering transformation is useful as a preprocessing step to the depen-
dency pair technique if one admits arbitrary simplification preorders to solve the
generated constraints. However, an extension of Theorem 8 to DP quasi-simple
termination and to collapsing argument filterings π is not straightforward, since
clusters of dependency pairs in R may disappear in AFTπ(R) (i.e., Lemma 7
does not hold for collapsing argument filterings). We also intend to examine the
relationship between dependency pairs and other transformation techniques such
as “freezing” [20].

Acknowledgements. Jürgen Giesl is supported by the DFG under grant GI 274/4-1.

Aart Middeldorp is partially supported by the Grant-in-Aid for Scientific Research

C(2) 11680338 of the Ministry of Education, Science, Sports and Culture of Japan.

References

1. T. Arts and J. Giesl, Automatically Proving Termination where Simplification
Orderings Fail, Proc. 7th TAPSOFT, Lille, France, LNCS 1214, pp. 261–273, 1997.

2. T. Arts and J. Giesl, Termination of Term Rewriting Using Dependency Pairs, The-
oretical Computer Science 236, pp. 133–178, 2000. Long version available at www.

inferenzsysteme.informatik.tu-darmstadt.de/~reports/ibn-97-46.ps.
3. T. Arts and J. Giesl, Modularity of Termination Using Dependency Pairs, Proc.

9th RTA, Tsukuba, Japan, LNCS 1379, pp. 226–240, 1998.
4. F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University

Press, 1998.
5. F. Bellegarde and P. Lescanne, Termination by Completion, Applicable Algebra in

Engineering, Communication and Computing 1, pp. 79–96, 1990.
6. A. Ben Cherifa and P. Lescanne, Termination of Rewriting Systems by Polyno-

mial Interpretations and its Implementation, Science of Computer Programming
9, pp. 137–159, 1987.

7. N. Dershowitz, Orderings for Term-Rewriting Systems, Theoretical Computer Sci-
ence 17, pp. 279–301, 1982.

8. N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation 3,
pp. 69–116, 1987.

9. J. Dick, J. Kalmus, and U. Martin, Automating the Knuth Bendix Ordering, Acta
Informatica 28, pp. 95–119, 1990.

10. M.C.F. Ferreira, Termination of Term Rewriting: Well-foundedness, Totality and
Transformations, Ph.D. thesis, Utrecht University, The Netherlands, 1995.

11. M.C.F. Ferreira and H. Zantema, Dummy Elimination: Making Termination Eas-
ier, Proc. 10th FCT, Dresden, Germany, LNCS 965, pp. 243–252, 1995.

12. J. Giesl, Generating Polynomial Orderings for Termination Proofs, Proc. 6th RTA,
Kaiserslautern, Germany, LNCS 914, pp. 426–431, 1995.

13. J. Giesl and E. Ohlebusch, Pushing the Frontiers of Combining Rewrite Systems
Farther Outwards, Proc. 2nd FROCOS, 1998, Amsterdam, The Netherlands, Stud-
ies in Logic and Computation 7, Research Studies Press, Wiley, pp. 141–160, 2000.

14. S. Kamin and J.J. Lévy, Two Generalizations of the Recursive Path Ordering,
unpublished manuscript, University of Illinois, USA, 1980.

15. D.E. Knuth and P. Bendix, Simple Word Problems in Universal Algebras, in: Com-
putational Problems in Abstract Algebra (ed. J. Leech), Pergamon Press, pp. 263–
297, 1970.

16. K. Kusakari, M. Nakamura, and Y. Toyama, Argument Filtering Transformation,
Proc. 1st PPDP, Paris, France, LNCS 1702, pp. 48–62, 1999.

17. D. Lankford, On Proving Term Rewriting Systems are Noetherian, Report MTP-3,
Louisiana Technical University, Ruston, USA, 1979.

18. A. Middeldorp, H. Ohsaki, and H. Zantema, Transforming Termination by Self-
Labelling, Proc. 13th CADE, New Brunswick (New Jersey), USA, LNAI 1104,
pp. 373–387, 1996.

19. J. Steinbach, Simplification Orderings: History of Results, Fundamenta Informat-
icae 24, pp. 47–87, 1995.

20. H. Xi, Towards Automated Termination Proofs Through “Freezing”, Proc. 9th
RTA, Tsukuba, Japan, LNCS 1379, pp. 271–285, 1998.

21. H. Zantema, Termination of Term Rewriting: Interpretation and Type Elimination,
Journal of Symbolic Computation 17, pp. 23–50, 1994.

22. H. Zantema, Termination of Term Rewriting by Semantic Labelling, Fundamenta
Informaticae 24, pp. 89–105, 1995.

