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Abstract. Context-sensitive rewriting is a restriction of term rewriting
used to model evaluation strategies in functional programming and in
programming languages like OBJ. For example, under certain conditions
termination of an OBJ program is equivalent to innermost termination
of the corresponding context-sensitive rewrite system [18]. To prove ter-
mination of context-sensitive rewriting, several methods have been pro-
posed in the literature which transform context-sensitive rewrite systems
into ordinary rewrite systems such that termination of the transformed
ordinary system implies termination of the original context-sensitive sys-
tem. Most of these transformations are not very satisfactory when it
comes to proving innermost termination. We investigate the relation-
ship between termination and innermost termination of context-sensitive
rewriting and we examine the applicability of the different transforma-
tions for innermost termination proofs. Finally, we present a simple trans-
formation which is both sound and complete for innermost termination.

1 Introduction

Evaluation in functional languages is often guided by specific evaluation strate-
gies. For example, in the program consisting of the rules

from(x) → x : from(s(x)) nth(0, x : y) → x nth(s(n), x : y) → nth(n, y)

the term nth(s(0), from(0)) admits a finite reduction to s(0) as well as infinite
reductions. The infinite reductions can for instance be avoided by always con-
tracting the outermost redex. Context-sensitive rewriting [16,17] provides an
alternative way of solving the non-termination problem and of dealing with in-
finite data objects. Here, every n-ary function symbol f is equipped with a
replacement map µ(f) ⊆ {1, . . . , n} which indicates which arguments of f may
be evaluated and a contraction of a redex is allowed only if it does not take
place in a forbidden argument of a function symbol somewhere above it. So by
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defining µ(:) = {1}, contractions in the argument t of a term s : t are forbidden.
Now in the example infinite reductions are no longer possible while normal forms
can still be computed. (See [20] for the relationship between normalization un-
der ordinary rewriting and under context-sensitive rewriting.) Context-sensitive
rewriting can also model the usual evaluation strategy for conditionals.

Example 1. 0 � y → true p(0) → 0
s(x) � 0 → false p(s(x)) → x

s(x) � s(y) → x � y if(true, x, y) → x

x − y → if(x � y, 0, s(p(x) − y)) if(false, x, y) → y

Because of the “−”-rule, this system is not terminating. But in functional lan-
guages if’s first argument is evaluated first and either the second or third argu-
ment is evaluated afterwards. Again, this can easily be modeled with context-
sensitive rewriting by the replacement map µ(if) = {1} which forbids all reduc-
tions in the arguments t2 and t3 of if(t1, t2, t3).

In programming languages like OBJ [4,5,12], the user can supply strategy an-
notations to control the evaluation [6,21,22]. For every n-ary symbol f , a (posi-
tive) strategy annotation is a list ϕ(f) of numbers (i1, . . . , ik) from {0, 1, . . . , n}.
When reducing a term f(t1, . . . , tn) one first has to evaluate the i1-th argument
of f (if i1 > 0), then one evaluates the i2-th argument (if i2 > 0), and so on,
until a 0 is encountered. At this point one tries to evaluate the whole term f(. . . )
at its root position. So in order to enforce the desired evaluation strategy for if
in Example 1, it has to be equipped with the strategy annotation (1, 0).

Context-sensitive rewriting can simulate OBJ’s evaluation strategy. A strat-
egy is elementary if for every defined1 symbol f , ϕ(f) contains a single occur-
rence of 0, at the end. Lucas [18] showed that for elementary strategies, the
OBJ program terminates iff the corresponding context-sensitive rewrite system
(CSRS) is innermost terminating2. Here µ(f) = {i ∈ ϕ(f) | i > 0}. For example,
the program with the rules f(a) → f(a) and a → b is terminating if ϕ(f) = (1, 0)
and ϕ(a) = (0). The corresponding CSRS with µ(f) = {1} is not terminating,
but innermost terminating. Thus, to simulate OBJ evaluations with CSRSs, we
have to restrict ourselves to innermost reductions where (allowed) arguments to
a function are evaluated before evaluating the function.

Because of this connection to OBJ and also because innermost termination
is easier to prove automatically than termination [1], it is worthwhile to in-
vestigate innermost termination of context-sensitive rewriting. (An alternative
approach to prove termination of OBJ-like programs by direct induction proofs
is proposed in [8].) Termination of CSRSs has been studied in a number of
papers (e.g., [3,7,9,11,15,16,17,20,23]). Apart from a direct semantic character-
ization [23] and some recent extensions of standard termination methods for
term rewriting to context-sensitive rewriting [3,15], all other proposed methods
transform CSRSs into ordinary term rewrite systems (TRSs) such that termina-
tion of the transformed TRS implies termination of the original CSRS (i.e., all
1 Every symbol on the root position of a left-hand side of a rule is called defined.
2 The “if” direction even holds without the restriction to elementary strategies [18].
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these transformations are sound). Direct approaches to termination analysis of
CSRSs and transformational approaches both have their advantages. Techniques
for proving termination of ordinary term rewriting have been studied extensively
and the main advantage of the transformational approach is that in this way,
all termination techniques for ordinary TRSs including future developments can
be used to infer termination of CSRSs. For instance, the methods of [3,15] are
unable to handle systems like Example 1.

