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Abstract. The paper at hand introduces a refinement of interpretation
based termination criteria for term rewrite systems in the dependency
pair setting. Traditional methods share the property that—in order to
be successful—all rewrite rules must (weakly) decrease with respect to
some measure. The novelty of our approach is that we allow some rules to
increase the interpreted value. These rules are found by simultaneously
searching for adequate polynomial interpretations while considering the
information of the dependency graph. We prove that our method extends
the termination proving power of linear natural interpretations. Further-
more, this generalization perfectly fits the recursive SCC decomposition
algorithm which is implemented in virtually every termination prover
dealing with term rewrite systems.
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1 Introduction

Termination of term rewriting systems (TRSs) has been a very active area of
research for the last decades. In the early days many different (mostly non-
modular) techniques have been developed based on syntactic and/or semantic
aspects. In the recent past the demand for suitable ways for automating the
methods grew. The international competition of termination tools1 gave a strong
stimulus in that direction. In this competition every tool can only spend a fixed
amount of time on checking a rewrite system for (non-)termination. Since a vast
number of termination criteria are known (and implemented), tool authors have
to cleverly select a strategy which determines the order in which to apply the
different methods and/or come up with fast implementations of termination cri-
teria. In 2004 Kurihara and Kondo [17] were the first to encode a termination
method in propositional logic. In 2006 for the first time termination analyzers
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incorporated translations to SAT (Jambox [4] and Matchbox [20]) in the com-
petition and astonished the termination community by the gains in power and
speed. Another important issue of a termination method is locality which means
that the method should fit the dependency pair method [1]. The technique we
propose in this paper satisfies both demands, (a) it is modular and local in the
sense that it perfectly fits the recursive SCC decomposition algorithm [12] and
(b) it allows an efficient implementation using SAT solving.

The paper is organized as follows. In Section 2 the necessary definitions for
graph reasoning, polynomial interpretations, and dependency pairs are given.
Section 3 motivates our approach by means of an example and already suggests
that special care is needed for generalizing the approach to the recursive SCC
algorithm. Afterwards in Section 4 the main theorem is formally stated. Imple-
mentation details are presented in Section 5. An assessment of our contribution
can be found in Section 6 before ideas for future work are addressed in Section 7.

2 Preliminaries

The termination method we present relies on (dependency) graph reasoning. The
next subsection defines graphs and related concepts.

2.1 Graphs

Let N be a finite set. A graph G = (N,E) is a pair such that E ⊆ N × N .
Elements of N (E) are called nodes (edges). A labeled graph is a pair (G, `)
consisting of a graph G = (N,E) and a labeling function ` : N → Z that assigns
to every node an integer. A path from n1 to nm in a graph G = (N,E) is a finite
sequence [n1, . . . , nm] of nodes such that (ni, ni+1) ∈ E for all 1 6 i < m. A path
is called elementary if all its nodes are distinct. The length (or cost) of a path
[n1, . . . , nm−1, nm] is `(n1)+· · ·+`(nm−1). The distance between two nodes a and
b is the maximal length of an elementary path from a to b. A cycle [n1, . . . , nm]
is a path with m > 1, n1 = nm, and i 6= j implies (ni, ni+1) 6= (nj , nj+1) for
all 0 6 i, j < m. A cycle [n1, . . . , nm−1, nm] is called elementary if n1, . . . , nm−1

are pairwise distinct. The definition of length carries over naturally from paths
to cycles. Furthermore we define the distance d(n) for a single node n as the
maximal length of an elementary cycle starting in n if such a cycle exists. A
strongly connected component (SCC) is a maximal set of nodes such that there
is a path from every node to every other node. Maximality means that the
property of being an SCC is lost if a further node is added. For esthetic reasons,
labels of nodes are associated to edges in graphical representations of graphs
throughout the paper, where edges (n, m) are labeled with `(n).

Example 1. In the labeled graph of Figure 1, p1 = [1, 2, 3, 4, 1] is an example of a
(non-elementary) path and an elementary cycle. The (non-elementary) path p2 =
[1, 4, 1, 4, 1] is no cycle since the edge (1, 4) appears twice. We have length(p1) = 0
and length(p2) = 2. The distance of node 1 is 1 since it is the maximum length
of the elementary cycles [1, 4, 1] and [1, 2, 3, 4, 1].
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Fig. 1. A labeled graph.

