
Uncurrying for Termination⋆

Nao Hirokawa and Aart Middeldorp

Institute of Computer Science
University of Innsbruck
6020 Innsbruck, Austria

{nao.hirokawa,aart.middeldorp}@uibk.ac.at

Abstract. In this note we present a transformation from untyped ap-
plicative term rewrite systems to functional term rewrite systems that
preserves termination. Our transformation can handle head variables in
right-hand sides of rewrite rules.

1 Introduction

We are concerned with proving termination of applicative rewrite systems. The
signature of an applicative term rewrite system (ATRS) consists of variables,
constants, and a single binary function symbol called application and denoted
by the infix and left-associative symbol ◦. In examples we often use juxtaposition
instead of ◦. Every ordinary first-order rewrite system (TRS) can be transformed
into an applicative rewrite system by currying.

Proving termination of ATRSs is challenging because simplification orders
are not effective as ◦ is the only function symbol of non-zero arity. Moreover, the
dependency pair method is of little help as ◦ is the only defined non-constant
symbol.

Definition 1. Let F be a (functional) signature. The currying system C(F)
consists of the rewrite rules fi+1(x1, . . . , xi, y) → fi(x1, . . . , xi) ◦ y for every n-
ary function symbol f ∈ F and every 0 6 i < n. Here fn = f and, for every
0 6 i < n, fi is a fresh function symbol of arity i.

The currying system C(F) is confluent and terminating. Hence every term t

has a unique normal form t↓C(F). For instance, f(a, b) is transformed into f a b.

Definition 2. Let R be a TRS over the signature F . The curried system R↓C(F)

is the ATRS consisting of the rules l↓C(F) → r↓C(F) for every l → r ∈ R. The
signature of R↓C(F) contains the application symbol ◦ and a constant f0 for every
function symbol f ∈ F .

In the following we write R↓C for R↓C(F) whenever F can be inferred from
the context or is irrelevant. Moreover, we write f for f0.

⋆ This research is supported by FWF (Austrian Science Fund) project P18763.



Example 3. The TRS R

0 + y → y 0 × y → 0

s(x) + y → s(x + y) s(x) × y → (x × y) + y

is transformed into the ATRS R↓C

+ 0 y → y × 0 y → 0

+ (s x) y → s (+ x y) × (s x) y → + (× x y) y

Every rewrite sequence in R can be transformed into a sequence in R↓C ,
but the reverse does not hold. For instance, with respect to the above example,
the rewrite step + (s (× 0)) 0 → s (+ (× 0) 0) in R↓C does not correspond to a
rewrite step in R. Nevertheless, termination of R implies termination of R↓C , a
result due to Kennaway et al. [6].

Theorem 4. A TRS R is terminating if and only if R↓C is terminating. ⊓⊔

2 Uncurrying

As an immediate consequence we get the following transformation method for
proving termination of ATRSs.

Corollary 5. An ATRS R is terminating if and only if there exists a terminat-
ing TRS S such that S↓C = R (modulo renaming). ⊓⊔

In [5] this method is called transformation A. As can be seen from the fol-
lowing example, the method does not handle partially applied terms and, more
seriously, head variables. Hence the method is of limited applicability as it cannot
cope with the higher-order aspects modeled by ATRSs.

Example 6. Consider the ATRS R (from [2])

1 : id x → x 4: map f nil → nil

2: add 0 → id 5: map f (: x y) → : (f x) (map f y)

3 : add (s x) y → s (add x y)

Rules 1 and 4 are readily translated into functional form:

1 : id1(x) → x 4: map2(f, nil) → nil

However, we cannot find functional forms for rules 2 and 3 because the ‘arity’ of
add is 1 in rule 2 and 2 in rule 3. Because of the presence of the head variable f in
the subterm f x, there is no functional term t such that t↓C = : (f x) (map f y).
Hence rule 5 cannot be transformed.



For simply typed rewrite systems Aoto and Yamada [1, 2] introduced trans-
formation techniques that use type information. Head variables are removed by
instantiating them with ‘template’ terms of the appropriate type. In [3] they
adapted the dependency pair method to deal with simply typed ATRSs.

In this note we present a different solution for the untyped case. At the end
of this section we relate our approach to the one of [1, 2].

Definition 7. Let F be an applicative signature. The uncurrying system U(F)
consists of the rewrite rules fi(x1, . . . , xi) ◦ y → fi+1(x1, . . . , xi, y) for every
constant f ∈ F and every i > 0. Here f0 = f and, for every i > 0, fi is a fresh
function symbol of arity i.

