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Abstract

The theorem of Huet and Lévy stating that for orthogonal rewrite systems (i) every
reducible term contains a needed redex and (ii) repeated contraction of needed
redexes results in a normal form if the term under consideration has a normal form,
forms the basis of all results on optimal normalizing strategies for orthogonal rewrite
systems. However, needed redexes are not computable in general.

In the paper we illustrate, based on the framework introduced in [6], how the use
of approximations and their associated tree automata results allows one to obtain
decidable conditions in a simple and elegant way.

We further show how the very same ideas can be used to improve [18] the depen-
dency pair method of Arts and Giesl [1] for proving termination of rewrite systems
automatically. More precisely, we show how approximations and tree automata tech-
niques provide a better estimation of the dependency graph. This graph determines
the ordering constraints that have to be solved in order to conclude termination.
Furthermore, we present a new estimation of the dependency graph that does not
rely on computationally expensive tree automata techniques.

1 Introduction and Preliminaries

This paper is about strategies and termination in first-order term rewriting.
At first sight, these two topics seem to have little in common. Research on
strategies is concerned with term rewrite systems (TRSs for short) that ad-
mit infinite rewrite sequences and addresses questions like how to compute
normal forms in an optimal way. Research on termination is concerned with
developing methods which can be used to show the absence of infinite rewrite
sequences. In this paper we argue that the concept of approximation is very
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useful to (1) characterize large decidable classes of TRSs that admit a com-
putable optimal strategy for computing normal forms and (2) improve the
dependency pair method of Arts and Giesl for proving termination of TRSs
automatically.

The remainder of the paper is organized as follows. In Section 2 we give
a brief introduction to call-by-need strategies. In Section 3 we do the same
for the dependency pair method. Section 4 introduces various approximations
and the tree automata results that explain their usefulness. We apply these
results in Sections 5 and 6 to the study of call-by-need strategies and automatic
termination proofs, respectively. Section 6 also contains a new estimation of
the dependency graph that does not rely on the results of Section 4. Except for
this latter part, all results presented in this paper appeared before in Durand
and Middeldorp [6] (strategies) and Middeldorp [18] (termination).

2 Call by Need Strategies

We assume familiarity with the basics of term rewriting (e.g. [2]). We assume
that the rewrite rules l → r of a TRS satisfy l /∈ V and Var(r) ⊆ Var(l).
If these conditions are not imposed we find it useful to speak of extended
TRSs (eTRSs). Such systems arise naturally when we approximate TRSs or
orient the rewrite rules from right to left, as explained in Section 4. Note
that eTRSs which are not TRSs can never be terminating, but in Section 6
we will make clear that such eTRSs are very useful for automatically proving
termination of TRSs. Throughout the paper we assume that all (e)TRSs are
finite. Moreover, we consider rewriting on ground terms only. So we assume
that the set of ground terms is non-empty. These requirements entail no loss
of generality.

Example 2.1 Consider the TRS R consisting of the rewrite rules

0 + y → y fib→ f(s(0), s(0))

s(x) + y → s(x+ y) f(x, y)→ x : f(y, x+ y)

nth(0, y : z)→ y nth(s(x), y : z)→ nth(x, z)

for computing Fibonacci numbers. The term t = nth(s(s(0)), fib) admits the
normal form s(s(0)): 3

t→ nth(2, f(1, 1))→ nth(2, 1 : f(1, 1 + 1))→ nth(1, f(1, 1 + 1))

→ nth(1, f(1, s(0 + 1)))→ nth(1, f(1, 2))→ nth(1, 1 : f(2, 1 + 2))

→ nth(0, f(2, 1 + 2))→ nth(0, f(2, s(0 + 2)))→ nth(0, f(2, 3))

→ nth(0, 2 : f(3, 2 + 3))→ 2

but an eager (innermost) strategy will produce an infinite rewrite sequence.

3 In the rewrite sequence we denote sn(0) by n for n = 1, 2, 3.
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If a term t has a normal form then we can always compute a normal form
of t by computing the reducts of t in a breadth-first manner until we encounter
a normal form. However, this is a highly inefficient way to compute normal
forms. In practice, normal forms are computed by adopting a suitable strategy
for selecting the redexes which are to be contracted in each step. A strategy is
called normalizing if it succeeds in computing normal forms for all terms that
admit a normal form. For the class of orthogonal TRSs several normalizations
results are known (see e.g. Klop [14]). For instance, O’Donnell [20] proved that
the parallel-outermost strategy (which contracts in a single step all outermost
redexes in parallel) is normalizing for all orthogonal TRSs. However, parallel-
outermost is not an optimal strategy as it may perform useless steps.

Example 2.2 Consider the TRS R consisting of the rewrite rules

0 + y → y 0× y → 0

s(x) + y → s(x+ y) s(x)× y → (x× y) + y

Faced with the term t = (0× s(0))× (0+ s(0)), the parallel-outermost strategy
computes its normal form 0 by contracting three redexes in two steps:

(0× s(0))× (0 + s(0))→∗ 0× s(0)→ 0

The normal form 0 can also be reached by contracting just two redexes:

(0× s(0))× (0 + s(0))→ 0× s(0)→ 0

So redex 0 + s(0) in t is not needed to reach the normal form.

An optimal strategy selects only needed redexes. Formally, a redex ∆
in a term t is needed if in every rewrite sequence from t to normal form a
descendant of ∆ is contracted.

