
WRS 2007

Innermost Termination of Rewrite Systems by
Labeling 1

René Thiemann

LuFG Informatik 2, RWTH Aachen
52074 Aachen, Germany

Aart Middeldorp

Institute of Computer Science, University of Innsbruck
6020 Innsbruck, Austria

Abstract

Semantic labeling is a powerful transformation technique for proving termination of term rewrite systems.
The semantic part is given by a model or a quasi-model of the rewrite rules. A variant of semantic labeling
is predictive labeling where the quasi-model condition is only required for the usable rules. In this paper we
investigate how semantic and predictive labeling can be used to prove innermost termination. Moreover,
we show how to reduce the set of usable rules for predictive labeling even further, both in the termination
and the innermost termination case.

Keywords: Innermost Termination, Predictive Labeling, Semantic Labeling, Term Rewriting, Termination

1 Introduction

We start our discussion by illustrating the limitations of existing versions of semantic
and predictive labeling on a concrete example. Consider the following rewrite system
R where x÷ y generates a number between 0 and bx

y c:

x > 0 → true (1)
0 > s(y) → false (2)

s(x) > s(y) → x > y (3)
x− 0 → x (4)
0− y → 0 (5)

s(x)− s(y) → x− y (6)

id-inc(x) → x (7)
id-inc(x) → s(x) (8)

x÷ y → if(y > s(0), x > y, x, y) (9)
if(false, b, x, y) → div-by-zero (10)

if(true, false, x, y) → 0 (11)
if(true, true, x, y) → id-inc((x− y)÷ y) (12)

1 Supported by DFG (Deutsche Forschungsgemeinschaft) grant GI 274/5-1 and FWF (Austrian Science
Fund) project P18763.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



R. Thiemann and A. Middeldorp

Proving termination of R is a difficult task. Consider the recursive calls of ÷ and
if in rules (9) and (12). Essentially, one has to find a well-founded order such that
the argument x of if is larger than the argument x − y of ÷. To this end, one can
use the fact that in the previous recursive call the terms y > s(0) and x > y are
both reducible to true. This knowledge is important as for x = 0 or y = 0 the term
x − y can be reduced to x. However, when using term orders one generates one
separate constraint for each rule of R. Thus, the knowledge of a previous recursive
call is not directly available when building the constraint for rule (12). For example,
polynomial interpretations with negative coefficients [5] are not expressive enough
to solve the constraints of rules (9) and (12).

To solve this problem one can use the technique of semantic labeling [9]. We can
take an algebra A over natural numbers N where we use the natural interpretation
for the symbols −, s, 0, false, true, and >, i.e., x−A y = max(x−y, 0), sA(x) = x+1,
0A = falseA = 0, trueA = 1, and x>A y = 1 if x > y, and 0 otherwise. Now, we can
also provide labeling functions `f which define how to label the function symbol f

in a term f(t1, . . . , tn), depending on the value of their arguments. E.g., we can
choose `÷(n, m) = n, `if(b1, b2, n,m) = b1b2+max(n−m, 0), and we do not label the
remaining symbols. Then by labeling we get the (infinite) TRS lab(R) consisting
of (1)–(8) together with the following rules, for all i > j > 0:

x÷i y → ifj(y > s(0), x > y, x, y) (13)
ifi(false, b, x, y) → div-by-zero (14)

ifi(true, false, x, y) → 0 (15)
ifi+1(true, true, x, y) → id-inc((x− y)÷i y) (16)

Termination of lab(R) is easily proved by LPO with precedence · · · A ÷n A ifn A
· · · A ÷1 A if1 A ÷0 A if0 A id-inc A − A > A s A 0 A true A false. The result
of semantic labeling is that if the algebra A is a model of R then termination of
lab(R) implies termination of R. However, it is impossible to give an interpretation
id-incA such that A is a model of R, since there is a conflict between the rules (7)
and (8).

One solution is to work with quasi-models where it is only required that the inter-
pretation of each left-hand side of a rule is greater than or equal to the interpretation
of the corresponding right-hand side. In [4] semantic labeling with quasi-models is
extended to predictive labeling where A only has to be a quasi-model of the usable
rules, the rules which define the function symbols that are needed to perform the
labeling. In our example the usable rules are (1)–(6). And indeed A is a (quasi-)
model of these rules. The problem when using quasi-models is the requirement that
all interpretations have to be weakly monotone in all arguments. As −A is not
weakly monotone (1 > 0, but 3−A 1 = 2 6> 3 = 3−A 0) one cannot use the algebra
A to prove termination of R.

As a matter of fact, R is not terminating:

s(0)÷ id-inc(0) → if(id-inc(0) > s(0), s(0) > id-inc(0), s(0), id-inc(0))

→2 if(s(0) > s(0), s(0) > s(0), s(0), id-inc(0))

→4 if(true, true, s(0), id-inc(0))

2



R. Thiemann and A. Middeldorp

→ id-inc((s(0)− id-inc(0))÷ id-inc(0))

→2 (s(0)− 0)÷ id-inc(0) → s(0)÷ id-inc(0) → · · ·

So there cannot be a version of predictive labeling with models and arbitrary
interpretations. 2 Nevertheless, R is innermost terminating. Therefore we investi-
gate whether one can use predictive labeling with models for innermost termination,
where one can freely choose interpretations and where the algebra only has to be a
model of the usable rules. As the previous results on predictive labeling only work
for quasi-models, one cannot reuse them for innermost rewriting, e.g., Example 2.3
below shows that the main theorem of predictive labeling [4, Theorem 18] does not
hold for innermost rewriting.

The remainder of this paper is organized as follows. In Section 2 we start the
formal developments by recalling the basic definitions related to semantic labeling.
We show that with respect to innermost termination semantic labeling is incom-
plete for both models and quasi-models and unsound for quasi-models. Soundness
for models does hold and is shown in Section 3. By adapting the idea of predictive
labeling to the innermost case we show that the model requirement is only needed
for the usable rules induced by the labeling. The next contribution (Section 4) is
the integration of an argument filter, i.e., a mapping from function symbols to sets
of argument positions, to obtain even less usable rules than in [4] for innermost
termination. This idea was already used in [3] where argument filters are employed
to increase the power of term orders. In the context of semantic labeling, argument
filters are used to express which arguments are ignored in interpretation and label-
ing functions. In Section 5 we return to termination. We show how to integrate
argument filters with predictive labeling, resulting in a result that is strictly more
powerful than the main theorem of [4]. Concluding remarks are given in Section 6.

