
Maximal Termination?

Carsten Fuhs1, Jürgen Giesl1, Aart Middeldorp2, Peter Schneider-Kamp1,
René Thiemann2, and Harald Zankl2

1 LuFG Informatik 2, RWTH Aachen University, Germany
2 Institute of Computer Science, University of Innsbruck, Austria

Abstract. We present a new approach for termination proofs that uses
polynomial interpretations (with possibly negative coefficients) together
with the “maximum” function. To obtain a powerful automatic method,
we solve two main challenges: (1) We show how to adapt the latest de-
velopments in the dependency pair framework to our setting. (2) We
show how to automate the search for such interpretations by integrating
“max” into recent SAT-based methods for polynomial interpretations.
Experimental results support our approach.

1 Introduction

The use of polynomial interpretations [13] is standard in automated termination
analysis of term rewrite systems (TRSs). This is especially true for termination
proofs in the popular dependency pair (DP) framework [1,4,6,9] that is imple-
mented in most automated termination tools for TRSs.

A polynomial interpretation Pol maps every n-ary function symbol f to a
polynomial fPol over n variables x1, . . . , xn. The mapping is extended to terms by
defining [x]Pol = x for variables x and [f(t1, ..., tn)]Pol = fPol([t1]Pol, ..., [tn]Pol).
If Pol is clear from the context, we also write [t] instead of [t]Pol. Traditionally,
one uses polynomials with natural coefficients from N = {0, 1, 2, . . . }. Then
[t] ∈ N for every ground term t. For example, consider the interpretation Pol with
0Pol = 0, sPol = x1 + 1, and minusPol = x1. Then [minus(s(x), s(y))]Pol = x + 1.

An interpretation Pol induces an order �Pol and quasi-order %Pol where
s �Pol t (s %Pol t) iff [s] > [t] ([s] > [t]) holds for all instantiations of vari-
ables with natural numbers. So with Pol above we have minus(s(x), s(y)) �Pol

minus(x, y). Recently, two extensions to integer polynomials were proposed:

(a) [7] used polynomial interpretations with integer coefficients where ground
terms could also be mapped to arbitrary integers. However, this approach
only works for analyzing innermost instead of full termination.

(b) [10] proposed interpretations of the form max(p, 0) where p is a polynomial
with integer coefficients. Thus, ground terms are still mapped to numbers
from N. So one could define minusPol = max(x1−x2, 0) which would result in
minus(s(x), s(y)) ≈Pol minus(x, y). Here ≈Pol denotes the equivalence rela-
tion associated with %Pol, where for any quasi-order % we have ≈ = % ∩ -.

? Supported by the DFG (Deutsche Forschungsgemeinschaft) under grant GI 274/5-2
and the FWF (Austrian Science Fund) project P18763.



The drawback is that the approach of [10] was not easy to automate and
that it could only be combined with a weak version of the DP technique.

In this paper, we present a new approach which improves upon (a) and (b):
• It uses integer polynomials together with the function “max”, where ground

terms are only mapped to natural numbers, as in [10]. But in contrast to
[10], we permit arbitrary combinations of polynomials and “max”, e.g., “p+
max(q, max(r, s))” where p, q, r, s are integer polynomials. And in contrast
to [7], integer polynomials may be used for interpreting any function symbol.

• It uses the newest and most powerful version of the DP technique as in [7].
• In contrast to [7], it can also prove full instead of innermost termination.
• In contrast to [10], we show how to search for arbitrary polynomial interpre-

tations with “max” automatically in an efficient way using SAT solving.

After recapitulating the DP framework in Sect. 2, Sect. 3 extends it to handle
non-monotonic quasi-orders like integer polynomial orders with “max”. Sect. 4
shows how to search for such interpretations automatically using SAT solving.
Sect. 5 discusses our implementation in the provers AProVE [5] and TTT2 [17].

2 Dependency Pairs

For a TRS R, the defined symbols D are the root symbols of left-hand sides
of rules. All other function symbols are called constructors. For every defined
symbol f ∈ D, we introduce a fresh tuple symbol f ] with the same arity. To ease
readability, we often write F instead of f ], etc. If t = f(t1, . . . , tn) with f ∈ D,
we write t] for f ](t1, . . . , tn). If ` → r ∈ R and t is a subterm of r with defined
root symbol, then the rule `] → t] is a dependency pair of R. We denote the set
of all dependency pairs of R by DP(R).