2.2 Polynomial Interpretations

For a signature F a polynomial interpretation I [18] maps each n-ary function
symbol f ∈ F to a polynomial fI over the natural numbers in n indeterminates.
The induced mapping from terms to polynomials is denoted by [·]I . For two
terms s and t we have s >I t if [s]I > [t]I holds for all possible instantiations of
variables by natural numbers. The comparison s >I t is similarly defined. For
polynomials with coefficients ranging over the natural numbers these problems
are known to be undecidable (Hilbert’s 10th problem). By fixing an upper bound
for the coefficients the search space becomes finite. In typical implementations
polynomials are ordered by absolute positiveness criteria [14]. Thus, in order to
test whether p > q holds for linear polynomials p = c0x0 + · · ·+cnxn +cn+1 and
q = d0x0 + · · · + dnxn + dn+1, a sufficient condition is ci > di for all 0 6 i 6 n
and cn+1 > dn+1. The test p > q is similar except for the constant case, i.e.,
cn+1 > dn+1.

There already exist generalizations of polynomial interpretations, e.g., to ra-
tional and real coefficients [19] or to negative constants as well as coefficients [11].
Furthermore matrix [5], quasi-periodic [22], and arctic [15] interpretations do also
extend the termination proving power significantly. All these extensions share
the property that the rewrite rules under consideration must weakly decrease
and at least one rule has to decrease strictly. Our approach differs from these
ones in the sense that we allow a possible increase for some rules (under the
side condition that some other rules eliminate that increase). In order to detect
possible candidates where the interpreted value might increase when applying
a rule, the dependency pair method in combination with the dependency graph
(Definition 3) refinement is employed.

2.3 Dependency Pairs

We assume basic familiarity with term rewriting [2]. In the recent past there has
been much research related to the dependency pair method [1] and its refine-
ments. In this subsection we just recall the very basic definitions.

Definition 2. Let R be a TRS over a signature F . The defined symbols are
the root symbols of the left-hand sides of the rewrite rules in R. The original
signature F is extended to a signature F ] by adding for every defined symbol
f a fresh symbol f ] with the same arity as f . For a term t = f(t1, . . . , tn)

3



with defined symbol f we denote f ](t1, . . . , tn) by t]. In examples one often uses
capitalization, i.e., one writes F for f ]. If l → r ∈ R and t is a subterm of r
with defined root symbol, then the rule l] → t] is a dependency pair of R. We
write DP(R) for the set of all dependency pairs of R.

Dependency pairs correspond to recursive function calls. They are the ba-
sic ingredient for the dependency graph [1], which is kind of a call-graph that
visualizes the order in which these recursive calls can be performed.

Definition 3. Let R be a TRS. The nodes of the dependency graph DG(R) are
the dependency pairs of R and there is an edge from node s → t to node u → v
if there exist substitutions σ and τ such that tσ →∗

R uτ .

The dependency graph is not computable in general but sound approxima-
tions exist. Here soundness means that every edge in the original graph is also
an edge in the estimated graph and hence it forms an over-approximation of the
actual dependency graph.

Next, the notion of a reduction pair [1] is defined. We simplify the original
definition by omitting argument filterings since they are automatically built in
when dealing with polynomial interpretations (as zero coefficients correspond to
deleting positions of an argument filtering).

Definition 4. A reduction pair (&, >) consists of a rewrite pre-order & (a pre-
order on terms that is closed under contexts and substitutions) and a well-founded
order > that is closed under substitutions such that the inclusion & · > · & ⊆ >
(compatibility) holds.

The main theorem dealing with dependency pairs and including a dependency
graph formulation is not given here but in Section 4 since then it is easier to see
the differences between the usual theorem and our formulation.

3 A Simple Example

This section demonstrates the limitations of polynomial interpretations and sug-
gests an improvement by additionally considering the order of recursive calls
encoded in the dependency graph.