After introducing the termination problem of context-sensitive rewriting in
Section 2, in Section 3 we review the results of Lucas [18] on innermost termina-
tion of CSRSs and we show that the two transformations Θ1 and Θ2 of [9] are
sound for innermost termination as well. Despite its soundness Θ2 is not very
useful for proving innermost termination, because termination and innermost
termination coincide for the TRSs it produces. In Section 4 we show that for the
class of orthogonal CSRSs, innermost termination already implies termination.
This result is independent from the transformation framework and is of general
interest when investigating the termination behavior of CSRSs. A consequence
of this result is that for this particular class, Θ1 is complete for innermost ter-
mination. In Section 5 we present a new transformation Θ3 which is both sound
and complete for innermost termination, for arbitrary CSRSs. Surprisingly, such
a transformation can be obtained by just a small modification of Θ1. In spite
of the similarity between the two transformations, the new completeness proof
is non-trivial. We make some remarks on a possible simplification of Θ3 and on
ground innermost termination in Section 6. In Section 7 we show that Θ3 is
equally powerful as Θ1 when it comes to (non-innermost) termination. Due to
lack of space, many proofs have been omitted. They can be found in [10].

2 Termination of Context-Sensitive Rewriting

Familiarity with the basics of term rewriting [2] is assumed. We require that every
signature F contains a constant. A function µ : F → P(N) is a replacement map
if µ(f) is a subset of {1, . . . , arity(f)} for all f ∈ F . A CSRS (R, µ) is a TRS R
over a signature F equipped with a replacement map µ. The context-sensitive
rewrite relation →R,µ is defined as the restriction of the usual rewrite relation
→R to contractions of redexes at active positions. A position π in a term t is
active if π = ε (the root position), or t = f(t1, . . . , tn), π = iπ′, i ∈ µ(f), and π′

is active in ti. So s →R,µ t iff there is a rule l → r in R, a substitution σ, and an
active position π in s such that s|π = lσ and t = s[rσ]π. If all active arguments
of lσ are in µ-normal form, then the reduction step is innermost and we write
s i→R,µ t. Here a µ-normal form is a normal form w.r.t. →R,µ. We abbreviate
→R,µ to →µ and i→R,µ to i→µ if R is clear from the context. A CSRS (R, µ) is
left-linear if the left-hand sides of the rewrite rules in R are linear terms (i.e.,
they do not contain multiple occurrences of the same variable). Let l → r and
l′ → r′ be renamed versions of rewrite rules of R such that they have no variables
in common and suppose l|π and l′ are unifiable with most general unifier σ for
some non-variable active position π in l. The pair of terms 〈l[r′]πσ, rσ〉 is a
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critical pair of (R, µ), except when l → r and l′ → r′ are renamed versions of
the same rewrite rule and π = ε. A non-overlapping CSRS has no critical pairs
and an overlay CSRS has no critical pairs with π �= ε. A CSRS is orthogonal
if it is left-linear and non-overlapping. Notions like “termination” for a CSRS
(R, µ) always concern the relation →µ (i.e., they correspond to “µ-termination”
in [17]).

To prove termination of CSRSs, several transformations from CSRSs to or-
dinary TRSs were suggested. We recall Giesl & Middeldorp’s transformation Θ1
[9]. It uses new unary symbols active and mark to indicate active positions in a
term on the object level. If l → r is a rule in the CSRS then the transformed
TRS contains the rule active(l) → mark(r). The symbol mark is used to traverse
a term top-down in order to place the symbol active at all active positions.

Definition 2 (Θ1). Let (R, µ) be a CSRS over a signature F . The TRS R1
µ

over the signature F1 = F ∪ {active, mark} has the following rules:

(�) active(l) → mark(r) ∀ l → r ∈ R
(�) mark(f(x1, . . . , xn)) → active(f([x1]f , . . . , [xn]f )) ∀f ∈ F

active(x) → x

Here [xi]f = mark(xi) if i ∈ µ(f) and [xi]f = xi otherwise. The transformation
(R, µ) 	→ R1

µ is denoted by Θ1 and we shorten →R1
µ

to →1.