2 Semantic Labeling for Innermost Termination

We assume that the reader is familiar with term rewriting [2]. Below we recall the
basic definitions related to semantic labeling.

An algebra A over F is a pair (A, {fA}f∈F ) consisting of a carrier A and, for
every n-ary function symbol f ∈ F , an interpretation function fA : An → A. Given
an assignment α : V → A we write [α]A(t) for the interpretation of the term t. An
algebra A is a model of a rewrite system if [α]A(l) = [α]A(r) for all rules l → r ∈ R
and all assignments α. If additionally, the carrier A is equipped with a well-founded
order >A then A is a quasi-model if [α]A(l) >A [α]A(r) for all l → r ∈ R and all
assignments α.

For each function symbol f there also is a corresponding set Lf ⊆ A of labels
for f and if Lf is non-empty there also is a labeling function `f : An → Lf . The
labeled signature Flab consists of n-ary function symbols fa for every n-ary function
symbol f ∈ F and label a ∈ Lf together with all function symbols f ∈ F such that
Lf = ∅. The labeling function `f determines the label of the root symbol f of a term
f(t1, . . . , tn) based on the values of the arguments t1, . . . , tn. For every assignment

2 This answers a question raised in [4].

3



R. Thiemann and A. Middeldorp

α : V → A the mapping labα : T (F ,V) → T (Flab,V) is inductively defined as follows:

labα(t) =


t if t is a variable,
f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅,
fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf 6= ∅

where a denotes the label `f ([α]A(t1), . . . , [α]A(tn)). The labeled TRS lab(R) over
the signature Flab consists of the rules labα(l) → labα(r) for all l → r ∈ R and
α : V → A. Moreover, if one uses quasi-models then one needs the set Dec =
{fa(x1, . . . , xn) → fb(x1, . . . , xn) | a, b ∈ Lf , a >A b} of decreasing rules. In this
case every interpretation function fA and every labeling function `f has to be weakly
monotone, i.e., if a >A a′ then fA(a1, . . . , a, . . . , an) >A fA(a1, . . . , a

′, . . . , an) and
similarly for `f .

Zantema [9] obtained the following results for semantic labeling.

Lemma 2.1 Let R be a TRS and A a non-empty algebra.

(i) If A is a model of R then t →R u implies labα(t) →lab(R) labα(u).

(ii) If A is a quasi-model of R then t →R u implies labα(t) →+
lab(R)∪Dec labα(u).

From Lemma 2.1 one obtains that R is terminating if and only if lab(R) (∪Dec)
is terminating when A is a (quasi-)model of R. Completeness is achieved by remov-
ing the labels of a possible infinite rewrite sequence of the labeled TRS. Soundness
is proved by transforming a presupposed infinite rewrite sequence in R into an
infinite rewrite sequence in lab(R) (∪Dec). This transformation is achieved by ap-
plying the labeling function labα(·) (for an arbitrary assignment α) to all terms in
the infinite rewrite sequence of R. Hence, semantic labeling is sound and complete
for termination with respect to both models and quasi-models.

As first new contribution we show that semantic labeling is incomplete for in-
nermost termination (Example 2.2) and that it is not even sound when using quasi-
models (Example 2.3). We write i→R for the innermost rewrite relation of R.

Example 2.2 Consider the TRS R:

if(true, x) → if(test-ab(x), x) test-ab(a(x)) → test-b(x)
a(b) → c test-b(b) → true

Note that R is innermost terminating. The reason is that test-ab(x) can only be
evaluated to true if x is instantiated with a(b). But this is not allowed as a(b) is not
in normal form. We choose the algebra A with carrier A = {0, 1}, interpretations
ifA(x, y) = 0, bA = cA = trueA = 1, test-abA(x) = test-bA(x) = aA(x) = x, and
order >A = ∅. Then A is a model (and thus also a quasi-model) of R. Choosing
La = A, `a(x) = x, and Lf = ∅ for all other function symbols f we get the following
labeled TRS lab(R):

if(true, x) → if(test-ab(x), x) test-ab(a0(x)) → test-b(x) test-b(b) → true

a1(b) → c test-ab(a1(x)) → test-b(x)

4



R. Thiemann and A. Middeldorp

There are no decreasing rules. The following reduction shows that lab(R) is not
innermost terminating:

if(true, a0(b)) →lab(R) if(test-ab(a0(b)), a0(b)) →lab(R) if(test-b(b), a0(b))

→lab(R) if(true, a0(b)) →lab(R) · · ·

So semantic labeling is incomplete in the innermost case. The next example
shows that semantic labeling with quasi-models is unsound in the innermost case.

Example 2.3 The TRS R = {f(a(b)) → f(a(b))} is obviously not innermost
terminating. We choose the algebra A with carrier A = {0, 1}, interpretations
bA = fA(x) = 1, aA(x) = x, and >A = >, which is a (quasi-)model of R. By
taking Lb = Lf = ∅, La = A, and `a(x) = x, we obtain the TRS lab(R) ∪ Dec =
{f(a1(b)) → f(a1(b)), a1(x) → a0(x)}. This TRS is innermost terminating because
the second rule prohibits an innermost rewrite step with the first rule.

The previous example does not show that semantic labeling with models is
unsound for innermost termination because there are no decreasing rules when using
models. Indeed, in the next section we show the soundness of semantic labeling
with models for innermost termination. Actually, we prove a stronger results by
incorporating usable rules.

3 Predictive Labeling for Innermost Termination

Semantic labeling requires that the algebra is a model of all rules. This is in contrast
to predictive labeling where the model condition only has to be satisfied for the
usable rules, a concept introduced in [1]. We slightly modify the definition of usable
rules by integrating the labeling. Here, Fun(t) denotes the set of all function
symbols occurring in the term t.