Example 1. Consider the TRS SUBST from [8] and [18, Ex. 6.5.42]:

λ(x) ◦ y → λ(x ◦ (1 ? (y ◦ ↑))) id ◦ x → x 1 ◦ (x ? y) → x

(x ? y) ◦ z → (x ◦ z) ? (y ◦ z) 1 ◦ id → 1 ↑ ◦ (x ? y) → y

(x ◦ y) ◦ z → x ◦ (y ◦ z) ↑ ◦ id → ↑
The dependency pairs are

λ(x) ◦] y → x ◦] (1 ? (y ◦ ↑)) (1)
λ(x) ◦] y → y ◦] ↑ (2)

(x ? y) ◦] z → x ◦] z

(x ? y) ◦] z → y ◦] z

(x ◦ y) ◦] z → x ◦] (y ◦ z)
(x ◦ y) ◦] z → y ◦] z

The main result of the DP framework states that a TRS R is terminating iff
there is no infinite minimal DP (R)-chain. For any set of dependency pairs P, a
minimal P-chain is a sequence of (variable renamed) pairs s1 → t1, s2 → t2, . . .
from P such that there is a substitution σ (with possibly infinite domain) where
tiσ →∗

R si+1σ and where all tiσ are terminating w.r.t. R.
The DP framework has several techniques (so-called DP processors) to prove

absence of infinite chains. Thm. 2 recapitulates one of the most important pro-
cessors, the so-called reduction pair processor. It uses reduction pairs (%,�) to



compare terms. Here, % is a stable monotonic quasi-order and � is a stable well-
founded order, where % and � are compatible (i.e., � ◦ % ⊆ � or % ◦ � ⊆ �).

If P is the current set of dependency pairs,3 then the reduction pair processor
generates inequality constraints which should be satisfied by a reduction pair
(%,�). The constraints require that all DPs in P are strictly or weakly decreasing
and all usable rules U(P) are weakly decreasing. Then one can delete all strictly
decreasing DPs from P. Afterwards, the reduction pair processor can be applied
again to the remaining set of DPs (possibly using a different reduction pair).
This process is repeated until all DPs have been removed.

The usable rules include all rules that can reduce the terms in right-hand
sides of P when their variables are instantiated with normal forms. To ensure
that it suffices to regard only the usable rules instead of all rules in the reduction
pair processor, one has to demand that % is Cε-compatible, i.e., that c(x, y) % x
and c(x, y) % y holds for a fresh function symbol c [6,10]. This requirement is
satisfied by virtually all quasi-orders used in practice.4

Theorem 2 ([6,10]). Let (%,�) be a reduction pair where % is Cε-compatible.
Then the following DP processor Proc is sound (i.e., if there is no infinite min-
imal Proc(P)-chain, then there is also no infinite minimal P-chain):

Proc(P) =

{
P \ � if P ⊆ � ∪% and U(P) ⊆ %

P otherwise

For any function symbol f , let Rls(f) = {` → r ∈ R | root(`) = f}. For any
term t, the usable rules U(t) are the smallest set such that

U(f(t1, . . . , tn)) = Rls(f) ∪
⋃

`→r∈Rls(f)
U(r) ∪

⋃n

i=1
U(ti)

For a set of dependency pairs P, its usable rules are U(P) =
⋃

s→t∈P U(t).

Example 3. For the TRS of Ex. 1, we use the reduction pair (%Pol,�Pol) with

λPol = x1 + 1 ?Pol = max(x1, x2)

◦Pol = ◦]
Pol = x1 + x2 1Pol = idPol = ↑Pol = 0

Then all (usable) rules and dependency pairs are weakly decreasing (w.r.t. %Pol).
Furthermore, the DPs (1) and (2) are strictly decreasing (w.r.t. �Pol) and can be
removed by Thm. 2. Afterwards, we use the following interpretation where the
remaining DPs are strictly decreasing and the rules are still weakly decreasing:

◦]
Pol = x1 ?Pol = max(x1, x2) + 1
◦Pol = x1 + x2 + 1 λPol = 1Pol = idPol = ↑Pol = 0