Because every infinite reduction of a term t in the original CSRS would cor-
respond to an infinite reduction of mark(t) in the transformed TRS, Θ1 is sound
for termination: Termination of the transformed TRS implies termination of the
original CSRS. The second transformation Θ2 of [9,11], ΘL of Lucas [16], ΘZ of
Zantema [23], and ΘFR of Ferreira & Ribeiro [7] are also sound for termination3.
However, only Θ2 is complete, i.e., the other transformations do not transform
every terminating CSRS into a terminating TRS. Nevertheless, Θ2 does not
render the other transformations superfluous, since in practice, termination of
Θ2(R, µ) can be harder to show than termination of the TRSs resulting from
the other transformations.

Example 3 ([9]). The non-terminating TRS R = {f(b, c, x) → f(x, x, x),
d → b, d → c} demonstrates the incompleteness of Θ1. If µ(f) = {3} then
the CSRS is terminating because the cyclic reduction of f(b, c, d) to f(d, d, d)
and further to f(b, c, d) cannot be done, as one would have to reduce the first
and second argument of f. However, the TRS R1

µ

active(f(b, c, x)) → mark(f(x, x, x)) mark(f(x, y, z)) → active(f(x, y, mark(z)))

active(d) → mark(b) mark(b) → active(b)

active(d) → mark(c) mark(c) → active(c)

active(x) → x mark(d) → active(d)

3 The interested reader is referred to [11] for definitions and a comparison of these
transformations.



Innermost Termination of Context-Sensitive Rewriting 235

is not terminating:

mark(f(b, c, d)) →1 active(f(b, c, mark(d))) →1 active(f(b, c, active(d)))

→1 mark(f(active(d), active(d), active(d))) →+
1 mark(f(mark(b), mark(c), d))

→+
1 mark(f(active(b), active(c), d)) →+

1 mark(f(b, c, d))

Note that in the third step the ‘active’ subterm active(d) is copied to the first
and second argument positions of f, which are inactive according to µ(f). This
can only happen if the reduction step is non-innermost.

3 Innermost Termination of Context-Sensitive Rewriting

Now we examine the usefulness of the five transformations for innermost termi-
nation of CSRSs. Lucas [18] showed that ΘL and ΘZ are unsound4 for innermost
termination, i.e., innermost termination of the transformed TRS does not imply
innermost termination of the original CSRS. The example showing the latter
([18, Example 12]) also demonstrates that ΘFR is unsound for innermost ter-
mination. Moreover, none of these transformations is complete for innermost
termination. The following new result shows that Θ1 is sound for innermost
termination5.

Theorem 4. Let (R, µ) be a CSRS. If R1
µ is innermost terminating then (R, µ)

is innermost terminating.

Proof. Let F be the signature of R and let c be an arbitrary constant in F .
We show that every innermost reduction step s i→µ t in (R, µ) corresponds to
an innermost reduction sequence mark(sθ)↓M i→+

1 mark(tθ)↓M in R1
µ. Here M

consists of all rules in R1
µ of the form

mark(f(x1, . . . , xn)) → active(f([x1]f , . . . , [xn]f ))

and θ is the substitution that maps all variables to c 6. Note that since M is
confluent and terminating, every term u has a unique M-normal form u↓M.
First we show mark(uθ)↓M i→∗

1 active(uθ) by induction on u ∈ T (F , V). If u is
a variable then uθ = c and thus mark(uθ)↓M = active(uθ). If u = f(u1, . . . , un)
then mark(uθ)↓M = active(f(u′

1, . . . , u
′
n)) with u′

i = mark(uiθ)↓M if i ∈ µ(f)
and u′

i = uiθ if i /∈ µ(f). Let i ∈ µ(f). The induction hypothesis yields u′
i

i→∗
1

active(uiθ). Since uiθ is an R1
µ-normal form, active(uiθ) i→1 uiθ and thus u′

i
i→∗

1
uiθ. It follows that mark(uθ)↓M i→∗

1 active(f(u1θ, . . . , unθ)) = active(uθ).
4 ΘL is sound for the subclass of left-linear CSRSs with the property that all function

symbols in the left-hand sides are on active positions [18].
5 The same claim is made in [18, Theorem 11]. However, Lucas only proved the sound-

ness of Θ1 and Θ2 for ground innermost termination (cf. Section 6) and later claimed
that Θ1 and Θ2 are unsound for innermost termination [19].

6 It is interesting to note that the instantiated context-sensitive reduction step sθ →µ

tθ need not be innermost.
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Now let π be the position of the redex contracted in the reduction step s i→µ t.
We prove the lemma by induction on π. If π = ε then s → t and thus also sθ → tθ
is an instance of a rule in R. We have mark(sθ)↓M i→∗

1 active(sθ) by the above
observation. Moreover, active(sθ) i→1 mark(tθ) since active(sθ) → mark(tθ) is an
instance of a rule in R1

µ. We also have mark(tθ) i→∗
1 mark(tθ)↓M. Combining all

reductions yields mark(sθ)↓M i→+
1 mark(tθ)↓M.