Definition 3.1 Let R be a TRS and ` a labeling. We define the set of usable
symbols US`(t) ⊆ F of a term t inductively. If t ∈ V then US`(t) = ∅. If t =
f(t1, . . . , tn) then US`(t) is the least set such that

(i) US`(t1) ∪ · · · ∪ US`(tn) ⊆ US`(t),

(ii) if Lf 6= ∅ then Fun(t1) ∪ · · · ∪ Fun(tn) ⊆ US`(t), and

(iii) if l → r ∈ R and root(l) ∈ US`(t) then Fun(r) ⊆ US`(t).

The usable symbols of R are defined as

US`(R) =
⋃

l→r∈R
US`(r)

and the usable rules of R are defined as

U`(R) = {l → r ∈ R | root(l) ∈ US`(R)}.

It can be shown that US`(t) = G`(t) for the corresponding definition of G` in [4,
Definition 5]. However, there is a difference in the definition of US`(R) and G`(R)

5



R. Thiemann and A. Middeldorp

as in [4] both sides of a rule are considered, i.e., G`(r) and G`(l) are added for a rule
l → r. The difference is illustrated in the following example.

Example 3.2 Consider the TRS R = {a → f(g(b)), g(a) → c}. Assuming Lf 6= ∅
and Lg 6= ∅, in [4] one obtains G`(R) = {a, b, c, f, g} and thus both rules are
usable. This is in contrast to Definition 3.1 where US`(R) = {b, c, g} and hence
U`(R) = {g(a) → c}. The advantage of our definition is obvious: we get less
usable rules. However, the property in [4] that one only needs interpretations for
the symbols in US`(R) is not valid anymore. To check the model condition for
g(a) → c and to label g(a) we need an interpretation aA for a.

From now on we assume a fixed TRS R and just write US` instead of US`(R)
and U` instead of U`(R). Essentially, the aim of predictive (resp. semantic) la-
beling is to find a model for the usable (resp. all) rules and then try to prove
innermost termination of lab(R) to ensure innermost termination of R. As argued
between Lemma 2.1 and Example 2.2, soundness of semantic labeling is proved
by transforming an infinite reduction t1 →R t2 →R . . . into an infinite reduction
labα(t1) →lab(R) labα(t2) →lab(R) . . . by using Lemma 2.1(i). However, in the pre-
dictive case this lemma does not hold if the algebra is not a model of all rules. To
this end we consider a variant in which only reduction steps tσ i→R u are regarded
where t satisfies US`(t) ⊆ US` and where σ is a normalized substitution, i.e., where
σ(x) is in normal form for all x ∈ V.

Lemma 3.3 Let A be a model of U`, let US`(t) ⊆ US`, and let σ be a normalized
substitution. If tσ = C[lσ] i→R C[rσ] = u is a reduction with rule l → r ∈ R then

(i) labα(tσ) i→lab(R) labα(u),

(ii) there is a term t′ such that u = t′σ and US`(t′) ⊆ US`, and

(iii) Fun(t) ⊆ US` implies both Fun(t′) ⊆ US` and [α]A(tσ) = [α]A(u).

Note that Lemma 3.3(i) and (ii) will allow us to transform innermost reductions
of R into infinite innermost reductions of lab(R). This is needed for the proof of
the main theorem of this section (Theorem 3.4). Property (iii) is only needed to
prove Lemma 3.3.

Proof. We perform structural induction on t. As σ is a normalized substitution t

is not a variable, so let t = f(t1, . . . , tn). We first consider a root reduction, i.e.,
tσ = lσ i→R rσ = u. Let σlab be the substitution labα ◦ σ and let ασ be the
assignment [α]A ◦ σ. We have labα(lσ) = labασ(l)σlab and therefore obtain (i):

labα(tσ) = labα(lσ) = labασ(l)σlab
i→lab(R) labασ(r)σlab = labα(rσ) = labα(u).

Note that labeling does not introduce new redexes and hence the above reduction
step is really an innermost step. The reason is that there are no decreasing rules
as in Example 2.3. To obtain (ii) we choose t′ = r. Then u = t′σ is obviously
satisfied and US`(t′) = US`(r) ⊆ US` follows by definition of US`. To prove (iii)
let Fun(t) ⊆ US`. Then f ∈ US` and thus l → r ∈ U`. Moreover, by the closure
property in Definition 3.1(iii) we conclude Fun(r) ⊆ US`. As the rule is usable we
know that A is a model of this rule. Hence we can finish the root reduction case:

6



R. Thiemann and A. Middeldorp

[α]A(tσ) = [α]A(lσ) = [ασ]A(l) = [ασ]A(r) = [α]A(rσ) = [α]A(u).

Now we consider a reduction below the root: tiσ = C ′[lσ] i→R C ′[rσ] = ui and
u = f(t1σ, . . . , ui, . . . , tnσ). By Definition 3.1(i) we have US`(ti) ⊆ US`(t) ⊆ US`.
Hence, we can use the induction hypothesis for ti. To prove (i) we consider two
cases. First, if Lf = ∅ then

labα(tσ) = f(labα(t1σ), . . . , labα(tiσ), . . . , labα(tnσ)) i→lab(R)

f(labα(t1σ), . . . , labα(ui), . . . , labα(tnσ)) = labα(u)

directly proves (i). Otherwise, if Lf 6= ∅ then

labα(tσ) = fa(labα(t1σ), . . . , labα(tiσ), . . . , labα(tnσ)) i→lab(R)

fa(labα(t1σ), . . . , labα(ui), . . . , labα(tnσ))

where a = `f ([α]A(t1σ), . . . , [α]A(tiσ), . . . , [α]A(tnσ)). It remains to show that
a = `f ([α]A(t1σ), . . . , [α]A(ui), . . . , [α]A(tnσ)). To this end it suffices to prove
[α]A(tiσ) = [α]A(ui) which directly follows from the induction hypothesis (iii) since
Fun(ti) ⊆ US`(ti) ⊆ US` by Definition 3.1(ii).