Termination of SUBST cannot be proved with Thm. 2 using reduction pairs
based on linear polynomial interpretations, cf. [3]. Thus, this example shows the
3 For readability, we consider sets of DPs instead of DP problems [4]. This suffices to

present our new results, since the DP processors of this paper only modify the DPs.
4 An exception are equivalences like ≈, which are usually not Cε-compatible [10].



usefulness of polynomial interpretations with “max”. Up to now, only restricted
forms of such interpretations were available in termination tools. For example,
already in 2004, TTT used interpretations like max(x1−x2, 0), but no tool offered
arbitrary interpretations with polynomials and “max” like max(x1, x2) + 1.

While SUBST’s original termination proof was very complicated [8], easier
proofs were developed later, using the techniques of distribution elimination
or semantic labeling [18]. Indeed, the only tool that could prove termination of
SUBST automatically up to now (TPA [12]) used semantic labeling.5 In contrast,
Ex. 3 shows that there is an even simpler proof without semantic labeling.

3 Termination With Integer Polynomials and “max”

Our aim is to use polynomial interpretations with integer polynomials, together
with the function “max”. More precisely, we want to use interpretations that
map n-ary function symbols to arbitrary functions from Nn → N. But Ex. 4
demonstrates that such interpretations may not be used in Thm. 2, since then
%Pol is not monotonic, and thus, (%Pol, �Pol) is not a reduction pair.

Example 4. Consider this non-terminating TRS (inspired by [7, Ex. 4]):

f(s(x), x) → f(s(x), round(x))
round(0) → 0 round(s(0)) → s(0)
round(0) → s(0) round(s(s(x))) → s(s(round(x)))

Here, round(x) evaluates to x if x is odd and to x or s(x) otherwise. We use the
interpretation Pol with FPol = x1 +max(x1−x2, 0), ROUNDPol = x1, 0Pol = 0,
and sPol = roundPol = x1 + 1, where F and ROUND are the tuple symbols for
f and round, respectively. Then all DPs are strictly decreasing and the usable
round-rules are weakly decreasing. So if we were allowed to use Pol in Thm. 2,
then we could remove all DPs and falsely prove termination.

Ex. 4 shows the reason for unsoundness when dropping the requirement of
monotonicity of %. Thm. 2 requires ` % r for all usable rules ` → r. This is meant
to ensure that all reductions with usable rules will weakly decrease the reduced
term (w.r.t. %). However, this only holds if the quasi-order % is monotonic. For
instance in Ex. 4, we have round(0) %Pol 0, but F(s(0), round(0)) 6%Pol F(s(0), 0).

In [10], this problem was solved by requiring ` ≈ r instead of ` % r. Then such
rules are not just weakly decreasing but equivalent w.r.t. %. This requirement
is not satisfied in Ex. 4 as round(0) 6≈Pol 0. In general, this equivalence even
has to be required for all rules ` → r (not just the usable ones), since the
step from all rules to the usable rules in the proof of Thm. 2 also relies on the
monotonicity of %. Thus, up to now one had to apply the following reduction
pair processor when using non-monotonic reduction pairs. The soundness of this
processor immediately results from [4, Thm. 28] and [10, Thm. 23 and Cor. 31],
5 For the semantic labeling, TPA uses only a (small) fixed set of functions, including

certain fixed polynomials and the function “max”. So in contrast to our automation
in Sect. 4, TPA does not search for arbitrary combinations of polynomials and “max”.



cf. [3].6 Here, a non-monotonic reduction pair (%,�) consists of a stable quasi-
order % and a compatible stable well-founded order �. But we do not require
monotonicity of % (and % does not have to be Cε-compatible either). However,
the equivalence relation ≈ associated with % must be monotonic.7

Theorem 5. Let (%,�) be a non-monotonic reduction pair. Then Proc is sound:

Proc(P) =


P \ � if P ⊆ � ∪% and (a) or (b) holds:

(a) P ∪ U(P) is non-duplicating and U(P) ⊆ ≈
(b) R ⊆ ≈

P otherwise

However, demanding ` ≈ r for the usable rules as in Thm. 5(a) is a very
strong requirement which makes the termination proof fail in many examples,
cf. Ex. 11 and 12. Therefore, as already suggested in [7], one should take into
account on which positions the quasi-order % is monotonically increasing resp.
decreasing. If a defined function symbol f occurs at a monotonically increasing
position in the right-hand side of a dependency pair, then one should require
` % r for all f -rules. If f is at a decreasing position, one requires r % `. Finally,
if f is at a position which is neither increasing nor decreasing, one requires ` ≈ r.