Example 5. Consider the TRS consisting of the following three rules:

f(0, x) → f(1, g(x)) (1)
f(1, g(g(x))) → f(0, x) (2)

g(1) → g(0) (3)

The dependency pairs

F(0, x) → G(x) (4)
F(0, x) → F(1, g(x)) (5)

F(1, g(g(x))) → F(0, x) (6)
G(1) → G(0) (7)
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admit the following dependency graph:

(7) (4)oo (6)
**
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The idea in [12] is to find a reduction pair (&, >) for every SCC S such that all
rules in S ∪ R decrease weakly and at least one rule in S decreases strictly. In
the sequel we will show that the (only) SCC consisting of the nodes (5) and (6)
cannot be handled by reduction pairs based on traditional implementations of
linear polynomial interpretations. To be able to address all possible polynomial
interpretations, we consider our problem as an abstract constraint satisfaction
problem. Consequently the coefficients for the polynomials are variables whose
values are natural numbers. Similarly to [6] a term F(x, y) is transformed into
an abstract linear polynomial F0x + F1y + F2. Doing so for the SCC mentioned
above results in the constraints

F000 + F1x + F2 > F010 + F1(g0x + g1) + F2

F010 + F1(g0(g0x + g1) + g1) + F2 > F000 + F1x + F2

where at least one inequality is strict. By simple mathematics the inequations
simplify to

F000 + F1x > F010 + F1g0x + F1g1 (8)
F010 + F1g0g0x + F1g0g1 + F1g1 > F000 + F1x (9)

From the fact that one of the above inequalities has to be strict it is obvious
that F1 > 0. The constraints for x in (8) demand g0 6 1 and similarly (9) gives
g0 > 1. Hence the constraint problem is equivalent to

F000 > F010 + F1g1 (10)
F010 + F1g1 + F1g1 > F000 (11)

which demands g1 > 0 to make one inequation strict. The (simplified) constraint
for rule (3) amounts to

10 > 00 (12)

The proof is concluded by the contradictory sequence

F000 > F010 + F1g1 > F000 + F1g1

where the first inequality derives from (10), the second one from (12), and the
contradiction from the fact that F1, g1 > 0 which we learned earlier.

Although we just proved that there is no termination proof for the system
above with linear polynomials, we will present a termination proof right now.
Assume the weakly monotone interpretation

FN(x, y) = x + y fN(x, y) = 0 gN(x) = x + 1 0N = 0 1N = 0
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f(0, x) → f(1, g(x)) 0 > 0 (1)

f(1, g(g(x))) → f(0, x) 0 > 0 (2)

g(1) → g(0) 1 > 1 (3)

F(0, x) → F(1, g(x)) x > x + 1 (5)

F(1, g(g(x))) → F(0, x) x + 2 > x (6)

Table 1. Rules with increasing interpretations.

which orients almost all rules of interest correctly as can be seen in Table 1.
The idea to turn this interpretation into a valid termination proof is to com-

bine the information of the dependency graph with the interpretation. From the
(labeled) dependency graph

(7) (4)0oo (6)
−2
**−2

oo (5)
+1

jj

one infers that the two dependency pairs (5) and (6) are used alternately. The
labels of the graph are computed as follows: From Table 1 one infers that an
application of rule (6) decreases the interpreted value by the constant 2 (hence
label −2) whereas rule (5) increases the value by the constant 1 (hence label
+1). Consequently, after performing the cycle once the total value decreases by
at least one. Therefore, the cycle cannot give rise to an infinite rewrite sequence.

3.1 From Cycles to SCCs

The above idea naturally extends from plain cycles to SCCs as described below.
Nevertheless some care is needed when the dependency graph contains more
complicated SCCs as the following example demonstrates. Consider the TRS R
consisting of the five rules

f(0, 0, x, g(g(g(g(y))))) → f(0, 1, g(g(x)), y)
f(0, 1, g(x), y) → f(1, 1, x, g(g(y)))

f(1, 1, x, y) → f(0, x, x, y)
g(0) → g(1)
g(x) → x

and the only SCC

F(0, 0, x, g(g(g(g(y))))) → F(0, 1, g(g(x)), y) (1)
F(0, 1, g(x), y) → F(1, 1, x, g(g(y))) (2)

F(1, 1, x, y) → F(0, x, x, y) (3)
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Fig. 2. Different parts of (labeled) dependency graphs.