To show (ii) we first get a term t′i with t′iσ = ui and US`(t′i) ⊆ US` by induc-
tion. We choose t′ = f(t1, . . . , t′i, . . . , tn) and directly obtain t′σ = u. To prove
US`(t′) ⊆ US` we define USk

` (t
′) to be like US`(t′) where we only apply closure (iii)

in Definition 3.1 at most k times. Then it suffices to prove USk
` (t

′) ⊆ US` for all
k ∈ N which we do by an inner induction on k. We first consider closure (i). Here,
we use US`(t) ⊆ US` and Definition 3.1(i) to obtain US`(t1)∪ · · · ∪US`(tn) ⊆ US`.
Thus, USk

` (t1)∪ · · ·∪USk
` (t

′
i)∪ · · ·∪USk

` (tn) ⊆ US` is also satisfied. For closure (ii)
we only have to consider the case Lf 6= ∅. From US`(t) ⊆ US` and Definition 3.1(ii)
we conclude Fun(tj) ⊆ US` for all 1 6 j 6 n. As Fun(t′i) ⊆ US` by induction
hypothesis (iii), we are done. For closure (iii) let f ∈ USk

` (t
′). If f ∈ USk−1

` (t′)
then we only have to apply the inner induction hypothesis. Otherwise, there is a
rule l → r with root(l) ∈ USk−1

` (t′) and f ∈ Fun(r). From the inner induction
hypothesis we obtain root(l) ∈ US` =

⋃
l′→r′ US`(r′). Thus, for some r′ we have

root(l) ∈ US`(r′) and by Definition 3.1(iii) we know f ∈ US`(r′). But then f ∈ US`

as well.
To finally prove (iii) we assume Fun(t) ⊆ US`. Then obviously Fun(ti) ⊆ US`.

Thus, by induction hypothesis (iii) we know Fun(t′i) ⊆ US`. So Fun(t′) ⊆ US` is a
consequence of Fun(t) ⊆ US`. Moreover, we also obtain [α]A(tiσ) = [α]A(ui) from
the induction hypothesis (iii). Hence, we can finally prove (iii):

[α]A(tσ) = fA([α]A(t1σ), . . . , [α]A(tiσ), . . . , [α]A(tnσ))
= fA([α]A(t1σ), . . . , [α]A(ui), . . . , [α]A(tnσ)) = [α]A(u).

2

Theorem 3.4 If A is a model of U` then innermost termination of lab(R) implies
innermost termination of R.

Proof. Suppose R is not innermost terminating. Then there is a minimal non-
terminating term s which is not innermost terminating. By renaming the variables

7



R. Thiemann and A. Middeldorp

of the rules used for the reductions we can assume that for every rewrite step in this
infinite reduction the corresponding rule is instantiated by the same normalized
substitution σ. By minimality of s, after a number of reductions there must be
a root step, i.e., s i→∗

R lσ i→R rσ for some rule l → r ∈ R where rσ is not
innermost terminating. By definition of US` we know US`(r) ⊆ US`. Hence,
starting the infinite reduction with rσ we can now simulate every reduction step
with the corresponding labeled term labα(rσ) using the labeled TRS lab(R). If
rσ i→R r1

i→R r2
i→R · · · then by Lemma 3.3(ii) we obtain terms t1, t2, . . . such

that ri = tiσ and US`(ti) ⊆ US`. Using Lemma 3.3(i) we can finally prove that
lab(R) is not innermost terminating:

labα(rσ) i→lab(R) labα(r1) = labα(t1σ) i→lab(R) labα(r2) = labα(t2σ) i→lab(R) . . .

2

With Theorem 3.4 it is now possible to prove innermost termination of the
leading example with the specified algebra and the specified LPO.

4 Improved Labeling for Innermost Termination

We first modify the leading example to show a limitation of predictive labeling.
Afterwards we present an improvement to overcome this limitation.

Example 4.1 We consider a reformulated version of the TRS in the leading exam-
ple which uses an accumulator. Let R consist of the rules (1)–(8) together with the
following rules:

quot(x, y) → ÷(x, y, 0) (17)
÷(x, y, z) → if(y > s(0), x > y, x, y, z) (18)

if(false, b, x, y, z) → div-by-zero (19)
if(true, false, x, y, z) → z (20)
if(true, true, x, y, z) → ÷(x− y, y, id-inc(z)) (21)

The problem is that we cannot apply Theorem 3.4 with the given algebra A; because
id-inc now occurs below the labeled symbol ÷, the problematic rules (7) and (8) are
usable and A is not a model of these rules. However, the labeling function `÷
ignores its third argument and thus, we do not need semantics for id-inc to compute
the label for ÷. Therefore, we would like to remove the id-inc-rules from the set of
usable rules. How this can be achieved is shown in the remainder of this section.

First, we need a notion to express which arguments of a function symbol should
be ignored. To this end we use an argument filter which maps every symbol to the
set of arguments that are not ignored. We further need a notion to express that an
argument filter is suitable for an algebra and a labeling function. Argument filters
were introduced in [1] and have been recently [3] used to reduce the usable rules in
connection with the dependency pair method.

Definition 4.2 An argument filter is a mapping π : F → 2N such that π(f) is a
subset of {1, . . . , n} for all f ∈ F with arity n. The application of an argument

8



R. Thiemann and A. Middeldorp

filter π to a term t is denoted by π(t) and defined as follows:

π(t) =

{
t if t is a variable
f(π(ti1), . . . , π(tik)) if t = f(t1, . . . , tn) and π(f) = {i1, . . . , ik}

An algebra A is π-conform if fA may depend on the i-th argument only if i ∈ π(f).
Similarly, a labeling function `f is π-conform if `f may depend on the i-th argument
only if i ∈ π(f).

From now on it is assumed that all algebras and labeling functions are π-conform.
We refine Definition 3.1 to get less usable rules when regarding the argument filter.