To modify our definition of usable rules accordingly, we need a monotonicity
specification which specifies which arguments of a symbol have to be increasing
(“⇑”) or decreasing (“⇓”). Afterwards, we search for a (non-monotonic) reduction
pair that is compatible with the monotonicity specification.

Definition 6. A monotonicity specification is a mapping ν which assigns to
every function symbol f and every i ∈ {1, ..., arity(f)} a subset of {⇑,⇓}. A
reduction pair (%,�) is ν-compatible iff

• if ⇑ ∈ ν(f, i) then % is monotonically increasing on f ’s i-th argument, i.e.,
ti % si implies f(t1, ..., ti, ..., tn) % f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

• if ⇓ ∈ ν(f, i) then % is monotonically decreasing on f ’s i-th argument, i.e.,
ti % si implies f(t1, ..., ti, ..., tn) - f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

• if ν(f, i) = {⇑,⇓} then8 additionally % must be independent on f ’s i-th
argument, i.e., f(t1, ..., ti, ..., tn) ≈ f(t1, ..., si, ..., tn) for all terms t1, ..., tn, si

We call f ν-dependent on its i-th argument iff ν(f, i) 6= {⇑,⇓}. The concept of
monotonicity can be extended to positions in a term where ν(t, ε) = {⇑} and
6 An alternative to Thm. 5(a) is presented in [10, Thm. 40] for reduction pairs (%Pol,
�Pol) based on polynomial interpretations. Here, “non-duplication of P ∪ U(P)” is
replaced by “Pol-right-linearity of P ∪ U(P)”. So for every right-hand side r there
must be a linear term r′ with r ≈Pol r′ where r′ differs from r only in the variables.

7 Triples like (≈, %,�) were called “reduction triples” in [10]. “Non-monotonic reduc-
tion pairs” are also related to the “general reduction pairs” in [7], but there � did
not have to be well founded. Consequently, the notion of stability was weakened too.

8 Note that this condition is implied by the first two conditions whenever % is total
on ground terms and whenever sσ % tσ for all ground substitutions σ implies s % t.



ν(f(t1, ..., tn), i p) =

8>>>><>>>>:
{⇑,⇓} if ν(f, i) = {⇑,⇓} or ν(ti, p) = {⇑,⇓}
{⇑} if ν(f, i) = ν(ti, p) = {⇑} or ν(f, i) = ν(ti, p) = {⇓}
{⇓} if either ν(f, i) = {⇑} and ν(ti, p) = {⇓}

or ν(f, i) = {⇓} and ν(ti, p) = {⇑}
∅ otherwise

A position p in a term t is called ν-dependent iff ν(t, p) 6= {⇑,⇓}.
Definition 7 (General Usable Rules [7]). Let ν be a monotonicity specifi-
cation. For any TRS U , we define U{⇑,⇓} = ∅, U{⇑} = U , U{⇓} = U−1 = {r →
` | ` → r ∈ U}, and U∅ = U ∪U−1. For any term t, we define the general usable
rules GU(t) as the smallest set such that9

GU(f(t1, . . . , tn)) = Rls(f) ∪
⋃

`→r∈Rls(f)
GU(r) ∪

⋃n

i=1
GUν(f,i)(ti)

For a set of DPs P, we define GU(P) =
⋃

s→t∈P GU(t). Moreover, we let
Ucontr(t) be those rules of R that contributed to GU(t), i.e., Ucontr(t) = {`→r∈
R | `→r∈GU(t) or r→`∈GU(t)}. Similarly, Ucontr(P) =

⋃
s→t∈P Ucontr(t).10

Example 8. In Ex. 4, as FPol = x1 + max(x1 − x2, 0), %Pol is monotonically
decreasing on F’s second argument. So (%Pol,�Pol) is ν-compatible for the
monotonicity specification ν with ν(F, 2) = {⇓} and ν(F, 1) = ν(ROUND, 1) =
ν(s, 1) = ν(round, 1) = {⇑}. Due to ν(F, 2) = {⇓}, the general usable rules are
the reversed round-rules. Thus, we cannot falsely prove termination with Pol
anymore, since Pol does not make the reversed round-rules weakly decreasing;
for example, we have 0 ≺Pol round(0).