The uncurrying system U(F) is confluent and terminating. Hence every term
t has a unique normal form t↓U(F).

Definition 8. Let R be an ATRS over the signature F . The uncurried system
R↓U(F) is the TRS consisting of the rules l↓U(F) → r↓U(F) for every l → r ∈ R.

In the following we write R↓U for R↓U(F) whenever F can be inferred from
the context or is irrelevant.

Example 9. The ATRS R of Example 6 is transformed into R↓U :

1 : id1(x) → x 4: map2(f, nil) → nil

2: add1(0) → id 5: map2(f, :2(x, y)) → :2(f ◦ x, map2(f, y))

3 : add2(s1(x), y) → s1(add2(x, y))

The TRS R↓U is an obvious candidate for S in Corollary 5. However, as can
be seen from the following example, the rules of R↓U are not enough to simulate
an arbitrary rewrite sequence in R.

Example 10. The non-terminating ATRS R = {id x → x, f x → id f x} is trans-
formed into the terminating TRS R↓U = {id1(x) → x, f1(x) → id2(f, x)}.

In the above example we need rules that connect id2 and id1 as well as f1 and
f. The natural idea is now to add sufficiently many rules of F↓U .

Definition 11. Let R be an ATRS over a signature F . The applicative arity
aa(f) of a constant f ∈ F is defined as the maximum n such that f ◦t1◦· · ·◦tn is
a subterm in the left- or right-hand side of a rule in R. This notion is extended
to terms as follows:

aa(t) =

{

aa(f) if t is a constant f

aa(t1) − 1 if t = t1 ◦ t2

Note that aa(t) is undefined if the head symbol of t is a variable. We define
U(R,F) as the union of R↓U and the subset of F↓U consisting of all rules
fi(x1, . . . , xi) ◦ y → fi+1(x1, . . . , xi, y) with 0 6 i < aa(f). We say that R is left
head variable free if aa(t) is defined for every subterm t of a left-hand side of a
rule in R.



In the following we write U(R) for U(R,F) whenever F can be inferred from
the context or is irrelevant.

Example 12. Consider the ATRS R in Example 10. We have aa(id) = 2 and
aa(f) = 1. The TRS U(R) consists of the following rules

id1(x) → x id ◦ x → id1(x) f ◦ x → f1(x)

f1(x) → id2(f, x) id1(x) ◦ y → id2(x, y)

and is easily shown to be terminating.

As the above example shows, we do not yet have a sound transformation. The
ATRS R admits the cycle f x → id f x → f x. In U(R) we have f1(x) → id2(f, x)
but the term id2(f, x) does not rewrite to f1(x). It would if the rule id x y → x y

would be present in R. This inspires the following definition.

Definition 13. Let R be a left head variable free ATRS. The η-saturated ATRS
Rη is the smallest extension of R such that l ◦ x → r ◦ x ∈ Rη whenever
l → r ∈ Rη and aa(l) > 0.

Note that →R = →Rη
, so the rules added during η-saturation do not affect

the termination behaviour of R. We can now state our main result.

Theorem 14. A left head variable free ATRS R is terminating if U(Rη) is
terminating. ⊓⊔

We skip the proof due to lack of space. Instead we revisit Example 6.

Example 15. Consider again the ATRS R of Example 6. Proving termination of
the transformed TRS U(Rη)

id1(x) → x : ◦ x → :1(x) id ◦ x → id1(x)

add1(0) → id :1(x) ◦ y → :2(x, y) add ◦ x → add1(x)

add2(0, y) → id1(y) add1(x) ◦ y → add2(x, y)

add2(s1(x), y) → s1(add2(x, y)) s ◦ x → s1(x)

map2(f, nil) → nil map ◦ x → map1(x)

map2(f, :2(x, y)) → :2(f ◦ x, map2(f, y)) map1(x) ◦ y → map2(x, y)

is a piece of cake with the dependency pair method (recursive SCC algorithm
with three applications of the subterm criterion).

The next example shows that left-head variable freeness condition cannot be
weakened to the well-definedness of aa(l) for every left-hand side l.

Example 16. Consider the non-terminating ATRS R

f (x a) → f (g b) g b → h a



The transformed TRS U(Rη)

f1(x ◦ a) → f1(g1(b)) f ◦ x → f1(x)

g1(b) → h1(a) g ◦ x → g1(x)

is terminating because its rules are oriented from left to right by the lexicographic
path order with precedence ◦ ≻ g1 ≻ f1 ≻ h1 ≻ a ≻ b. Note that aa(f (x a)) = 0.