Example 2.1 (continued) In the displayed rewrite sequence nth(2, fib)→∗ 2
non-needed redexes are contracted. For instance, redex 1 + 2 in the term
nth(0, f(2, 1 + 2)) is non-needed:

nth(0, f(2, 1 + 2))→ nth(0, 2 : f(1 + 2, 2 + (1 + 2)))→ 2

Huet and Lévy [11] proved the following important result.

Theorem 2.1 Let R be an orthogonal TRS.

(i) Every reducible term contains a needed redex.

(ii) Repeated contraction of needed redexes results in a normal form, whenever
the term under consideration has a normal form.

So, for orthogonal TRSs, the strategy that always selects a needed redex
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for contraction is normalizing and optimal. 4 Unfortunately, needed redexes
are not computable in general. Hence, in order to obtain a computable optimal
strategy, we need to find (1) decidable approximations of neededness and (2)
(decidable) classes of rewrite systems which ensure that every reducible term
has a needed redex identified by (1).

Starting with the seminal work of Huet and Lévy [11] on strong sequen-
tiality, these issues have been extensively investigated in the literature (e.g.
[3,12,13,14,15,22,28]). In all these works Huet and Lévy’s notions of index,
ω-reduction, and sequentiality figure prominently. Basically, to determine
whether an outermost redex ∆ in a term t = C[∆] is needed, ∆ is replaced by
a fresh symbol • and all other outermost redexes in t are replaced by Ω which
represents an unknown term. It is then investigated whether • can disappear
from the resulting Ω-term t′ by using some computable notion of partial re-
duction. If this is not the case, then we may conclude that redex ∆ in t is
needed. Since neededness of redex ∆ in t is solely determined by its position
in t (cf. Lemma 5.1), replacing redex ∆ in t by • incurs no loss of generality.
However, by replacing all other outermost redexes by Ω essential information
may be lost for determining the neededness of ∆. This is illustrated in the
following example, which shows that needed redexes are not independent of
other redexes.

Example 2.2 (continued) An arbitrary redex ∆ is needed in the term (0 +
s(0))×∆ but not in the term (0× s(0))×∆: (0× s(0))×∆→ 0×∆→ 0.

In Section 5 we present the framework of Durand and Middeldorp [6] for
decidable call-by-need computations in which issues (1) and (2) are addressed
directly.

3 Dependency Pairs

In the area of term rewriting, termination has been studied for several decades
and many powerful techniques have been developed (see [5,24,30] for surveys).
Since termination is an undecidable property of rewrite systems, no method
will work in all cases. The traditional techniques for automated termination
proofs of TRSs are simplification orders like the recursive path order, the
Knuth-Bendix order, and (most) polynomial orders. Recently, the termina-
tion proving power of these techniques has been significantly extended by the
dependency pair method of Arts and Giesl. In this method a TRS is trans-
formed into a set of ordering constraints such that termination of the TRS
is equivalent to the solvability of the constraints. The generated constraints
are typically solved by traditional simplification orders. The power of the de-
pendency pair method has been amply illustrated in a sequence of papers by
Arts, Giesl, Ohlebusch, and Urbain [1,8,9,21,29].

4 We ignore here the problem of duplication of (needed) redexes, which can be solved if
common subterms are shared.
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In this section we recall the basic notions and results related to the depen-
dency pair technique. We refer to [1,8,9] for motivations and further refine-
ments. Let R be a TRS over a signature F . The subset D ⊆ F of defined
symbols consists of all root symbols of left-hand sides of rewrite rules. Let F ]
denote the union of F and {f ] | f ∈ D} where f ] has the same arity as f .
Given a term t = f(t1, . . . , tn) ∈ T (F ,V) with f defined, we write t] for the
term f ](t1, . . . , tn). If l → r ∈ R and t is a subterm of r with root(t) ∈ D
then the rewrite rule l] → t] is called a dependency pair of R. The set of all
dependency pairs of R is denoted by DP(R). In examples we write F for f].

Example 3.1 The TRS R consisting of the rewrite rules

even(x)→ eo(x, 0) eo(x, 0)→ not(eo(x, s(0)))

odd(x)→ eo(x, s(0)) eo(0, s(0))→ false

not(true)→ false eo(s(x), s(0))→ eo(x, 0)

not(false)→ true

has five dependency pairs:

EVEN(x)→ EO(x, 0) (1) EO(x, 0)→ NOT(eo(x, s(0))) (3)

ODD(x)→ EO(x, s(0)) (2) EO(x, 0)→ EO(x, s(0)) (4)

EO(s(x), s(0))→ EO(x, 0) (5)

A preorder is a transitive and reflexive relation. A rewrite preorder is
a preorder & on terms that is closed under contexts and substitutions. A
reduction pair consists of a rewrite preorder & and a compatible well-founded
order > which is closed under substitutions. Here compatibility means that
the inclusion & · > ⊆ > or the inclusion > · & ⊆ > holds.

Theorem 3.2 (Arts and Giesl [1]) A TRS R over a signature F is termi-
nating if and only if there exists a reduction pair (&, >) such that R ⊆ & and
DP(R) ⊆ >.

Because rewrite rules are just pairs of terms, R ⊆ & is a shorthand for
l & r for every rewrite rule l→ r ∈ R and DP(R) ⊆ > denotes that l > r for
every dependency pair l→ r ∈ DP(R).