Our goal is to show that with the modified definition of usable rules above,
Thm. 2 can also be used for non-monotonic reduction pairs. However, this is not
true in general as shown by the following counterexample, cf. [10, Ex. 32].

Example 9. Consider the following famous TRS of Toyama [16]:

f(0, 1, x) → f(x, x, x) g(x, y) → x g(x, y) → y

We use a monotonicity specification ν with ν(F, 1) = {⇓}, ν(F, 2) = {⇑},
ν(F, 3) = {⇑,⇓} and a ν-compatible reduction pair (%Pol,�Pol) where FPol =
max(x2 − x1, 0), 0Pol = 0, and 1Pol = 1. The only DP is strictly decreasing and
there is no (general) usable rule. Hence, one would falsely conclude termination.

To obtain a sound criterion, we therefore impose certain requirements on all
rules ` → r ∈ P ∪ Ucontr. To this end, we need the following notions.

• A rule ` → r is ν-more monotonic (ν-MM) if variables occur at more mono-
tonic positions on the right-hand side than on the left-hand side. More pre-
cisely, for every ν-dependent position p of r with r|p = x there is a position
q of ` such that `|q = x and ν(`, q) ⊆ ν(r, p). However, each position of ` can
only be used once, i.e., for different positions p and p′ of r we must choose
different positions q and q′ of `. To define this notion formally, let Posν

x(t)
9 Note that GU(t) is no longer a subset ofR. We nevertheless refer to GU(t) as “usable”

rules in order to keep the similarity to Thm. 2.
10 Ucontr are the “usable rules w.r.t. an argument filtering” from [6].



be the set of all ν-dependent positions p of t with t|p = x. Then a rule ` → r
is ν-MM if for each variable x there is an injective mapping α from Posν

x(r)
to Posν

x(`) such that ν(`, α(p)) ⊆ ν(r, p) for all p ∈ Posν
x(r).

So for the right-hand side of the DP in Ex. 9, we have Posν
x(F(x, x, x)) =

{1, 2}. Hence, x would have to occur on at least two different ν-dependent
positions q and q′ in the left-hand side F(0, 1, x). Moreover, we would need
ν(F(0, 1, x), q) ⊆ ν(F(x, x, x), 1) = {⇓} and ν(F(0, 1, x), q′) ⊆ ν(F(x, x, x), 2)
= {⇑}. However, this DP is not ν-MM as Posν

x(F(0, 1, x)) = ∅.
• ` → r is weakly ν-MM if for each x with Posν

x(`) 6= ∅, there is an injective
mapping α from Posν

x(r) to Posν
x(`) such that ν(`, α(p)) ⊆ ν(r, p) for all

p ∈ Posν
x(r). So in contrast to ν-MM, now we also permit variables that

occur at dependent positions of r, but not at any dependent position of `.
Therefore, the DP of Ex. 9 is weakly ν-MM.

• ` → r is ν-right-linear (ν-RL) if all variables occur at most once at a ν-
dependent position in r. Formally, ` → r is ν-RL iff for all x ∈ V(r):
|Posν

x(r)| 6 1. So the DP in Ex. 9 is not ν-RL since x occurs twice at
ν-dependent positions in the right-hand side.

A TRS is (weakly) ν-MM resp. ν-RL iff all its rules satisfy that condition.
We now extend the processor from Thm. 2 to non-monotonic reduction pairs.

Thm. 10 shows that to remove all strictly decreasing DPs, it is still sufficient if
the (general) usable rules are weakly decreasing, provided that P ∪ Ucontr(P)
satisfies ν-MM. Alternatively, one can also require weak ν-MM and ν-RL.