If π = iπ′ then s = f(s1, . . . , si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn) with
si

i→µ ti. Note that we have i ∈ µ(f) due to the definition of context-sensitive
rewriting. For 1 � j � n define s′

j = mark(sjθ)↓M if j ∈ µ(f) and s′
j = sjθ

if j /∈ µ(f). The induction hypothesis yields s′
i

i→+
1 mark(tiθ)↓M. The re-

sult follows since mark(sθ)↓M = active(f(s′
1, . . . , s

′
i, . . . , s

′
n)) and mark(tθ)↓M =

active(f(s′
1, . . . ,mark(tiθ)↓M, . . . , s′

n)). ��

Not surprisingly, Θ1 is incomplete for innermost termination.

Example 5 ([18]). Consider (R, µ) with R = {f(a) → f(a), a → b} and µ(f) =
{1}. The CSRS (R, µ) is innermost terminating but R1

µ

active(f(a)) → mark(f(a)) mark(f(x)) → active(f(mark(x)))
active(a) → mark(b) mark(a) → active(a)
active(x) → x mark(b) → active(b)

is not an innermost terminating TRS: active(f(a)) i→1 mark(f(a)) i→1
active(f(mark(a))) i→1 active(f(active(a))) i→1 active(f(a)). Note that applying
the rule active(a) → mark(b) instead of active(x) → x in the fourth step would
break the cycle. So the rule active(x) → x can delete innermost redexes, causing
non-innermost active redexes of the underlying CSRS to become innermost. We
come back to this in Section 5.

Transformation Θ2 is sound for innermost termination as well. However, it is
also incomplete and (in contrast to Θ1) rather useless for innermost termination.
These observations are consequences of the following new result. In particular,
Θ2 cannot prove innermost termination of non-terminating CSRSs.

Theorem 6. Let (R, µ) be a CSRS. The TRS R2
µ resulting from transformation

Θ2 is innermost terminating iff it is terminating.

Soundness of Θ2 for innermost termination is an immediate consequence of
Theorem 6 and the soundness of Θ2 for termination.

So Θ1 is the only sound and useful transformation for innermost termination
of CSRSs so far. The next theorem shows that it is complete for an important
subclass of CSRSs. More precisely, while in general termination of a CSRS (R, µ)
does not imply termination of the transformed TRS R1

µ (as demonstrated by
Example 3), it at least implies innermost termination of R1

µ.

Theorem 7. Let (R, µ) be a CSRS. If (R, µ) is terminating then R1
µ is inner-

most terminating.
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Theorem 7 implies that for subclasses of CSRSs where innermost termination
is equivalent to termination, Θ1 is complete for innermost termination. In the
next section we show that this subclass contains all orthogonal systems (e.g.,
CSRSs like Example 1).

4 Termination versus Innermost Termination

There are two motivations for studying innermost termination of CSRSs. First,
innermost context-sensitive rewriting models evaluation in OBJ and thus, in-
nermost termination analysis of CSRSs can be used for termination proofs of
OBJ programs. But second, innermost termination analysis of CSRSs can also
be helpful for (non-innermost) termination proofs of CSRSs. This is similar to
the situation with ordinary TRSs: Proving innermost termination is much easier
than proving termination, cf. [1]. There are classes of TRSs where innermost ter-
mination already implies termination and therefore for such systems, one should
rather use innermost termination techniques for investigating their termination
behavior.

In order to use a corresponding approach for context-sensitive rewriting, in
this section we examine the connection between termination and innermost ter-
mination for CSRSs. In general, termination implies innermost termination, but
not vice versa as demonstrated by Example 5. For ordinary TRSs, being non-
overlapping suffices to ensure that innermost termination is equivalent to termi-
nation [13]. Unfortunately, as noted by Lucas [19], this criterion cannot be ex-
tended to CSRSs. However, we show the new result that the desired equivalence
between innermost and full termination at least holds for orthogonal CSRSs.
Thus, this includes all CSRSs which correspond to typical functional programs
like Example 1. Theorem 9 states that for such systems we only have to prove
innermost termination in order to verify their termination.

In order to prove the theorem, we need some preliminaries. For non-over-
lapping CSRSs (R, µ) the relation i→µ is confluent. Hence, for every term s
there is at most one µ-normal form reachable by innermost reductions. We call
this term the innermost µ-normal form of s and denote it by s↓i

µ. Now for
any term s, let ∇(s) be the set of those terms which result from repeatedly
replacing subterms of s by their innermost µ-normal form (if it exists). Here,
one may also consider subterms on inactive positions. However, the replacement
must go “from the inside to the outside” (i.e., after replacing at position π one
cannot replace at positions below π any more). Moreover, one may only perform
replacements on such positions π where the original term s|π is terminating.