Example 3.1 (continued) According to Theorem 3.2, termination of R
amounts to finding a reduction pair (&, >) such that

even(x) & eo(x, 0) eo(x, 0) & not(eo(x, s(0)))

odd(x) & eo(x, s(0)) eo(0, s(0)) & false

not(true) & false eo(s(x), s(0)) & eo(x, 0)

not(false) & true EO(x, 0) > NOT(eo(x, s(0)))

EVEN(x) > EO(x, 0) EO(x, 0) > EO(x, s(0))

ODD(x) > EO(x, s(0)) EO(s(x), s(0)) > EO(x, 0)
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In order to benefit from the fact that the second component of a reduction
pair need not be closed under contexts, the constraints generated by The-
orem 3.2 may be simplified by applying a so-called argument filtering. An
argument filtering for a signature F is a mapping π that associates with ev-
ery n-ary function symbol an argument position i ∈ {1, . . . , n} or a (possibly
empty) list [i1, . . . , im] of argument positions with 1 6 i1 < · · · < im 6 n.
The signature Fπ consists of all function symbols f such that π(f) is some
list [i1, . . . , im], where in Fπ the arity of f is m. Every argument filtering π
induces a mapping from T (F ,V) to T (Fπ,V), also denoted by π:

π(t) =





t if t is a variable

π(ti) if t = f(t1, . . . , tn) and π(f) = i

f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im]

Thus, an argument filtering is used to replace function symbols by one of their
arguments or to eliminate certain arguments of function symbols.

Theorem 3.3 ([1]) A TRS R over a signature F is terminating if and only
if there exist an argument filtering π for F ] and a reduction pair (&, >) such
that π(R) ⊆ & and π(DP(R)) ⊆ >.

Example 3.1 (continued) Even if we apply an arbitrary argument filtering
π to the ordering constraints given earlier, the resulting constraints cannot be
satisfied by a reduction pair (&, >) with > a simplification order. This can be
seen as follows. The constraint EO(x, 0) > EO(x, s(0)) can only be satisfied
when π(s) = [ ]. But then the constraint EO(s(x), s(0)) > EO(x, 0) reduces
to EO(s, s) > EO(x, 0) and hence we must have π(EO) ∈ {[2], 2}. So the two
constraints EO(x, 0) > EO(x, s(0)) and EO(s(x), s(0)) > EO(x, 0) reduce to
either EO(0) > EO(s) and EO(s) > EO(0) or 0 > s and s > 0, contradicting
the well-foundedness of >.

Rather than considering all dependency pairs at the same time, like in
the preceding theorems, it is advantageous to treat groups of dependency
pairs separately. These groups correspond to cycles in the dependency graph
DG(R) of R. The nodes of DG(R) are the dependency pairs of R and there
is an arrow from s → t to u → v if and only if there exist substitutions σ
and τ such that tσ →∗R uτ . (By renaming variables in different occurrences of
dependency pairs we may assume that σ = τ .) A cycle is a non-empty subset
C of dependency pairs if for every two (not necessarily distinct) pairs s → t
and u→ v in C there exists a non-empty path in C from s→ t to u→ v.

Theorem 3.4 ([9]) A TRS R is terminating if and only if for every cycle C
in DG(R) there exist an argument filtering π and a reduction pair (&, >) such
that π(R) ⊆ &, π(C) ⊆ & ∪ >, and π(C) ∩> 6= ∅.

The last condition in Theorem 3.4 denotes the situation that π(s) > π(t)
for at least one dependency pair s→ t ∈ C.

6



Middeldorp

Example 3.1 (continued) The dependency graph DG(R) has six arrows:

(1) //

��

(3)

(4)
**
(5)jj

OO

(2)oo

The constraints corresponding to the only cycle C = {(4), (5)} consist of the
rule constraints

even(x) & eo(x, 0) eo(x, 0) & not(eo(x, s(0)))

odd(x) & eo(x, s(0)) eo(0, s(0)) & false

not(true) & false eo(s(x), s(0)) & eo(x, 0)

not(false) & true

and the dependency pair constraints

EO(x, 0) >′ EO(x, s(0)) EO(s(x), s(0)) >′′ EO(x, 0)

with >′, >′′ ∈ {>,&} such that at least one of >′ and >′′ equals >. Letting
>′ = &, >′′ = >, and using the argument filtering π defined as π(EO) = 1,
π(eo) = π(not) = π(0) = [ ], and π(s) = π(even) = π(odd) = [1], these
constraints reduce to

even(x) & eo not & false eo & not eo & eo s(x) > x

odd(x) & eo not & true eo & false x & x

and are satisfied by the recursive path order (i.e., > = �rpo and & = �=
rpo)

with precedence even, odd � eo � not � false, true.

Since it is undecidable whether there exist substitutions σ, τ such that
tσ →∗R uτ , the dependency graph cannot be computed in general. Hence,
in order to mechanize the termination criterion of Theorem 3.4 one has to
approximate the dependency graph. To this end, Arts and Giesl proposed a
simple algorithm.

Definition 3.5 Let R be a TRS. The nodes of the estimated dependency
graph EDG(R) are the dependency pairs ofR and there is an arrow from s→ t
to u → v if and only if REN(CAP(t)) and u are unifiable. Here CAP replaces
all outermost subterms with a defined root symbol by distinct fresh variables
and REN replaces all occurrences of variables by distinct fresh variables.

Lemma 3.6 ([1]) Let R be a TRS.

(i) EDG(R) is computable.

(ii) DG(R) ⊆ EDG(R).