As shown in [7], if one only wants to prove innermost termination, then
Thm. 10 can be used even without the conditions (weak) ν-MM and ν-RL. How-
ever, we now extend this result to full termination. Of course, if P ∪ Ucontr(P)
is not (weakly) ν-MM resp. ν-RL and one wants to prove full termination with
a non-monotonic reduction pair, then one has to use Thm. 5 instead.

Theorem 10. Let ν be a monotonicity specification and let (%,�) be a ν-
compatible non-monotonic reduction pair. Then Proc is sound:11

Proc(P) =

8>><>>:
P \� if P ⊆ �∪ %, GU(P) ⊆ % , and one of (a) or (b) holds:

(a) P ∪ Ucontr(P) is ν-MM
(b) P ∪ Ucontr(P) is weakly ν-MM and ν-RL

P otherwise

Example 11. To modify Ex. 4 into a terminating TRS, we replace the f-rule by

f(s(x), x) → f(s(x), round(s(x)))

similar to [7, Ex. 9]. We use the monotonicity specification from Ex. 8. The
interpretation Pol from Ex. 4 is modified by defining roundPol = x1. Then
(%Pol, �Pol) is ν-compatible, all DPs are strictly decreasing, and the (general)
usable rules (i.e., the reversed round-rules) are weakly decreasing. Moreover, all
rules in P ∪ Ucontr(P) are ν-MM. Thus, by Thm. 10(a) we can transform the
initial DP problem P = DP (R) into P \�= ∅ and prove termination.

In contrast, this was not possible by the method of [10] which requires ` ≈ r

11 The proof can be found in [3].



for all usable rules. There is no (possibly non-monotonic) reduction pair that
satisfies round(0) ≈ 0 ≈ s(0) and F(s(x), x) � F(s(x), round(s(x))). The method
of [7] can only prove innermost termination of this example. However, this TRS
does not belong to a known class of TRSs where innermost termination implies
termination. So in fact, up to now all tools failed on this example.

Example 12. The following example illustrates Thm. 10(b):

p(0) → 0 minus(x, 0) → x
p(s(x)) → x minus(s(x), s(y)) → minus(x, y)

div(0, s(y)) → 0 minus(x, s(y)) → p(minus(x, y))
div(s(x), s(y)) → s(div(minus(s(x), s(y)), s(y)))

log(s(0), s(s(y))) → 0
log(s(s(x)), s(s(y))) → s(log(div(minus(x, y), s(s(y))), s(s(y))))

We use a monotonicity specification ν with ν(s, 1) = ν(p, 1) = ν(minus, 1) =
ν(MINUS, 1) = ν(div, 1) = ν(DIV, 1) = ν(LOG, 1) = {⇑}, ν(minus, 2) = {⇓},
ν(P, 1) = ν(MINUS, 2) = ν(div, 2) = ν(DIV, 2) = ν(LOG, 2) = {⇑,⇓}, and the
interpretation pPol = max(x1−1, 0), minusPol = max(x1−x2, 0), 0Pol = PPol =
0, sPol = MINUSPol = divPol = LOGPol = x1 + 1, DIVPol = x1 + 2. Now
(%Pol,�Pol) is ν-compatible, all DPs except MINUS(x, s(y)) → MINUS(x, y) are
strictly decreasing, and the remaining DP and the usable p-, minus-, and div-rules
are weakly decreasing. In addition, all DPs and usable rules are weakly ν-MM
and ν-RL. Hence, by Thm. 10(b) we can remove all DPs except MINUS(x, s(y))→
MINUS(x, y). Afterwards, we use MINUSPol′ = x2 and sPol′ = x1 + 1 to delete
this remaining DP. (Now there are no usable rules.) Hence, termination is proved.

Note that here, Thm. 10(a) does not apply as the DP DIV(s(x), s(y)) →
DIV(minus(s(x), s(y)), s(y)) is not ν-MM: the first occurrence of y in the right-
hand side is at a non-increasing position, whereas the only occurrence of y in
the left-hand side is at a ν-independent, and thus increasing position.

The technique of [10] cannot handle the DP LOG(. . .) → LOG(div(. . .), . . .),
because it would have to find an interpretation which makes the div-rules equiva-
lent. In contrast, Thm. 10 only requires a weak decrease for the div-rules. Indeed,
all existing termination tools failed on this example.