The corresponding SCC of the dependency graph depicted in Figure 2(a) con-
tains the two cycles [1, 2, 3, 1] and [2, 3, 2]. The first one is handled by the in-
creasing interpretation

FN(x, y, z, w) = w fN(x, y, z, w) = 0 gN(x) = x + 1 0N = 0 1N = 0

For the second we take the interpretation as above but with FN(x, y, z, w) = z.
Hence for the elementary cycle [1, 2, 3, 1] the interpreted value decreases by 2 in
every loop. Similarly there is a decrease of 1 for the elementary cycle [2, 3, 2].
The two labeled graphs in Figures 2(b) and 2(c) describe the symbiosis of the
interpretations and the elementary cycles. The only problem is, that

f(0, 0, 0, g(g(g(g(y))))) → f(0, 1, g(g(0)), y) → f(1, 1, g(0), g(g(y)))
→ f(0, g(0), g(0), g(g(y))) → f(0, g(1), g(0), g(g(y)))
→ f(0, 1, g(0), g(g(y))) → f(1, 1, 0, g(g(g(g(y)))))
→ f(0, 0, 0, g(g(g(g(y))))) → . . .

constitutes a non-terminating sequence in this TRS. What exactly went wrong
can be seen when considering the whole SCC of the labeled dependency graph
(using the first interpretation, cf. Figure 2(d)). In the conventional setting it
suffices to consider only the two cycles. This is the case because a strict decrease
in every single cycle ensures a strict decrease in larger cycles by combining the
partial proofs lexicographically. The example above shows that this is no longer
true for increasing interpretations. The problematic non-terminating sequence
corresponds to a run [1, 2, 3, 2, 3, 1] where the interpreted value is increased in
the elementary cycle [2, 3, 2] and consequently the length of [1, 2, 3, 2, 3, 1] is zero
and there is no decrease. Considering (infinitely many!) possibly non-elementary
cyclic paths is undoable. Hence the smart thing is to work with SCCs instead. To
recognize dangerous runs, it suffices to compute the distance for every node. For
the graph in Figure 2(d) we have d(1) = −2, d(2) = 2, and d(3) = 2. Only if for
every node the distance is smaller than or equal to zero we know that problematic
runs as demonstrated above cannot occur. Furthermore we know that in such a
case we can delete nodes with negative distance because on every possible run the
interpreted value decreases. If for the SCC under consideration one had managed
to find a weakly monotone interpretation with labeled dependency graph like the
one in Figure 3(a) (which is of course impossible since the system at hand is not
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Fig. 3. A hypothetically labeled DG.

terminating) then deleting node (1) would have been possible since d(1) = −1,
d(2) = 0, and d(3) = 0. In such a situation node (1) could safely be removed and
one could proceed with the simpler graph in Figure 3(b) with a possibly totally
different interpretation.

4 Correctness of the Approach

The example in the preceding section shows that SCCs that consist of more than
just one cycle need special attention. For usual reduction pairs it is sufficient to
consider single cycles and hence in the literature theorems are usually dealing
with cycles; theoretically there is no difference in power when considering cycles
or SCCs but all fast implementations follow the recursive SCC approach [12].
The reason is that normally the formulation for cycles is a bit easier but in our
setting it is essential to switch to an SCC treatment in order to avoid reasoning
about an infinite number of possibly non-elementary cyclic paths as the example
of the previous section demonstrates.

It is well known that (linear) weakly monotone polynomial interpretations
over the naturals form a valid reduction pair. Note that there are strictly stronger
formulations of the theorem since both restrictions—to polynomials and natural
numbers—are severe.

Theorem 6. Let I be a weakly monotone polynomial interpretation over the
naturals. Then (>I , >I) is a reduction pair.

Definition 7 ([12]). Let R be a TRS, S a subset of the dependency pairs in
DG(R), and (&, >) a reduction pair. The notation (&, >) |=∃ R,S means that

R ⊆ & S ⊆ & ∪ > S ∩> 6= ∅

In words the above definition says that all considered rules (R and S) are
weakly decreasing and at least one rule in S is strictly decreasing. The most basic
theorem concerning dependency pairs (using the notation of [12]) and including
the usage of the dependency graph is then formulated as follows.

Theorem 8 ([1]). A TRS R is terminating if and only if for every cycle C in
DG(R) there exists a reduction pair (&, >) such that (&, >) |=∃ R, C.
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There are many generalizations of the theorem above—usable rules [1,9,10],
argument filterings [1], and reduction triples [13]—to name a few. To keep the
presentation and discussion simple we present our work without these refine-
ments (although our results directly generalize).