Definition 8. Let (R, µ) be a non-overlapping CSRS. For any term s we define
non-empty sets ∇(s) and ∇′(s) as follows. If s is terminating, then ∇(s) =
∇′(s) ∪ {u↓i

µ | u ∈ ∇′(s) is innermost terminating}. Otherwise, we have ∇(s) =
∇′(s). Moreover, ∇′(s) = {f(u1, . . . , un) | ui ∈ ∇(si)} if s = f(s1, . . . , sn) and
∇′(s) = {s} if s is a variable.
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Theorem 9. An orthogonal CSRS (R, µ) is terminating iff it is innermost ter-
minating.

Proof. The “only if” direction is trivial. We prove the “if” direction. Let s →µ t
where the contracted redex is either terminating or a minimal non-terminating
term (i.e., all proper subterms of the redex on active positions are terminating).
We prove the following statements for all innermost terminating s′ ∈ ∇(s):

(1) There exists a t′ ∈ ∇(t) such that s′ i→∗
µ t′.

(2) If the contracted redex in s →µ t is not terminating, then there even exists
a t′ ∈ ∇(t) such that s′ i→+

µ t′.

With (1) and (2) one can prove the theorem: If (R, µ) is not terminating,
then there is an infinite reduction s0 →µ s1 →µ . . . in which only terminat-
ing or minimal non-terminating redexes are contracted. Assume that (R, µ)
is innermost terminating. Then all ∇(si) contain only innermost terminating
terms and since s0 ∈ ∇(s0), we can construct an infinite innermost reduction
s0

i→∗
µ t1

i→∗
µ t2

i→∗
µ . . . with ti ∈ ∇(si). However, since the reduction con-

tains infinitely many steps of type (2), this gives rise to an infinite innermost
reduction, contradicting our assumption.

Now we prove (1) and (2) by structural induction on s. Since s →µ t, s must
have the form f(s1, . . . , sn). We first regard the case where s →µ t is not a root
reduction step. Then we have t = f(s1, . . . , ti, . . . , sn) with si →µ ti for some
i ∈ µ(f). Let s′ ∈ ∇(s) be innermost terminating. First, let s′ = f(u1, . . . , un)
with uj ∈ ∇(sj) for all j. Because i ∈ µ(f), ui is innermost terminating. Hence
by the induction hypothesis, ui ∈ ∇(si) implies that there exists a vi ∈ ∇(ti)
such that ui

i→∗
µ vi. Therefore, we also have s′ = f(u1, . . . , ui, . . . , un) i→∗

µ

f(u1, . . . , vi, . . . , un) ∈ ∇(t). Moreover, if the contracted redex in s →µ t and
hence, in si →µ ti is not terminating, then by the induction hypothesis we even
have ui

i→+
µ vi and therefore s′ i→+

µ f(u1, . . . , vi, . . . , un) ∈ ∇(t).
Now let s′ = f(u1, . . . , un)↓i

µ with uj ∈ ∇(sj) for all j. Hence, s is terminating
and thus, we only have to prove (1). As before, there is a vi ∈ ∇(ti) such
that ui

i→∗
µ vi and f(u1, . . . , vi, . . . , un) ∈ ∇(t). Since innermost reduction is

confluent, we have s′ = f(u1, . . . , ui, . . . , un)↓i
µ = f(u1, . . . , vi, . . . , un)↓i

µ ∈ ∇(t),
since t inherits termination from s.

Finally, we regard the case where s = f(s1, . . . , sn) and s →µ t is a root
reduction step. Hence, there must be a rule l → r ∈ R with l = f(l1, . . . , ln)
and a substitution σ such that si = liσ and t = rσ. First let s′ = f(u1, . . . , un)
with ui ∈ ∇(si) for all i. Since (R, µ) is orthogonal and since si = liσ, there
must be a substitution σ′ such that ui = liσ

′ for all i 7. Because s′ is innermost
terminating, xσ′ must also be innermost terminating for all variables x which
occur on active positions of l. Let σ′′ be the substitution where xσ′′ = xσ′↓i

µ

for all x in active positions of l and xσ′′ = xσ′ for all other x. Then we have
the innermost reduction s′ = f(l1σ′, . . . , lnσ′) i→∗

µ f(l1σ′′, . . . , lnσ′′) i→µ rσ′′. We
claim that rσ′′ ∈ ∇(t) = ∇(rσ). To this end, it suffices to show that xσ′′ ∈ ∇(xσ)
7 A formal proof of this observation can be found in [10].
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for all variables x in r, because in the construction of ∇ arbitrary subterms q
can be replaced by terms from ∇(q). Each variable x occurs in some li and we
have liσ

′ ∈ ∇(liσ). It follows that xσ′ ∈ ∇(xσ) for all variables x.7 If x is on an
inactive position of l, then xσ′′ = xσ′ ∈ ∇(xσ). If x is on an active position of
l, then xσ′′ = xσ′↓i

µ ∈ ∇(xσ), since xσ′ is innermost terminating and because
in this case, xσ is terminating due to the fact that s is either a terminating or
a minimal non-terminating term.