One easily verifies that for the TRS R of Example 3.1, EDG(R) coincides
with DG(R).
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Example 3.7 Consider the TRS R consisting of the well-known rewrite rule
of Toyama [27]:

f(a, b, x)→ f(x, x, x)

There is one dependency pair: F(a, b, x) → F(x, x, x). As there are no terms
s and t such that F(s, s, s) →∗R F(a, b, t), DG(R) contains no arrows and
hence termination of R is a trivial consequence of Theorem 3.4. However,
since REN(CAP(F(x, x, x))) = F(x1, x2, x3) unifies with F(a, b, x), EDG(R) con-
tains a cycle. Since solving the resulting constraints f(a, b, x) & f(x, x, x) and
F(a, b, x) > F(x, x, x) is just as hard as proving the termination of R directly,
automatically proving termination with the dependency pair method seems
impossible.

The TRS in the above example is not DP quasi-simply terminating. The
class of DP quasi-simply terminating TRSs (Giesl and Ohlebusch [10]) is sup-
posed to “capture all TRSs where an automated termination proof using de-
pendency pairs is potentially feasible”. In Section 6 we will see that by replac-
ing the estimated dependency graph by better (computable) approximations
of the dependency graph, automatically proving termination of the TRS of
Example 3.7 becomes trivial.

4 Approximations

We begin this section by recalling some basic definitions and results concerning
tree automata. Much more information can be found in [4].

A (finite bottom-up) tree automaton is a quadruple A = (F , Q,Qf ,∆)
consisting of a finite signature F , a finite set Q of states, disjoint from F , a
subset Qf ⊆ Q of final states, and a set of transition rules ∆. Every transition
rule has the form f(q1, . . . , qn) → q with f ∈ F and q1, . . . , qn, q ∈ Q. So a
tree automaton A = (F , Q,Qf ,∆) is simply a finite ground TRS (F ∪Q,∆)
whose rewrite rules have a special shape, together with a subset Qf of Q.
The induced rewrite relation on T (F ∪Q) is denoted by →A. A ground term
t ∈ T (F) is accepted by A if t →∗A q for some q ∈ Qf . The set of all such
terms is denoted by L(A). A subset L ⊆ T (F) is called regular if there exists
a tree automaton A = (F , Q,Qf ,∆) such that L = L(A). It is well-known
that the set of ground instances Σ(t) of a linear term t is regular. Moreover,
the set of ground normal forms NF(R) of a left-linear TRS R is regular. Below
we make use of the well-known fact that it is decidable whether a given tree
automaton accepts the empty language.

Let R be an eTRS over a signature F and L ⊆ T (F). In the following we
denote the set of all terms s ∈ T (F) such that s →∗R t for some term t ∈ L
by (→∗R)[L].

The reason for the undecidability of neededness and the fact that the
dependency graph is not computable is simply that reduction (→∗R) is unde-
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cidable. More precisely, it is undecidable whether a term rewrites to a term
that belongs to a certain set. In the case of neededness, this set is the set of
normal forms (that do not contain •, see the next section for precise state-
ments). Since NF(R) is regular for a left-linear TRS R, it follows that the set
(→∗R)[NF(R)] is not regular. The key to decidability is to extend →∗R to →∗S
for some suitable eTRS S such that (→∗S)[NF(R)] becomes regular.

Definition 4.1 Let R and S be eTRSs over the same signature. We say that
S approximates R if →R ⊆ →∗S and NF(R) = NF(S). An approximation
mapping is a mapping α from eTRSs to eTRSs with the property that α(R)
approximates R for all eTRSs R. We say that α is regularity preserving if
(→∗Rα)[L] is regular for all eTRSs R and regular L.

In the remainder of this section we define three approximation mappings
that are known to be regularity preserving. Our definitions are slightly dif-
ferent from the ones found in the literature because we have to deal with
possibly non-left-linear TRSs (when approximating the dependency graph in
Section 6).

Definition 4.2 Let R be an eTRS. The strong approximation Rs is obtained
from R by replacing the right-hand side and all occurrences of variables in
the left-hand side of every rewrite rule by distinct fresh variables, i.e., Rs =
{REN(l)→ z | l→ r ∈ R and z is a fresh variable}.
Example 2.2 (continued) The eTRS Rs consists of the following rules:

0 + y → z 0× y → z

s(x) + y → z s(x)× y → z

The idea of approximating a TRS by ignoring the right-hand sides of its
rewrite rules is due to Huet and Lévy [11]. A better approximation is obtained
by preserving the non-variable parts of the right-hand sides of the rewrite
rules.

Definition 4.3 The nv approximation Rnv is obtained from R by replacing
all occurrences of variables in the rewrite rules by distinct fresh variables:
Rnv = {REN(l)→ REN(r) | l→ r ∈ R}.
Example 2.2 (continued) The eTRS Rnv consists of the following rules:

0 + y → y′ 0× y → 0

s(x) + y → s(x′ + y′) s(x)× y → (x′ × y′) + y′′

The idea of approximating a TRS by ignoring the variables in the right-
hand sides of the rewrite rules is due to Oyamaguchi [22]. Note that Rnv = R
whenever R is left-linear and right-ground.

Definition 4.4 An eTRS is called growing if for every rewrite rule l→ r the
variables in Var(l)∩Var(r) occur at depth 1 in l. The growing approximation
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Rg is defined as any left-linear growing eTRS that is obtained from R by
linearizing the left-hand sides and renaming the variables in the right-hand
sides that occur at a depth greater than 1 in the corresponding left-hand sides.