Definition 9 ([12]). Let R be a TRS and S a subset of the dependency pairs
in DG(R). We write |= R,S if there exists a reduction pair (&, >) such that
(&, >) |=∃ R,S and |= R,S ′ for all SCCs S ′ of the subgraph of DG(R) induced
by the pairs l → r ∈ S such that l 6> r.

The theorem below states that concerning termination proving power it
makes no difference if one considers cycles or performs a recursive SCC com-
putation. The latter has the advantage that the number of SCCs is linear in
the number of nodes in the dependency graph whereas the former might be
exponential.

Theorem 10 ([12]). Let R be a TRS. The following conditions are equivalent:

– |= R,S for every SCC S in DG(R)
– |=∃ R, C for every cycle C in DG(R)

We now show how to label the dependency graph by a given interpretation I.
When considering a root rewrite step which applies a rule l → r, the change of
the interpreted value is [r]I− [l]I . The idea is to label every edge by the constant
part of that difference.

Definition 11. For a polynomial p we denote the constant (non-constant) part
of p by cp(p) (ncp(p)). For a term t and a polynomial interpretation I we abbrevi-
ate ncp([t]I) by ncpI(t). This notation naturally extends to rules and TRSs, e.g.,
ncpI(l → r) = ncpI(l) → ncpI(r) and ncpI(R) = {ncpI(l → r) | l → r ∈ R}.
The same notation is freely used for cpI .

Definition 12. Let I be an interpretation and DG a dependency graph. The
labeled dependency graph DGI is defined as (DG, `) with `(l → r) = cp([r]I−[l]I)
for every node l → r in DG. By dI(n) we denote the distance of a node n ∈ DGI .

The next definition presents analogous versions of Definitions 7 and 9 in the
setting of increasing interpretations.

Definition 13. Let R be a TRS and S a subset of the dependency pairs in
DG(R). We write |=I

∃ R,S if I is an interpretation over the naturals and

R∪ ncpI(S) ⊆ >I dI(S) ⊆ Z60 dI(S) ∩ Z<0 6= ∅

Consequently |=I R,S if |=I
∃ R,S and for all SCCs S ′ of the subgraph of DGI(R)

induced by the pairs l → r ∈ S such that dI(l → r) 6< 0 there exists an interpre-
tation I ′ such that |=I′

R,S ′.
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Now we are ready to present the main theorem. In Section 3 we already
showed that this extends the termination proving power of natural linear inter-
pretations.

Theorem 14. A TRS R is terminating if for every SCC S in the dependency
graph DG(R) there exists a weakly monotone polynomial interpretation I over
the naturals such that |=I R,S holds.

Proof. We show that under the assumption |=I
∃ R,S with s → t ∈ S satisfying

dI(s → t) < 0 there cannot be a non-terminating rewrite sequence that applies
s → t indefinitely. The theorem follows immediately from that property. For a
proof by contradiction assume the existence of such a sequence:

s0 →s→t t0 →∗
S∪R s1 →s→t t1 →∗

S∪R s2 →s→t t2 →∗
S∪R s3 → . . .

Since >I is closed under contexts and substitutions, for all terms u, v, and all
rules l → r ∈ R ∪ S with u →l→r v we get ncpI(u) > ncpI(v). Because the
infinite sequence was chosen such that the rule s → t is used infinitely often it
is obvious that when starting from term s0 one must cycle in the dependency
graph in order to reach s1. The fact that dI(s → t) < 0 together with dI(S) ⊆
Z60 ensures that every cycle containing the node s → t decreases the constant
part of the interpretation strictly (note that cpI(R) ⊆ > by definition). Hence,
cpI(s0) > cpI(s1). Repeating this argument gives rise to the sequence

cpI(s0) > cpI(s1) > cpI(s2) > cpI(s3) > . . .

which contradicts the well-foundedness of > over the natural numbers. ut

5 Implementation

Almost all fast implementations of polynomial interpretations are based on a
transformation to a SAT problem. Also many other termination criteria are very
suitable for a SAT encoding as can be seen by the vast amount of literature. The
major drawback is that one has to work with abstract encodings all the time.
Hence when labeling the dependency graph one does not have concrete integers
at hand but some propositional formulas which abstractly encode the range of all
possible values. Since encoding polynomials in SAT has already been described
in detail [6], in this paper we refrain from giving all implementation issues. The
only encoding which is discussed here is how to compute the distance between
two (not necessarily distinct) nodes within a labeled graph.