Definition 4.3 Let R be a TRS, ` a labeling, and π an argument filter. We define
the set US`,π(t) ⊆ F of usable symbols with respect to π of a term t inductively. If
t ∈ V then US`,π(t) = ∅. If t = f(t1, . . . , tn) then US`,π(t) is the least set such that

(i) US`,π(t1) ∪ · · · ∪ US`,π(tn) ⊆ US`,π(t),

(ii) if Lf 6= ∅ and i ∈ π(f) then Fun(π(ti)) ⊆ US`,π(t), and

(iii) if l → r ∈ R and root(l) ∈ US`,π(t) then Fun(π(r)) ⊆ US`,π(t).

The usable symbols US`,π(R) and the usable rules U`,π(R) with respect to π are
defined as

US`,π(R) =
⋃

l→r∈R
US`,π(r) and U`,π(R) = {l → r ∈ R | root(l) ∈ US`,π(R)}.

As before, we assume a fixed TRS R and therefore just write US`,π and U`,π

for US`,π(R) and U`,π(R). We now show how innermost termination of the TRS in
Example 4.1 can be proved if one only has to find a model for the usable rules with
respect to π.

Example 4.4 We choose π(÷) = {1, 2} and π(if) = {1, 2, 3, 4} in Example 4.1.
Then A and the labeling functions are π-conform and the usable rules are (1)–
(6) as in the leading example. We obtain a similar labeled TRS and termination
is proved by a similar LPO. One only has to extend the precedence for the new
symbol quot by demanding quot A ÷i for all i ∈ N.

The only missing step is to extend the results of Lemma 3.3 and Theorem 3.4
to the refined version of usable rules in Definition 4.3.

Lemma 4.5 Let A be a model of U`,π, let US`,π(t) ⊆ US`,π, and let σ be a nor-
malized substation such that tσ = C[lσ] i→R C[rσ] = u for a rule l → r ∈ R. Then
the following properties are satisfied:

(i) labα(tσ) i→lab(R) labα(u),

(ii) there is a term t′ such that u = t′σ and US`,π(t′) ⊆ US`,π, and

(iii) Fun(π(t)) ⊆ US`,π implies both Fun(π(t′)) ⊆ US`,π and [α]A(tσ) = [α]A(u).

Proof. The proof is completely similar to the proof of Lemma 3.3 where one re-
places US` by US`,π, Fun(t) by Fun(π(t)), and U` by U`,π. Therefore, we only give
the three additional cases which arise when considering reductions below the root.

9



R. Thiemann and A. Middeldorp

First, to prove (i) one has to show `f ([α]A(t1σ), . . . , [α]A(tiσ), . . . , [α]A(tnσ)) =
`f ([α]A(t1σ), . . . , [α]A(ui), . . . , [α]A(tnσ)) as before. If i ∈ π(f) then one can con-
clude Fun(π(ti)) ⊆ US`,π and proceed as in the proof of Lemma 3.3. Otherwise,
i /∈ π(f) and thus, the equality is valid as `f ignores its i-th argument. Second,
to prove (ii) one has to show US`,π(t′) ⊆ US`,π by looking at the closure prop-
erties (i) and (ii) of Definition 4.3. When considering (ii) one cannot conclude
Fun(π(ti)) ⊆ US`,π if i /∈ π(f). However, in that case Fun(π(t′i)) ⊆ US`,π is not
required to satisfy (ii). Finally, to prove (iii) one gets the additional case i /∈ π(f).
Then Fun(π(t′)) = Fun(π(t)) ⊆ US`,π as π(t) = π(t′). Moreover, using the fact
that fA ignores its i-th argument immediately yields [α]A(tσ) = [α]A(u). 2

We are now ready to present the result about improved predictive labeling where
under the assumption of π-conformity one only has to find a model for the usable
rules with respect to π. As demonstrated in Example 4.1 and Example 4.4 this
clearly extends Theorem 3.4.

Theorem 4.6 Let π be an argument filter. If A is a model of U`,π and if both
A and all labeling functions are π-conform then innermost termination of lab(R)
implies innermost termination of R.

Proof. Just replace Lemma 3.3 by Lemma 4.5 in the proof of Theorem 3.4. 2

A possible extension of Theorem 4.6 is to redefine Definition 4.3 such that
US`,π(ti) ⊆ US`,π(t) is only required if i ∈ π(f). However the following exam-
ple shows that this extension is unsound.

Example 4.7 Consider the TRS {f(g(a)) → f(g(b)), b → a}. We choose the
algebra with carrier A = {0, 1} and interpretations fA(x) = gA(x) = aA = 0 and
bA = 1. For the labeling we use Lf = La = Lb = ∅, Lg = A, and `g(x) = x.
Then both the algebra and the labeling functions are π-conform for the argument
filter π defined by π(f) = π(a) = π(b) = ∅ and π(g) = {1}. However, using
the alternative definition of US`,π(t) we get US`,π = ∅ and hence, A is a model
for the usable rules. Thus, the extension cannot be sound as the labeled TRS
{f(g0(a)) → f(g1(b)), b → a} is terminating while R is not innermost terminating.

In the next section we combine the idea of usable rules with respect to an
argument filter with predictive labeling for full rewriting.

5 Improved Predictive Labeling for Termination

Example 5.1 We consider the TRS R consisting of (7), (8), and

nonZero(0) → false (22)
nonZero(s(x)) → true (23)

p(s(x)) → x (24)
p(0) → 0 (25)

random(x) → rand(x, 0) (26)
rand(x, y) → if(nonZero(x), x, y) (27)

if(false, x, y) → y (28)
if(true, x, y) → rand(p(x), id-inc(y)) (29)

Here, random(x) generates a random number between 0 and x. We use the algebra
A with carrier N and natural interpretations pA(x) = max(x− 1, 0), sA(x) = x + 1,

10



R. Thiemann and A. Middeldorp

0A = falseA = 0, trueA = 1, and nonZeroA(x) = 0 if x = 0, and 1 otherwise. If one
takes the standard order > on N then A is a t-algebra [4] and a quasi-model for
rules (22)–(25). Moreover, for the labeling with Lrand = Lif = N, `rand(n, m) = n,
`if(b, n,m) = b + max(n− 1, 0), and Lf = ∅ for all other function symbols, both A
and the labeling functions are monotone. Hence, one can apply predictive labeling
of [4] to obtain the terminating TRS lab(R) ∪ Dec which can be proved by an LPO.
Unfortunately, the usable rules according to [4] include the critical rules (7) and
(8) as argument filters are not considered when computing the usable rules. Thus,
the requirements of predictive labeling [4, Theorem 18] are not satisfied. Therefore,
we now extend the results of [4] and show how to integrate argument filters in
the termination case where we only obtain the usable rules (22)–(25). Indeed, all
requirements of our new Theorem 5.10 are satisfied and we can conclude termination
of R by proving termination of lab(R) ∪ Dec.