Example 2.2 (continued) The eTRS Rg consists of the following rules:

0 + y → y 0× y → 0

s(x) + y → s(x′ + y) s(x)× y → (x′ × y) + y

Note that the occurrences of y in the right-hand sides of the rules of R are
not renamed since they occur at depth 1 in the corresponding left-hand sides.

Growing TRSs, introduced by Jacquemard [12], are a proper extension
of the shallow TRSs considered by Comon [3]. The growing approximation
defined above stems from Nagaya and Toyama [19]. It extends the growing
approximation in [12] in that the right-linearity requirement is dropped.

As a further example, consider a TRS R that contains the rewrite rule
f(x, g(x), y)→ f(x, x, g(y)). Then Rs contains f(x, g(x′), y)→ z, Rnv contains
f(x, g(x′), y) → f(x′′, x′′′, g(y′)), and Rg contains f(x, g(x′), y) → f(x, x, g(y))
or f(x′, g(x), y)→ f(x′′, x′′, g(y)). The former is preferred as it is closer to the
original rule. The ambiguity in the definition of Rg causes no problems in the
sequel.

Theorem 4.5 The approximation mappings s, nv, and g are regularity pre-
serving.

Nagaya and Toyama [19] proved the above result for the growing approx-
imation; the tree automaton that recognizes (→∗Rg

)[L] is defined as the limit
of a finite saturation process. This saturation process is similar to the ones
defined in Comon [3] and Jacquemard [12], but by working exclusively with
deterministic tree automata, non-right-linear rewrite rules can be handled.
For the strong and nv approximation simpler constructions using ground tree
transducers are possible ([6]).

Takai et al. [25] introduced the class of left-linear inverse finite path over-
lapping rewrite systems and showed that the preceding theorem is true for the
corresponding approximation mapping. Growing rewrite systems constitute a
proper subclass of the class of inverse finite path overlapping rewrite systems.
Since the definition of this class is rather difficult, we do not consider the in-
verse finite path overlapping approximation here. We note however that our
results easily extend. Another complicated regularity preserving approxima-
tion mapping can be extracted from the recent paper by Seki et al. [23].

5 Approximations for Strategies

Let R be a TRS over a signature F . We assume the existence of a constant
• not appearing in F and we view R as a TRS over the extended signature
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F• = F ∪{•}. So NF(R), the set of ground normal forms of R, consists of all
terms in T (F•) that are in normal form. LetR• be the TRSR∪{• → •}. Note
that NF(R•) coincides with NF(R)∩T (F), the set of ground normal forms that
do not contain the symbol •. The following easy lemma gives an alternative
definition of neededness, not depending on the notion of descendant.

Lemma 5.1 Let R be an orthogonal TRS over a signature F . Redex ∆ in
term C[∆] ∈ T (F) is needed if and only if there is no term t ∈ NF(R•) such
that C[•]→∗R t.

An immediate consequence of this lemma is the folklore result that only
the position of a redex in a term is important for determining neededness. So
if redex ∆ in term C[∆] is needed then so is redex ∆′ in C[∆′].

Definition 5.2 Let R be a TRS over a signature F and α an approxima-
tion mapping. We say that redex ∆ in C[∆] ∈ T (F) is α-needed if C[•] /∈
(→∗Rα)[NF(R•)]. The set of all such terms C[•] is denoted by NEED(Rα).

So redex ∆ in C[∆] is α-needed if and only if C[•] ∈ NEED(Rα). In
examples we abbreviate →Rα to →α.

Example 2.2 (continued) Let ∆1 and ∆2 be redexes and consider the term

t = (0 + s(∆1)︸ ︷︷ ︸
∆3

) + ∆2

All three redexes are needed (since R is non-erasing). The following rewrite
sequences show that ∆1 and ∆2 are not s-needed:

(0 + s(•)) + ∆2 →s 0 + ∆2 →s 0

(0 + s(∆1)) + • →s 0 + • →s 0

Redex ∆3 is s-needed since all s-reducts of •+ ∆2 are of the form •+ t′. For
the nv approximation the situation is the same. Redexes ∆1 and ∆2 are not
nv-needed—the above s-rewrite sequences are also nv-rewrite sequences—but
∆3 is. With respect to the growing approximation, ∆1 is not g-needed:

(0 + s(•)) + ∆2 →g s(•) + ∆2 →g s(0 + ∆2)→g s(∆2)→∗g t′

for some normal form t′ (which depends on redex ∆2). However, ∆2 is g-
needed. The reason is that we cannot get rid of • in the term (0 + s(∆1)) + •
since the second argument of + is never erased by the rules in Rg.

Lemma 5.3 Let R be an orthogonal TRS and α an approximation mapping.
Every α-needed redex is needed.

Only in Lemma 5.3 we require orthogonality. For decidability issues, left-
linearity suffices.

11
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Lemma 5.4 Let R be a left-linear TRS and α an approximation mapping. If
α is regularity preserving then NEED(Rα) is regular.

Since membership for regular tree languages is decidable, we obtain the
following result.

Corollary 5.5 Let R be a left-linear TRS and α a regularity preserving ap-
proximation mapping. It is decidable whether a redex in a term is α-needed.

Naturally, a better approximation can identify more needed redexes.

Lemma 5.6 NEED(Rs) ⊆ NEED(Rnv) ⊆ NEED(Rg) for every TRS R.