5.1 General Algorithm

The idea is to compute the distance of a node by means of a transitivity closure.
The integer variable Rabi is −∞ if b is not reachable in at most 2i steps from
a and otherwise this variable keeps the (currently known) distance from a to b.
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It is obvious that in a graph (N,E) an elementary cycle contains at most |N |
edges and hence for k′ > k := dlog2(|N |)e one has surely reached a fixed point,
i.e., Rabk′ = Rabk for all a, b ∈ N .

More precisely, the variables Rab0 reflect the edges of the graph and hence
b is reachable from a with a cost of `(a) if (a, b) ∈ E and it is unreachable if
(a, b) 6∈ E. Thus we initialize these variables as follows:

Rab0 =

{
`(a) if (a, b) ∈ E

−∞ otherwise

Since Rabi might be −∞, addition and maximum operation are extended natu-
rally, i.e., n + −∞ = −∞ + n = −∞ and max(n,−∞) = max(−∞, n) = n for
all n ∈ Z ∪ {−∞}. For 0 6 i < k we define

Rab(i+1) = max(Rabi,maxm∈N{Rami + Rmbi})

If one first forgets about the max then the above formula expresses that b is
reachable from a in at most 2i+1 steps with a cost of Rab(i+1) if it is already
reachable within 2i steps with that cost or there is a mid-point2 m and the cost
from a to m and the one from m to b just sum up. Taking the maximum of
all possible costs ensures that we consider a worst case scenario. In the end we
want to test if Rnnk 6 0 for all n ∈ N . Note that it might happen that the
value Rnnk does not emerge from an elementary cycle (because it might happen
that one cycles more than once). Nevertheless the idea remains sound because if
the length of a maximal elementary cycle is smaller than zero, then the length
remains smaller than zero if we go along that cycle more often. Dually this
property holds for distances greater than zero. For a demonstration consider the
following example.

Example 15. In the labeled graph from Example 1 we have k = dlog2(4)e = 2
and

d(1) = 1 d(2) = 0 d(3) = 0 d(4) = 1
R112 = 2 R222 = 0 R332 = 0 R442 = 2

The reason for the different values is that R112 does not correspond to an ele-
mentary cycle; we have d(1) = 1 (see Example 1) but R112 = 2 since it derives
from the cyclic path [1, 4, 1, 4, 1]. A similar argument explains the discrepancy
of d(4) and R442.

5.2 Special Algorithms

The encoding for computing maximal paths in SAT from the previous subsection
has complexity O(n2log(n)) where n is the number of nodes in the underlying
SCC of the labeled DG. To get a faster implementation we specialize the algo-
rithm for SCCs that have a special shape:
2 Fortunately Zeno of Elea was wrong and this approach constitutes a valid method

for computing reachability.
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Fig. 4. Two special shapes of SCCs.

(a) Simple SCCs: An SCC is called simple if it contains exactly one cycle, i.e.,
omitting any edge would destroy the property of being an SCC. An example
of this shape is depicted in Figure 4(a). Linear time suffices to decide if a
given SCC S is simple (the number of edges equals the number of nodes).
In such a case the encoding specializes to∑

n∈S
`(n) < 0

which expresses that the constant part of the interpretation I decreases when
cycling. The encoding is linear in the size of the nodes.

(b) Almost simple SCCs: An SCC is called almost simple if it is not simple
and there exists a node n (called selected node) such that after deleting all
outgoing edges of n there is no non-empty sub-SCC left. Here we will exploit
the fact that in every cycle within this SCC we pass the node n. The nodes
indicated with ? in Figure 4(b) satisfy this property. In the encoding we
demand that −`(n) > `(m1)+ · · ·+ `(mp) holds where n is the selected node
and m1, . . . ,mp are the nodes in the SCC that have a positive label. The
underlying idea is that node n decreases the interpretation more than all
other rules together might increase it and since that node n must be passed
in every cyclic run there cannot be infinite reductions. For every selected
node n the encoding is of linear size.

Note that the specialization for case (a) is exact whereas (b) is an approximation.

6 Assessment

In this paper we showed that increasing interpretations are strictly more pow-
erful than standard linear interpretations over the naturals. Clearly for SCCs
consisting of just a single rule they are of equal power.