Now let s′ = f(u1, . . . , un)↓i
µ with ui ∈ ∇(si) for all i. Hence, s is terminating

and thus we only have to prove (1). As before, ui = liσ
′ and f(l1σ′, . . . , lnσ′) i→∗

µ

f(l1σ′′, . . . , lnσ′′) i→µ rσ′′ with rσ′′ ∈ ∇(t). Since innermost reduction is conflu-
ent and t inherits termination from s, s′ = f(u1, . . . , un)↓i

µ = rσ′′↓i
µ ∈ ∇(t). ��

Very recently, Gramlich and Lucas [14] showed that termination and inner-
most termination coincide for locally confluent overlay CSRSs with the addition-
ally property that variables that occur at an active position in a left-hand side
l of a rewrite rule l → r do not occur at inactive positions in l or r. The latter
condition is quite restrictive, e.g., it is not satisfied by the CSRS of Example 1.

5 A Sound and Complete Transformation

In Section 3 we showed that the existing transformations are incomplete for
innermost termination and that only Θ1 and Θ2 are sound. Because of Theo-
rem 6, Θ2 cannot distinguish innermost termination from termination. So when
developing a sound and complete transformation for innermost termination, we
take Θ1 as starting point. As observed in Example 5, we must make sure that
in innermost reductions, rules of the form active(l) → mark(r) get preference
over the rule active(x) → x, because then this counterexample no longer works.
Hence, we modify the rule active(x) → x such that the innermost reduction
strategy ensures that active(l) → mark(r) is applied with higher preference. In
the modification, active(l) → mark(r) no longer overlaps with the root position
of active(x) → x, but with a non-root position of the new modified rule(s).

Definition 10 (Θ3). Let (R, µ) be a CSRS over a signature F . The TRS R3
µ

over the signature F1 consists of all (�)-marked rewrite rules of R1
µ together with

the rewrite rules

f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn)
(�) f(x1, . . . ,mark(xi), . . . , xn) → f(x1, . . . , xi, . . . , xn)

for all f ∈ F and 1 � i � arity(f). We denote the transformation (R, µ) 	→ R3
µ

by Θ3 and we abbreviate →R3
µ

to →3 and i→R3
µ

to i→3.

For the CSRS (R, µ) of Example 5, R3
µ differs from R1

µ in two respects:
active(x) → x is replaced by f(active(x)) → f(x) and moreover, the rule f(mark(x))
→ f(x) is added. As a consequence, the cycle active(f(a)) i→+ active(f(a)) can
no longer be obtained with R3

µ, since active(f(active(a))) → active(f(a)) is not
an innermost rewrite step in R3

µ. Indeed, R3
µ is innermost terminating and in

general, Θ3 is sound and complete for innermost termination.
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Theorem 11. A CSRS (R, µ) is innermost terminating iff R3
µ is innermost

terminating.

In [10] we show for several CSRSs (R, µ) including Example 1 how innermost
termination of R3

µ can be proved with dependency pairs [1].
With the new rules f(x1, . . . , active(xi), . . . , xn) → f(x1, . . . , xn) we can re-

move almost every active-symbol, compensating to a large extent the lack of the
rule active(x) → x. The (�)-marked rules can never be used in an innermost
reduction if xi is instantiated to a non-variable term from T (F , V). However,
they are required if xi is instantiated by a variable or by terms containing the
symbols mark and active. As a matter of fact, the transformation without the
(�)-marked rules is neither sound nor complete for innermost termination (see
[10] for counterexamples).

6 Ground Innermost Termination

Unlike for termination, to conclude innermost termination it is not sufficient to
prove that all ground terms are innermost terminating.

Example 12. The TRS {f(f(x)) → f(f(x)), f(a) → a} is not innermost terminat-
ing but ground innermost terminating over the signature {f, a}, i.e., all ground
terms permit only finite innermost reductions.

It is well known that innermost termination of a TRS R over a signature
F is equivalent to ground innermost termination of R over the signature F ∪
{c, h} where c is a fresh constant and h is a fresh unary function symbol. The
reason is that a term t with the variables x1, . . . , xn starts an infinite innermost
reduction iff the ground term tσ starts an infinite innermost reduction where
σ(xi) = hi(c). So the fresh symbols c and h are needed to create arbitrarily many
different ground terms (in order to handle non-linear rewrite rules). A similar
correspondence holds for innermost context-sensitive reductions with µ(h) = ∅

or µ(h) = {1}.
The following result states that Θ1 and Θ2 cannot distinguish ground in-

nermost termination from innermost termination and thus they are sound but
incomplete for ground innermost termination as well.