Lemma 5.3 and Corollary 5.5 take care of the first issue mentioned in
the paragraph following Theorem 2.1, to find decidable approximations of
neededness. In the following we address the second issue, to identify classes of
TRSs with the property that every reducible term has a computable needed
redex.

Definition 5.7 Let α be an approximation mapping. The class of TRSs such
that every reducible ground term has an α-needed redex is denoted by CBNα.

The proof of the following theorem relies on standard properties of regular
tree languages and ground tree transducers.

Theorem 5.8 Let R be a left-linear TRS and α a regularity preserving ap-
proximation map. It is decidable whether R ∈ CBNα.

It should not come as a surprise that a better approximation covers a larger
class of TRSs. This is expressed formally in the next lemma.

Lemma 5.9 CBNs ( CBNnv ( CBNg.

It is interesting to note that the class CBNs properly includes the class of
strongly sequential TRSs introduced by Huet and Lévy (see [7, Example 1]).
The class CBNnv is much larger than the class of NV-sequential TRSs intro-
duced by Oyamaguchi [22]. For instance, CBNnv contains all right-ground
TRSs. As a consequence, the proof that the first inclusion in the previous
lemma is strict is very easy. The TRS consisting of the three rules

f(a, b, x)→ a f(b, x, a)→ b f(x, a, b)→ c

belongs to CBNnv (as it is right-ground) but not to CBNs since none of the
occurrences of redex ∆ in the term f(∆,∆,∆) is s-needed:

f(•,∆,∆)→s f(•, a,∆)→s f(•, a, b)→s a

f(∆, •,∆)→s f(b, •,∆)→s f(b, •, a)→s a

f(∆,∆, •)→s f(a,∆, •)→s f(a, b, •)→s a

In contrast, the proof that the class of NV-sequential TRSs properly includes
all strongly sequential TRSs is rather complicated (cf. [22]). The relationships
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between several classes of TRSs that admit decidable call by need compu-
tations to normal form are summarized in Fig. 1. The interested reader is
referred to Durand and Middeldorp [6,7] for further results on decidable call-
by-need computations.

#
"

 
!

strong
sequentiality

'

&

$

%
NV sequentiality

CBNs

CBNnv

CBNg

Fig. 1. Comparison.

6 Approximations for Termination

Recall that there exists an arrow from dependency pair s→ t to dependency
pair u→ v in DG(R) if and only if tσ →∗R uτ for some substitutions σ and τ .
Since tσ ∈ Σ(t) and uτ ∈ Σ(u), this is equivalent to

Σ(t) ∩ (→∗R)[Σ(u)] 6= ∅

If we want to use tree automata to decide the non-emptiness of the intersection
of Σ(t) and (→∗R)[Σ(u)], the obvious idea is to approximate these sets by
regular tree languages that contain them. It is well-known that Σ(u) need
not be regular if u is a non-linear term. However, REN(u) is a linear term
and the inclusion Σ(u) ⊆ Σ(REN(u)) clearly holds. Based on the results of
Section 4, it is natural to approximate (→∗R)[Σ(u)] by (→∗Rα)[Σ(REN(u))] for
a regularity preserving approximation mapping α. However, there is no need
to approximate Σ(t) by Σ(REN(t)) in order to obtain decidability. The reason
is expressed in the following result.

Theorem 6.1 (Tison [26]) The following problem is decidable:

instance: tree automaton A, term t

question: Σ(t) ∩ L(A) = ∅?

This result will turn out to be very important for automatically proving

13
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termination of TRSs that rely on non-linearity (i.e., by linearizing the rewrite
rules the TRS becomes non-terminating).

For a proper understanding of the next definition, it is helpful to realize
that Σ(t) ∩ (→∗R)[Σ(u)] 6= ∅ is equivalent to Σ(u) ∩ (→∗(R−1))[Σ(t)] 6= ∅.

Definition 6.2 Let R be a TRS and α an approximation mapping. The
nodes of the α-approximated dependency graph DGα(R) are the dependency
pairs of R and there is an arrow from s → t to u → v if and only if both
Σ(t) ∩ (→∗Rα)[Σ(REN(u))] 6= ∅ and Σ(u) ∩ (→∗(R−1)α

)[Σ(REN(t))] 6= ∅.

So we draw arrow from s → t to u → v if a ground instance of t rewrites
in Rα to a ground instance of REN(u) and a ground instance of u rewrites in
(R−1)α to a ground instance of REN(t). The reason for having both conditions
is that (1) for decidability t or u should be made linear and (2) depending on
α and R, Rα may better approximate R than (R−1)α approximates R−1, or
vice-versa. Also, the more conditions one imposes, the closer one gets to the
real dependency graph.

Theorem 6.3 Let R be a TRS and α an approximation mapping.

(i) If α is regularity preserving then DGα(R) is computable.

(ii) DG(R) ⊆ DGα(R).

Naturally, a better approximation mapping results in a better approxima-
tion of the dependency graph. Hence we have the following result.

Lemma 6.4 DG(R) ⊆ DGg(R) ⊆ DGnv(R) ⊆ DGs(R) for every TRS R.

We now compare our α-approximated dependency graph with the esti-
mated dependency graph of Arts and Giesl. The first two examples show that
the s-approximated dependency graph and the estimated dependency graph
are incomparable in general.