The reason why the TRS of Example 5 cannot be proved terminating by
means of linear polynomials is that we cannot differentiate constant 0 from 1
by the interpretation. Hence it is not so astonishing that the problematic SCC
can be handled by matrix interpretations [5] of dimension two. Actually all of
the tools (dedicated to proving termination) participating in the TRS category
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of the 2007 edition of the international termination competition can handle this
system. All the proofs rely on matrix interpretations with dimension two. As a
pre-processing step AProVE [8] and TTT2

3 use dependency pair analysis whereas
Jambox [4] performs a reduction of right-hand sides [21].

It is an easy exercise to construct (larger) TRSs than Example 5 such that
all tools of the termination competition fail. To disallow Jambox the rewriting
of right-hand sides we introduce overlaps. To knock-out the matrix method just
increasing the size of the system suffices. Since TTT2 can still prove these examples
by bounds [7,16] we ensure the TRS to be not left-linear which makes increasing
interpretations the only successful method.

Example 16. For the TRS where g8(x) is a shortcut for g(g(g(g(g(g(g(g(x))))))))

f(0, 0, 0, x) → f(0, 0, 1, g(x)) f(0, 0, 1, x) → f(0, 1, 0, g(x))
f(0, 1, 0, x) → f(0, 1, 1, g(x)) f(0, 1, 1, x) → f(1, 0, 0, g(x))
f(1, 0, 0, x) → f(1, 0, 1, g(x)) f(1, 0, 1, x) → f(1, 1, 0, g(x))

f(1, 1, 0, x) → f(1, 1, 1, g(x)) f(y, y, y, g8(x)) → f(0, 0, 0, x)
g(g(0)) → 1 g(g(1)) → g(g(0))

none of the existing termination tools succeeds in proving termination within a
60 seconds time limit. Increasing interpretations produce a successful—and very
intuitive—proof for the challenging SCC. It considers the changes of F’s fourth
argument. Both the general approach described in Section 5.1 and the specializa-
tion (b) from Section 5.2 yield the increasing interpretation FN(x, y, z, w) = w,
gN(x) = x + 1, fN(x, y, z, w) = 0N = 1N = 0 which ensures that all nodes have a
negative distance and hence the whole problematic SCC can be removed. The
only difference between the two is that it takes the first method almost half a
minute whereas the optimized encoding succeeds within a fraction of a second.

The theory of increasing interpretations as described above directly applies
to the matrix method [5] as well. Note that when interpreting dependency pairs
the constant part amounts to a natural number and hence the dependency graph
is labeled in exactly the same fashion.

7 Future Work

Generalizing the approach in such a way that not only the constant part of the
interpretation is used as additional information in the dependency graph but also
the non-constant part, is highly desirable. We anticipate that this would make
the approach significantly more powerful. The only drawback is that probably
this generalization applies to a very restricted class of TRSs only. To get a feeling
for the problems that arise consider the non-terminating system

f(s(x)) → g(s(x)) g(x) → f(x)

3
http://colo6-c703.uibk.ac.at/ttt2
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which admits the dependency pairs (1) F(s(x)) → G(s(x)) and (2) G(x) → F(x).
The increasing interpretation FN(x) = 2x, GN(x) = x, fN(x) = 0, sN(x) = x + 1
would remove both dependency pairs since there is a strict decrease for every
cycle in the labeled dependency graph, which looks like

(1)
−x−1

**
(2)

+x

jj

The problem in this example is that in the two dependency pairs the variable x
does not correspond to the same term. For this example it is obvious that in any
minimally non-terminating sequence, s(x) is substituted for the variable x in the
second rule. Hence, one should not consider the original system but immediately
change the variable x in the second rule on both sides to s(x). Then increasing
interpretations are no longer successful. However such a transformation is not
always possible. In the example above for every minimally non-terminating se-
quence there are no R-steps and hence one can compute the substitution for x
in the second rule by unification. Similar cases can be dealt with narrowing [1].

To conclude, we summarize that increasing interpretations can be extended
to allow an increase also in the variable part if the TRS under consideration
satisfies two properties: (a) all dependency pairs are variable disjoint (this can
always be achieved by renaming) and (b) for every minimally non-terminating
sequence

s0 →DP(R) t0 →∗
R s1 →DP(R) t1 →∗

R s2 →DP(R) t2 →∗
R · · ·

the R-sequences are empty (and hence the values for variables can possibly be
computed by unification). Note that one sufficient condition for (b) is that the
set of usable rules is empty.
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