As in [4], for improved predictive labeling in the termination case we do not
allow arbitrary algebras but one has to use a so-called t-algebra ([4, Definition 8]).

Definition 5.2 Let A be an algebra and let >A be a well-founded order on the
carrier A. We say that (A, >A) is a t-algebra if for all finite subsets X ⊆ A there
exists a least upper bound

⊔
X of X in A.

In the remainder of this section we assume that R is a finitely branching TRS,
π an argument filter, and (A, >A) a t-algebra such that all interpretations fA and
all labeling functions `f are weakly monotone and π-conform, and U`,π ⊆ >A.

As in the previous sections we cannot directly achieve the result of Lemma 2.1(ii)
to transform infinite R reductions into infinite reductions of lab(R) ∪ Dec since A is
not a quasi-model of all rules in R. Therefore, we introduce an alternative interpre-
tation function [α]∗A(·) for all terminating terms (SN ) similar to [4, Definition 9].
However, one has to perform a minor modification due to the difference between
US` and G`, cf. Example 3.2.

Definition 5.3 Let t ∈ SN and α an assignment. We define the interpretation
[α]∗A(t) inductively as follows where t′ = fA([α]∗A(t1), . . . , [α]∗A(tn)):

[α]∗A(t) =


α(x) if t is a variable,
t′ if t = f(t1, . . . , tn) and f ∈ US`,π,⊔
{[α]∗A(u) | t →R u} ∪ {t′} if t = f(t1, . . . , tn) and f /∈ US`,π.

Note that the recursion in the definition of [α]∗A(·) terminates because the union
of →R and the proper superterm relation B is a well-founded relation on SN .
Further note that the operation

⊔
is applied only to finite sets as R is assumed to

be finitely branching.
The induced labeling function [4, Definition 10] can be defined for terminating

and for minimal non-terminating terms (T ∞) but not for arbitrary terms in T (F ,V).

Definition 5.4 Let t ∈ SN ∪ T ∞ and α an assignment. We define the labeled

11



R. Thiemann and A. Middeldorp

term lab∗α(t) inductively as follows:

lab∗α(t) =


t if t is a variable,
f(lab∗α(t1), . . . , lab∗α(tn)) if t = f(t1, . . . , tn) and Lf = ∅,
fa(lab∗α(t1), . . . , lab∗α(tn)) if t = f(t1, . . . , tn) and Lf 6= ∅

where a = `f ([α]∗A(t1), . . . , [α]∗A(tn)).

The following lemma compares the predicted semantics of an instantiated ter-
minating term to the original semantics of the uninstantiated term, in which the
substitution becomes part of the assignment.

Definition 5.5 Given an assignment α and a substitution σ such that σ(x) ∈ SN
for all variables x, the assignment α∗σ is defined as [α]∗A ◦ σ and the substitution
σlab∗α

as lab∗α ◦ σ.

Lemma 5.6 If tσ ∈ SN then [α]∗A(tσ) >A [α∗σ]A(t). If in addition Fun(π(t)) ⊆
US`,π then [α]∗A(tσ) = [α∗σ]A(t).

Proof. We use structural induction on t. If t ∈ V then [α]∗A(tσ) = ([α]∗A ◦ σ)(t) =
[α∗σ]A(t). Suppose t = f(t1, . . . , tn). We distinguish two cases.

(i) If f ∈ US`,π then

[α]∗A(tσ) = fA([α]∗A(t1σ), . . . , [α]∗A(tnσ)) >A

fA([α∗σ]A(t1), . . . , [α∗σ]A(tn)) = [α∗σ]A(t)

where the inequality follows from the induction hypothesis (note that tiσ ∈ SN
for all i = 1, . . . , n) and the weak monotonicity of fA. If Fun(π(t)) ⊆ US`,π

and i ∈ π(f) then Fun(π(ti)) ⊆ US`,π and thus [α]∗A(tiσ) = [α∗σ]A(ti) according
to the induction hypothesis. Since fA is π-conform, the inequality is turned
into an equality.

(ii) If f /∈ US`,π then

[α]∗A(tσ) =
⊔

{· · · } ∪ {fA([α]∗A(t1σ), . . . , [α]∗A(tnσ))}
>A fA([α]∗A(t1σ), . . . , [α]∗A(tnσ)) >A [α∗σ]A(t)

again using weak monotonicity of fA and the induction hypothesis. As in this
case Fun(π(t)) 6⊆ US`,π, we have already proved the second part of the lemma.

2

The next lemma does the same for labeled terms. Since the label of a function
symbol only depends on the semantics of its arguments, we can only deal with
terminating and minimal non-terminating terms.

Lemma 5.7 If tσ ∈ SN ∪ T ∞ then lab∗α(tσ) →∗
Dec labα∗

σ
(t)σlab∗α

. If in addition
US`,π(t) ⊆ US`,π then lab∗α(tσ) = labα∗

σ
(t)σlab∗α

.

Proof. We use structural induction on t. If t is a variable then lab∗α(tσ) = tσlab∗α
=

labα∗
σ
(t)σlab∗α

. Otherwise t = f(t1, . . . , tn). Note that t1, . . . , tn ∈ SN . The induc-
tion hypothesis yields lab∗α(tiσ) →∗

Dec labα∗
σ
(ti)σlab∗α

for all i = 1, . . . , n. Moreover,

12



R. Thiemann and A. Middeldorp

whenever US`,π(t) ⊆ US`,π then by Definition 4.3(i) US`,π(ti) ⊆ US`,π for every
i and thus lab∗α(tiσ) = labα∗

σ
(ti)σlab∗α

by the induction hypothesis. We distinguish
three cases.