Example 6.5 Consider the TRS R = {f(g(a)) → f(a), a → b}. There are
two dependency pairs:

F(g(a))→ F(a) (1) F(g(a))→ A (2)

Because REN(CAP(F(a))) = F(x) unifies with F(g(a)), EDG(R) contains two
arrows:

(1)
))

// (2)

We have (R−1)s = {f(a) → x, b → x}. Hence (→∗(R−1)s
)[{F(a)}] consists of

all terms of the form fn(a), fn(b), F(fn(a)), F(fn(b)) with n > 0. The term
F(g(a)) clearly does not belong to this set and hence there are no arrows in
DGs(R).

Example 6.6 Consider the TRS R = {f(x, x)→ f(a, b)}. We have DP(R) =
{F(x, x) → F(a, b)}. Because REN(CAP(F(a, b))) = F(a, b) and F(x, x) are
not unifiable, EDG(R) contains no arrows. However, both Σ(F(a, b)) ∩ (→∗Rs

)
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[Σ(REN(F(x, x)))] and Σ(F(x, x))∩ (→∗(R−1)s
)[Σ(REN(F(a, b)))] are non-empty,

as witnessed by the terms F(a, b) and F(f(a, b), f(a, b)).

The non-linearity in the preceding example is essential.

Lemma 6.7 DGs(R) ⊆ EDG(R) for every left-linear TRS R.

The next result states that the nv-approximated dependency graph is al-
ways a subgraph of the estimated dependency graph.

Theorem 6.8 DGnv(R) ⊆ EDG(R) for every TRS R.

The next example shows that the nv-approximated dependency graph is
in general a proper subgraph of the estimated dependency graph.

Example 3.7 (continued) We have Rnv = {f(a, b, x) → f(x1, x2, x3)} and
Σ(REN(F(a, b, x))) = {F(a, b, t) | t is a ground term}. Consequently, (→∗Rnv

)
[Σ(REN(F(a, b, x)))] equals Σ(REN(F(a, b, x))) and since no instance of the
term F(x, x, x) belongs to this set, DGnv(R) contains no arrow.

We note that the various refinements of the dependency pair method (nar-
rowing, rewriting, instantiation; see Giesl and Arts [8]) are not applicable to
the TRS of Example 3.7.

The next example shows a TRS that cannot be proved terminating with
the nv approximation but whose (automatic) termination proof becomes easy
with the growing approximation.

Example 6.9 Consider the TRS R consisting of the three rewrite rules

f(x, a)→ f(x, g(x, b)) g(h(x), y)→ g(x, h(y))

g(a, y)→ y

There are three dependency pairs:

F(x, a)→ F(x, g(x, b)) (1) G(h(x), y)→ G(x, h(y)) (3)

F(x, a)→ G(x, b) (2)

One easily verifies that DGnv(R) contains two cycles:

(1)
))

// (2) // (3)
uu

In particular, F(a, g(a, b))→Rnv F(a, a) which explains the arrows from (1) to
(1) and (2). The problematic cycle {(1)} does not exist in DGg(R) because no
ground instance of F(x, g(x, b)) rewrites in Rg to a ground instance of F(x, a):

(1) (2) // (3)
uu

As a consequence, the resulting ordering constraints

f(x, a) & f(x, g(x, b)) g(a, y) & y

g(h(x), y) & g(x, h(y)) G(h(x), y) > G(x, h(y))
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are easily satisfied (e.g. by taking π(f) = 1 in combination with the lexico-
graphic path order with precedence G � h and g � h). 5

For a comparison of our α-approximated dependency graph with the ap-
proximation of the dependency graph defined by Kusakari and Toyama [16,17]
we refer to [18].

We conclude this paper by introducing a new approximation of the depen-
dency graph, which does not rely on tree automata techniques. Recall that
there are two conditions for the existence of an arrow between two dependency
pairs in the α-approximated dependency graph. The idea is now to incorpo-
rate the symmetry considerations that gave rise to the second conditions into
the estimated dependency graph of Arts of Giesl.

Definition 6.10 Let R be a TRS over a signature F . The result of replacing
all outermost subterms of a term t with a root symbol in D−1 is denoted by
CAP−1(t). Here

D−1 =

{
{root(r) | l→ r ∈ R} if R is non-collapsing

F otherwise

is the set of defined symbols of the eTRS R−1. The nodes of the estimated∗

dependency graph EDG∗(R) are the dependency pairs of R and there is an
arrow from s → t to u → v if and only if both REN(CAP(t)) and u are
unifiable, and t and REN(CAP−1(u)) are unifiable.

Lemma 6.11 Let R be a TRS.

(i) EDG∗(R) is computable.

(ii) DG(R) ⊆ EDG∗(R).

Proof. The first part is obvious. The second part is an immediate conse-
quence of Lemma 6.4 and Theorem 6.17 below. 2

The next two examples show the advantage of the new approximation over
EDG.

Example 6.5 (continued) We have REN(CAP−1(F(g(a)) = F(g(a)) since
D−1 = {b, f}. Because this term does not unify with F(a), EDG∗(R) contains
no arrows.

Example 3.7 (continued) Since REN(CAP−1(F(a, b, x)) = F(a, b, x1) does
not unify with F(x, x, x), EDG∗(R) contains no arrow.

As soon as R contains a rewrite rule with a variable right-hand side,
EDG∗(R) and EDG(R) coincide.

Lemma 6.12 EDG∗(R) = EDG(R) for every collapsing TRS R.