The uncurrying transformation is not always useful.

Example 17. Consider the one rule TRS R = {C x y z u → x z (x y z u)} from
[4]. The termination of R is proved by the lexicographic path order with empty
precedence. The transformed TRS U(Rη) consists of

C4(x, y, z, u) → x ◦ z ◦ (x ◦ y ◦ z ◦ u)

C ◦ x → C1(x) C2(x, y) ◦ z → C3(x, y, z)

C1(x) ◦ y → C2(x, y) C3(x, y, z) ◦ w → C4(x, y, z, w)

None of the tools that participated in the 2005 termination competition is able
to prove the termination of U(Rη).

At the end of this section we briefly discuss the work of Aoto and Yamada [1,
2] for proving termination of simply typed ATRSs by transformation techniques.
After performing η-saturation, they eliminate head variables by instantiating
them with ‘template’ terms of the appropriate type. In a final step, the resulting
ATRS is translated into functional form.

Example 18. Consider again the ATRS R of Example 6. Suppose we adopt the
following type declarations: 0 : int, s : int → int, nil : list, (:) : int → list → list,
id : int → int, add : int → int → int, and map : (int → int) → list → list. The head
variable f in the right-hand side : (id x) (map f y) has type int → int. There
are three template terms of this type: s, id, and add z. Instantiating f by these
three terms in Rη produces the ATRS R′:

id x → x map f nil → nil

add 0 → id map s (: x y) → : (s x) (map s y)

add 0 y → id y map id (: x y) → : (id x) (map id y)

add (s x) y → s (add x y) map (add z) (: x y) → : (add z x) (map (add z) y)

The TRS R′↓U is terminating because its rules are oriented from left to right
by the lexicographic path order. According to the main result of [2], the simply
typed ATRS R is terminating, too.

The advantage of the simply typed approach is that the uncurrying rules are
not necessary because the application symbol has been eliminated from R′↓U .
This typically results in simpler termination proofs. It is worthwhile to investi-
gate whether a version of head variable instantiation can be developed for the
untyped case. We would like to stress that with the simply typed approach one
obtains termination only for those terms which are simply typed. Our approach,
when it works, provides termination for all terms, irrespective of any typing
discipline.



3 Mirroring

In the final part of this note we describe a trivial mirroring technique for TRSs.
This technique can be used to eliminate some of the head variables in an ATRS.

Definition 19. Let t be a term. The term tM is defined as follows: tM = t if
t is a variable and tM = f(tMn , . . . , tM1 ) if t = f(t1, . . . , tn). Moreover, if R is a
TRS then RM = {lM → rM | l → r ∈ R}.

We obviously have t →R u if and only if tM →RM uM . This gives the
following result.

Theorem 20. A TRS R is terminating if and only if RM is terminating. ⊓⊔

Example 21. Consider the one-rule ATRS R

x (a a a) → a (a a) x

While R has a head variable in its left-hand side, the mirrored version RM

a (a a) x → x (a a a)

is left head variable free. The transformed TRS U((RM )η)

a2(a1(a), x) → x ◦ a2(a, a) a ◦ x → a1(x) a1(x) ◦ y → a2(x, y)

is easily proved terminating with dependency pairs and a linear polynomial in-
terpretation.

Needless to say, mirroring may also introduce head variables in ATRSs. We
anticipate that partial mirroring will be more effective in practice.

References

1. T. Aoto and T. Yamada. Termination of simply typed term rewriting by translation
and labelling. In Proc. 14th RTA, volume 2706 of LNCS, pages 380–394, 2003.

2. T. Aoto and T. Yamada. Termination of simply-typed applicative term rewriting
systems. In Proc. 2nd HOR, Technical Report AIB-2004-03, RWTH Aachen, pages
61–65, 2004.

3. T. Aoto and T. Yamada. Dependency pairs for simply typed term rewriting. In
Proc. 16th RTA, volume 2706 of LNCS, pages 120–134, 2005.

4. N. Dershowitz. 33 Examples of termination. In French Spring School of Theoretical

Computer Science, volume 909 of LNCS, pages 16–26, 1995.
5. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination

of higher-order functions. In Proc. 5th FroCoS, volume 3717 of LNAI, pages 216–
231, 2005.

6. R. Kennaway, J.W. Klop, M.R. Sleep, and F.J. de Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.