(i) If Lf = ∅ then

lab∗α(tσ) = f(lab∗α(t1σ), . . . , lab∗α(tnσ))
→∗
Dec f(labα∗

σ
(t1)σlab∗α

, . . . , labα∗
σ
(tn)σlab∗α

)
= f(labα∗

σ
(t1), . . . , labα∗

σ
(tn))σlab∗α

= labα∗
σ
(f(t1, . . . , tn))σlab∗α

.

Of course, if US`,π(t) ⊆ US`,π then there are no reduction steps.

(ii) If Lf 6= ∅ and US`,π(t) 6⊆ US`,π then lab∗α(tσ) = fa(lab∗α(t1σ), . . . , lab∗α(tnσ))
→∗
Dec fa(labα∗

σ
(t1)σlab∗α

, . . . , labα∗
σ
(tn)σlab∗α

) and

labα∗
σ
(t)σlab∗α

= fb(labα∗
σ
(t1), . . . , labα∗

σ
(tn))σlab∗α

= fb(labα∗
σ
(t1)σlab∗α

, . . . , labα∗
σ
(tn)σlab∗α

)

with a = `f ([α]∗A(t1σ), . . . , [α]∗A(tnσ)) and b = `f ([α∗σ]A(t1), . . . , [α∗σ]A(tn)).
Lemma 5.6 yields [α]∗A(tiσ) >A [α∗σ]A(ti) for all i = 1, . . . , n. Because the
labeling function `f is weakly monotone in all its coordinates, a >A b. If
a >A b then Dec contains the rewrite rule fa(x1, . . . , xn) → fb(x1, . . . , xn) and
thus (also if a = b) fa(labα∗

σ
(t1)σlab∗α

, . . . , labα∗
σ
(tn)σlab∗α

) →∗
Dec labα∗

σ
(t)σlab∗α

.
We conclude that lab∗α(tσ) →∗

Dec labα∗
σ
(t)σlab∗α

.

(iii) If Lf 6= ∅ and US`,π(t) ⊆ US`,π then lab∗α(tσ) = fa(lab∗α(t1σ), . . . , lab∗α(tnσ)) =
fa(labα∗

σ
(t1)σlab∗α

, . . . , labα∗
σ
(tn)σlab∗α

) = fa(labα∗
σ
(t1), . . . , labα∗

σ
(tn))σlab∗α

and

labα∗
σ
(t)σlab∗α

= fb(labα∗
σ
(t1), . . . , labα∗

σ
(tn))σlab∗α

with a = `f ([α]∗A(t1σ), . . . , [α]∗A(tnσ)) and b = `f ([α∗σ]A(t1), . . . , [α∗σ]A(tn)). We
need to show that a = b. Because `f is π-conform, this amounts to showing
[α]∗A(tiσ) = [α∗σ]A(ti) for i ∈ π(f). If we can show that Fun(π(ti)) ⊆ US`,π,
this follows from Lemma 5.6. (Note that tiσ ∈ SN as tσ ∈ SN ∪ T ∞.) But
this can directly be concluded from Fun(π(ti)) ⊆ US`,π(t) ⊆ US`,π by closure
property (ii) of Definition 4.3.

2

We further need to know that the predicted semantics decreases when rewriting.

Lemma 5.8 Let t, u ∈ SN . If t →R u then [α]∗A(t) >A [α]∗A(u).

Proof. We perform structural induction on t. Obviously, t is not a variable, so let
t = f(t1, . . . , tn). If f /∈ US`,π then [α]∗A(t) =

⊔
{[α]∗A(v) | t →R v} ∪ {· · · } >A

[α]∗A(u) since [α]∗A(u) ∈ {[α]∗A(v) | t →R v}. Thus, for the remaining proof we may
assume f ∈ US`,π. We consider two cases.

(i) First we consider a root reduction t = lσ →R rσ = u. As root(l) = root(t) =
f ∈ US`,π we know l → r ∈ U`,π and Fun(π(r)) ⊆ US`,π due to closure
property (iii) in Definition 4.3. From the assumption U`,π ⊆ >A we infer
l >A r. Using Lemma 5.6 we obtain [α]∗A(t) = [α]∗A(lσ) >A [α∗σ]A(l) >A

[α∗σ]A(r) = [α]∗A(rσ) = [α]∗A(u).

13



R. Thiemann and A. Middeldorp

(ii) Next assume a reduction t →R f(t1, . . . , ui, . . . , tn) = u below the root where
ti →R ui. The induction hypothesis yields [α]∗A(ti) >A [α]∗A(ui) and thus

[α]∗A(t) = fA([α]∗A(t1), . . . , [α]A(ti), . . . , [α]A(tn))
>A fA([α]∗A(t1), . . . , [α]A(ui), . . . , [α]A(tn)) = [α]∗A(u)

by weak monotonicity of fA.
2

We are now ready for the key lemma, which states that rewrite steps between
terminating and minimal non-terminating terms can be labeled.

Lemma 5.9 Let t, u ∈ SN ∪ T ∞. If t →R u then lab∗α(t) →+
lab(R)∪Dec lab∗α(u).

Proof. We use structural induction on t. Obviously t = f(t1, . . . , tn). For a root
reduction t = lσ →R rσ = u we infer lab∗α(t) = lab∗α(lσ) →∗

Dec labα∗
σ
(l)σlab∗α

→lab(R)

labα∗
σ
(r)σlab∗α

= lab∗α(rσ) = lab∗α(u) by Lemma 5.7. Otherwise, we have u =
f(t1, . . . , ui, . . . , tn) with ti →R ui. We obtain lab∗α(ti) →+

lab(R)∪Dec lab∗α(ui) from
the induction hypothesis. We distinguish two cases.