Theorem 13. Let (R, µ) be a CSRS. For i ∈ {1, 2}, the TRS Ri
µ is ground

innermost terminating iff it is innermost terminating.

On the other hand, the proof of Theorem 11 can easily be adapted to show
that Θ3 is sound and complete for ground innermost termination.

Theorem 14. A CSRS (R, µ) is ground innermost terminating iff R3
µ is ground

innermost terminating.

One might think that the (�)-marked rules in Definition 10 are not needed to
obtain a sound and complete transformation for ground innermost termination.
While soundness is easily proved, completeness does not hold, as shown in the
following example.
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Example 15. Consider the (ground) innermost terminating CSRS (R, µ) with
R = {f(x, x) → b, g(f(x, y)) → g(f(y, y))} and µ(f) = µ(g) = {1}. The trans-
formed TRS without the (�)-marked rules however is not ground innermost ter-
minating as can be seen from the following cycle, with t = mark(active(b)):

mark(g(f(t, t))) i→+ active(g(active(f(mark(t), t))))
i→ active(g(f(mark(t), t))) i→ mark(g(f(t, t)))

As explained above, a transformation that is sound for ground innermost
termination can also be used for innermost termination analysis by adding fresh
function symbols to the signature. However, for completeness the situation is
different. Here, it is desirable that the transformation is not only complete for
ground, but also for full innermost termination. The reason is that while there
do exist techniques to analyze ground innermost termination [8], the best-known
technique for automated innermost termination analysis [1] really checks full
(non-ground) innermost termination of TRSs. A complete transformation for
innermost termination transforms every innermost terminating CSRS into an
innermost terminating TRS and hence, innermost termination of this TRS can
potentially be checked by every technique for innermost termination analysis of
ordinary TRSs. But if the transformed TRS is only ground innermost terminat-
ing, (full) innermost termination analysis techniques for TRSs cannot be applied
successfully.

7 Conclusion and Comparison

Figure 1 contains a summary of the soundness and completeness results covered
in the preceding sections. The negative results for ground innermost termina-
tion for ΘL, ΘZ, and ΘFR are shown by the same examples used to demonstrate
the corresponding results for innermost termination, cf. the first paragraph of
Section 3. Of the existing transformations, only Θ1 and Θ2 from [9] are sound
for innermost termination of CSRSs. We showed that Θ2 is not very useful for
proving innermost termination, but that termination of a CSRS (R, µ) already
implies innermost termination of Θ1(R, µ). So for classes of CSRSs where ter-
mination and innermost termination are equivalent, Θ1 is already complete for

ground innermost innermost
termination termination termination

sound complete sound complete sound complete
ΘL � × × × × ×
ΘZ � × × × × ×
ΘFR � × × × × ×
Θ1 � × � × � ×
Θ2 � � � × � ×
Θ3 � × � � � �

Fig. 1. Summary.
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Fig. 2. Comparison.

innermost termination. We proved that this equivalence holds for the class of
orthogonal CSRSs. While in general Θ1 is still incomplete, we developed a new
transformation Θ3 which is sound and complete for innermost termination. The
results on termination for Θ3 follow from Theorem 16 below.

In order to assess the power of our transformations, Figure 2 illustrates the
relationship between the following twelve properties (i = 1, 2, 3):

(1) (R, µ) is terminating
(5) (R, µ) is innermost terminating
(9) (R, µ) is ground innermost terminating

(1+i) Ri
µ is terminating

(5+i) Ri
µ is innermost terminating

(9+i) Ri
µ is ground innermost terminating

Implication (2) ⇒ (1) is the soundness of transformation Θ1 for termination [9],
implication (1) ⇒ (6) is Theorem 7, implication (6) ⇒ (5) is Theorem 4, and
implication (5) ⇒ (9) is trivial.

Equivalence (1) ⇔ (3) is the soundness and completeness of Θ2 for termi-
nation [9], equivalence (3) ⇔ (7) is Theorem 6, equivalence (5) ⇔ (8) is Theo-
rem 11, equivalences (10) ⇔ (6) and (11) ⇔ (7) are Theorem 13, and equivalence
(9) ⇔ (12) is Theorem 14. Equivalence (2) ⇔ (4) means that Θ1 and Θ3 are
equally powerful when proving termination. This may not come as a surprise,
but the proof is surprisingly difficult.

Theorem 16. Let (R, µ) be a CSRS. The TRS R3
µ is terminating iff R1

µ is
terminating.