5 Again, the TRS is not DP quasi-simply terminating.
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Proof. Clearly EDG∗(R) ⊆ EDG(R). Suppose there is an arrow from s → t
to u→ v in EDG(R). So REN(CAP(t)) and u are unifiable. We need to show
that t and REN(CAP−1(u)) are unifiable. Let F be the signature of R. We
have root(t) = root(u) ∈ F ]. Let u = f ](u1, . . . , un). Because R is collapsing,
D−1 = F . As u1, . . . , un ∈ T (F ,V), REN(CAP−1(u)) = f ](x1, . . . , xn) for
some fresh variables x1, . . . , xn. It follows that REN(CAP−1(u)) unifies with
any term that has f ] as root symbol, in particular with t. 2

As far as the comparison with DGs and DGnv is concerned, the results
established for EDG carry over to EDG∗, except that we have to strengthen left-
linearity to linearity in Lemma 6.7. This follows from the next two examples
and the subsequent results.

Example 6.13 Consider the TRS R consisting of the two rewrite rules

f(g(a))→ f(a) a→ g(b)

There are two dependency pairs:

F(g(a))→ F(a) (1) F(g(a))→ A (2)

Because REN(CAP(F(a))) = F(x) unifies with F(g(a)) and F(a) unifies with
REN(CAP−1(F(g(a)))) = F(x), EDG∗(R) contains two arrows:

(1)
))

// (2)

However, since F(g(a)) /∈ (→∗(R−1)s
)[{F(a)}], DGs(R) contains no arrows.

Example 6.14 Consider the TRS R consisting of the two rewrite rules

f(a, b, x)→ f(x, x, x) c→ a

There is one dependency pair: F(a, b, x) → F(x, x, x). Because F(a, b, x)
unifies with REN(CAP(F(x, x, x))) = F(x1, x2, x3) and F(x, x, x) unifies with
REN(CAP−1(F(a, b, x)) = F(x1, b, x2), EDG∗(R) contains a cycle. One easily
verifies that DGnv(R) contains no arrows.

Lemma 6.15 (←∗(R−1)s
)[Σ(REN(t))] ⊆ Σ(REN(CAP−1(t))) for every non-

collapsing TRS R and term t.

Proof. Let F be the signature of R. We use induction on the structure
of t. If t is a variable or if root(t) ∈ D−1 then CAP−1(t) is a variable and
hence Σ(REN(CAP−1(t))) = T (F ]) and thus trivially (←∗(R−1)s

)[Σ(REN(t))] ⊆
Σ(REN(CAP−1(t))). Suppose t = f(t1, . . . , tn) with f ∈ F ] \ D−1. Since R is
non-collapsing, every right-hand side of a rule in R and thus also every left-
hand side of a rule in (R−1)s starts with a symbol in D−1. Because root(t) /∈
D−1 and the arguments of REN(t) do not share variables, it follows that
(←∗(R−1)s

)[Σ(REN(t))] = {f(s1, . . . , sn) | si ∈ (←∗(R−1)s
)[Σ(REN(ti))]}. Clearly
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Σ(REN(CAP−1(t))) = {f(s1, . . . , sn) | si ∈ Σ(REN(CAP−1(ti)))}. Hence the
desired inclusion follows from the induction hypothesis. 2

Lemma 6.16 DGs(R) ⊆ EDG∗(R) for every linear TRS R.

Proof. If R is collapsing then the result follows from Lemmata 6.7 and 6.12.
Suppose there is an arrow from dependency pair s → t to dependency pair
u→ v in DGs(R). Since DGs(R) ⊆ EDG(R) by Lemma 6.7, REN(CAP(t)) and
u are unifiable by the definition of EDG(R). So it remains to show that t and
REN(CAP−1(u)) are unifiable. We have Σ(u) ∩ (→∗(R−1)s

)[Σ(REN(t))] 6= ∅ by

the definition of DGs(R). Since t and u are linear terms, Σ(REN(t)) = Σ(t) and
Σ(u) = Σ(REN(u)). It follows that (←∗(R−1)s

)[Σ(REN(u))]∩Σ(t) 6= ∅ and thus

Σ(REN(CAP−1(u))) ∩ Σ(t) 6= ∅ by Lemma 6.15. Since t and REN(CAP−1(u))
do not share variables, they are indeed unifiable. 2

Theorem 6.17 DGnv(R) ⊆ EDG∗(R) for every TRS R.

Proof. As in the preceding proof, we may assume that R is non-collapsing.
Suppose there is an arrow from dependency pair s → t to dependency pair
u → v in DGnv(R). Since DGnv(R) ⊆ EDG(R) by Lemma 6.8, REN(CAP(t))
and u are unifiable by the definition of EDG(R). So it remains to show that t
and REN(CAP−1(u)) are unifiable. By definition, Σ(t)∩ (→∗Rnv

)[Σ(REN(u))] 6=
∅. Since (Rnv)

−1 = (R−1)nv, (→∗Rnv
)[Σ(REN(u))] = (←∗(R−1)nv

)[Σ(REN(u))].
Using Lemma 6.15 and the observation that ←∗(R−1)nv

is a subrelation of

←∗(R−1)s
, it follows that (←∗(R−1)nv

)[Σ(REN(u))] ⊆ (←∗(R−1)s
)[Σ(REN(u))] ⊆

Σ(REN(CAP−1(u))). Hence Σ(t) ∩ Σ(REN(CAP−1(u))) 6= ∅ and thus t and
REN(CAP−1(u)) are unifiable. 2

�� ��DG

EDG

DGs

DGnv

DGg

EDG∗

Fig. 2. Comparison.

Fig. 2 reveals how far the various approximations of the dependency graph
are removed from the real object.
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