(i) If Lf = ∅ then lab∗α(t) = f(lab∗α(t1), . . . , lab∗α(ti), . . . , lab∗α(tn)) →+
lab(R)∪Dec

f(lab∗α(t1), . . . , lab∗α(ui), . . . , lab∗α(tn)) = lab∗α(u).

(ii) If Lf 6= ∅ then

lab∗α(t) = fa(lab∗α(t1), . . . , lab∗α(ti), . . . , lab∗α(tn))
→+

lab(R)∪Dec fa(lab∗α(t1), . . . , lab∗α(ui), . . . , lab∗α(tn))

with a = `f ([α]∗A(t1), . . . , [α]∗A(ti), . . . , [α]∗A(tn)) and

lab∗α(u) = fb(lab∗α(t1), . . . , lab∗α(ui), . . . , lab∗α(tn))

with b = `f ([α]∗A(t1), . . . , [α]∗A(ui), . . . , [α]∗A(tn)). Because ti ∈ SN we can use
Lemma 5.8 to obtain [α]∗A(ti) >A [α]∗A(ui). Hence, a >A b by weak monotonic-
ity of `f and thus fa(lab∗α(t1), . . . , lab∗α(ui), . . . , lab∗α(tn)) →∗

Dec lab∗α(u).
2

We now have all the ingredients to prove the soundness of improved predictive
labeling for termination.

Theorem 5.10 Let R be a TRS, let π be an argument filter, and let (A, >A) be
a t-algebra such that A is a quasi-model of U`,π and all interpretation and labeling
functions are weakly monotone and π-conform. If lab(R) ∪ Dec is terminating then
so is R.

Proof. Note that for every term t ∈ T ∞ there exist a rewrite rule l → r ∈ R,
a substitution σ, and a subterm u of r such that t

>ε−→∗ lσ
ε−→ rσ D uσ and

lσ, uσ ∈ T ∞. Let α be an arbitrary assignment. We will apply lab∗α to the terms in
the above sequence. From Lemma 5.9 we obtain lab∗α(t) →∗

lab(R)∪Dec lab∗α(lσ). Since
rσ need not be an element of T ∞, we cannot apply Lemma 5.9 to the step lσ

ε−→ rσ.
Instead we use Lemma 5.7 to obtain lab∗α(lσ) →∗

Dec labα∗
σ
(l)σlab∗α

. Since labα∗
σ
(l) →

14



R. Thiemann and A. Middeldorp

labα∗
σ
(r) ∈ lab(R), labα∗

σ
(l)σlab∗α

→lab(R) labα∗
σ
(r)σlab∗α

. Because u is a subterm of r,
labα∗

σ
(r)σlab∗α

D labα∗
σ
(u)σlab∗α

. From closure property (i) of Definition 4.3 we infer
US`,π(u) ⊆ US`,π(r). Since r is a right-hand side of a rewrite rule of R, US`,π(r) ⊆
US`,π. Hence US`,π(u) ⊆ US`,π. Lemma 5.7 now yields labα∗

σ
(u)σlab∗α

= lab∗α(uσ).
Putting everything together, we obtain lab∗α(t) →+

lab(R)∪Dec · D lab∗α(uσ). Now
suppose that R is non-terminating. Then T ∞ is non-empty and thus there is an
infinite sequence t1

>ε−→∗ · ε−→ · D t2
>ε−→∗ · ε−→ · D · · · By the above argument, this

sequence is transformed into lab∗α(t1) →+
lab(R)∪Dec · D lab∗α(t2) →+

lab(R)∪Dec · D · · ·
By introducing appropriate contexts, the latter sequence gives rise to an infinite
reduction in lab(R) ∪ Dec, contradicting the assumption that R is terminating. 2

6 Conclusion

We have analyzed how the powerful technique of semantic labeling can be used to
prove innermost termination. It turned out that semantic labeling can be used for
models but not for quasi-models. We extended our results to predictive labeling
such that one only has to find a model for the usable as opposed to all rules.
This approach was further improved by incorporating argument filters. The latter
extension was finally integrated with predictive labeling for termination.

The results presented in this paper should be implemented in order to test their
effectiveness and combined with dependency pairs [1] to increase their applicability.
Semantic [9] and predictive [4] labeling with infinite (quasi-)models for termination
have been implemented in the automatic termination prover TPA [6]. The under-
lying theory is worked out in [8] and [7]. In the latter paper predictive labeling for
termination is combined with dependency pairs. Modifying these results to cover
innermost termination is straightforward. Incorporating argument filterings will in-
crease the search space but otherwise poses no challenge. We anticipate that the
power of TPA and other termination provers will be increased by the results of this
paper.

References

[1] Arts, T. and J. Giesl, Termination of term rewriting using dependency pairs, TCS 236 (2000), pp. 133–
178.

[2] Baader, F. and T. Nipkow, “Term Rewriting and All That,” Cambridge University Press, 1998.

[3] Giesl, J., R. Thiemann, P. Schneider-Kamp and S. Falke, Mechanizing and improving dependency pairs,
JAR 37 (2006), pp. 155–203.

[4] Hirokawa, N. and A. Middeldorp, Predictive labeling, in: Proc. 17th RTA, LNCS 4098, 2006, pp. 313–327.

[5] Hirokawa, N. and A. Middeldorp, Tyrolean termination tool: Techniques and features, I&C 205 (2007),
pp. 474–511.

[6] Koprowski, A., TPA: Termination proved automatically, in: Proc. 17th RTA, LNCS, 2006, pp. 275–266.

[7] Koprowski, A. and A. Middeldorp, Predictive labeling with dependency pairs using SAT, in: Proc. 21st
CADE, LNAI 4603, 2007, pp. 410–425.

[8] Koprowski, A. and H. Zantema, Recursive path ordering for infinite labelled rewrite systems, in: Proc.
3rd IJCAR, LNAI 4130, 2006, pp. 332–346.

[9] Zantema, H., Termination of term rewriting by semantic labelling, FI 24 (1995), pp. 89–105.

15


	Introduction
	Semantic Labeling for Innermost Termination
	Predictive Labeling for Innermost Termination
	Improved Labeling for Innermost Termination
	Improved Predictive Labeling for Termination
	Conclusion
	References