None of the missing implications in Figure 2 hold, except those that fol-
low by transitivity: (1) �⇒ (2) and (5) �⇒ (6) are the incompleteness of Θ1 for
termination (Example 3) and innermost termination (Example 5). Moreover,
(6) �⇒ (1) follows by using µ(f) = {1, 2, 3} in Example 3 and (9) �⇒ (5) follows
from Example 12 with µ(f) = {1}.

To conclude, with our new transformation Θ3, innermost termination of
context-sensitive rewriting can be reduced to innermost termination of ordi-
nary rewriting. Moreover, for orthogonal CSRSs innermost termination already
suffices for termination. So for such systems, innermost termination of the trans-
formed TRS even implies termination of the CSRS. Hence, our result now en-
ables the use of powerful methods for innermost termination analysis of TRSs
for (innermost) termination of context-sensitive rewriting.



Innermost Termination of Context-Sensitive Rewriting 243

Acknowledgments

We thank Salvador Lucas and the anonymous referees for many helpful remarks.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambr. Univ. Pr., 1998.
3. C. Borralleras, S. Lucas, and A. Rubio. Recursive path orderings can be context-

sensitive. In Proc. 18th CADE, volume 2392 of LNAI, pages 314–331, 2002.
4. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In Proc. 1st

WRLA, volume 4 of ENTCS, 1996.
5. R. Diaconescu and K. Futatsugi. CafeOBJ Report, volume 6 of AMAST Series in

Computing. World Scientific, 1998.
6. S. Eker. Term rewriting with operator evaluation strategies. In Proc. 2nd WRLA,

volume 15 of ENTCS, pages 1–20, 1998.
7. M.C.F. Ferreira and A.L. Ribeiro. Context-sensitive AC-rewriting. In Proc. 10th

RTA, volume 1631 of LNCS, pages 173–187, 1999.
8. O. Fissore, I. Gnaedig, and H. Kirchner. Induction for termination with local

strategies. In Proc. 4th International Workshop on Strategies in Automated De-
duction, volume 58 of ENTCS, 2001.

9. J. Giesl and A. Middeldorp. Transforming context-sensitive rewrite systems. In
Proc. 10th RTA, volume 1631 of LNCS, pages 271–285, 1999.

10. J. Giesl and A. Middeldorp. Innermost termination of context-sensitive rewriting.
Technical Report AIB-2002-048, RWTH Aachen, Germany, 2002.

11. J. Giesl and A. Middeldorp. Transformation techniques for context-sensitive
rewrite systems. Technical Report AIB-2002-028, RWTH Aachen, Germany, 2002.
Extended version of [9].

12. J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Intro-
ducing OBJ. In J. Goguen and G. Malcolm, editors, Software Engineering with
OBJ: algebraic specification in action. Kluwer, 2000.

13. B. Gramlich. Abstract relations between restricted termination and confluence
properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.

14. B. Gramlich and S. Lucas. Modular termination of context-sensitive rewriting. In
Proc. 4th PPDP, pages 50–61. ACM Press, 2002.

15. B. Gramlich and S. Lucas. Simple termination of context-sensitive rewriting. In
Proc. 3rd Workshop on Rule-Based Programming, pages 29–41. ACM Press, 2002.

16. S. Lucas. Termination of context-sensitive rewriting by rewriting. In Proc. 23rd
ICALP, volume 1099 of LNCS, pages 122–133, 1996.

17. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1:1–61, 1998.

18. S. Lucas. Termination of rewriting with strategy annotations. In Proc. 8th LPAR,
volume 2250 of LNAI, pages 669–684, 2001.

19. S. Lucas, 2001–2002. Personal communication.
20. S. Lucas. Termination of (canonical) context-sensitive rewriting. In Proc. 13th

RTA, volume 2378 of LNCS, pages 296–310, 2002.
8 Available from http://aib.informatik.rwth-aachen.de.

http://aib.informatik.rwth-aachen.de.


244 Jürgen Giesl and Aart Middeldorp

21. T. Nagaya. Reduction Strategies for Term Rewriting Systems. PhD thesis, School
of Information Science, Japan Advanced Institute of Science and Technology, 1999.

22. M. Nakamura and K. Ogata. The evaluation strategy for head normal form with
and without on-demand flags. In Proc. 3rd WRLA, volume 36 of ENTCS, 2001.

23. H. Zantema. Termination of context-sensitive rewriting. In Proc. 8th RTA, volume
1232 of LNCS, pages 172–186, 1997.


	1 Introduction
	2 Termination of Context-Sensitive Rewriting
	3 Innermost Termination of Context-Sensitive Rewriting
	4 Termination versus Innermost Termination
	5 A Sound and Complete Transformation
	6 Ground Innermost Termination
	7 Conclusion and Comparison
	References