4 Automation

The most efficient implementations to search for polynomial interpretations are
based on SAT solving [2]. However, [2] only handled the search for polynomial
interpretations with natural coefficients as well as interpretations of the form
max(p − n, 0) where p is a polynomial with natural coefficients and n ∈ N.
So we permitted interpretations like max(x1 − 1, 0), but not interpretations like
max(x1−x2, 0) (as needed in Ex. 11 and 12) or max(x1, x2) (as needed in Ex. 1).

We want to use SAT solvers to search for arbitrary interpretations using poly-
nomials and “max”. Compared to existing related approaches, there are two chal-
lenges: the additional use of “max” in polynomial interpretations (Sect. 4.1) and
the handling of non-monotonic quasi-orders and general usable rules (Sect. 4.2).



4.1 Automating Polynomial Interpretations with “max”

We start with encoding the “classical” reduction pair processor of Thm. 2 as a
SAT problem. This is simpler than encoding Thm. 10, because in Thm. 2 we use
a monotonic reduction pair (%Pol,�Pol) and thus, the applicability conditions
and the usable rules U do not depend on a monotonicity specification. But in
contrast to our earlier encoding from [2], now Pol can be an interpretation that
combines polynomials and “max” arbitrarily.12

Definition 13 (max-polynomial). Let V be the set of variables. The set of
max-polynomials PM over a set of numbers M is the smallest set such that

• M ⊆ PM and V ⊆ PM

• if p, q ∈ PM , then p + q ∈ PM , p− q ∈ PM , p ∗ q ∈ PM , and max(p, q) ∈ PM

At the moment, we only consider interpretations Pol that map every function
symbol to a max-polynomial over N that does not contain any subtraction “−”.
Obviously, then (%Pol,�Pol) is a Cε-compatible (monotonic) reduction pair.

To find such interpretations automatically, one starts with an abstract poly-
nomial interpretation. It maps each function symbol to a max-polynomial over
a set A of abstract coefficients. In other words, one has to determine the de-
gree and the shape of the max-polynomial, but the actual coefficients are left
open. For example, for the TRS of Ex. 1 we could use an abstract polynomial
interpretation Pol where ?Pol = max(a1 x1 + a2 x2, a′1 x1 + a′2 x2), ↑Pol = b,
◦Pol = x1 + x2, etc.13 Here, a1, a2, a

′
1, a

′
2, b are abstract coefficients.

Now to apply the reduction pair processor of Thm. 2, we have to find an in-
stantiation of the abstract coefficients satisfying the following condition. Then all
dependency pairs that are strictly decreasing (i.e., [s] > [t] + 1) can be removed.V

s→t ∈ P
[s]Pol > [t]Pol ∧

W
s→t ∈ P

[s]Pol > [t]Pol + 1 ∧
V

`→r ∈ U(P)

[`]Pol > [r]Pol (3)

Here, all rules in P ∪U(P) are variable-renamed to have pairwise different vari-
ables. The polynomials [s]Pol, [t]Pol, etc. are again max-polynomials over A. So
with the interpretation Pol above, to make the last rule of Ex. 1 weakly decreas-
ing (i.e., ↑ ◦ (x ? y) %Pol y) we obtain the inequality [↑ ◦ (x ? y)]Pol > [y]Pol:

b + max(a1 x + a2 y, a′1 x + a′2 y) > y (4)

We have to find an instantiation of the abstract coefficients a1, a2, . . . such that
(4) holds for all instantiations of the variables x and y. In other words, the
variables from V occurring in such inequalities are universally quantified.

Several techniques have been proposed to transform such inequalities further
in order to remove such universally quantified variables [11]. However, the exist-
ing techniques only operate on inequalities without “max”. Therefore, we now
present new inference rules to eliminate “max” from such inequalities.

Our inference rules operate on conditional constraints of the form
12 Of course, in an analogous way, one can also integrate the “minimum” function and

indeed, we did this in our implementations.
13 Here we already fixed ◦’s interpretation to simplify the presentation. Our implemen-

tations use heuristics to determine when to use an interpretation with “max”.



p1 > q1 ∧ . . . ∧ pn > qn ⇒ p > q (5)

Here, n > 0 and p1, ..., pn, q1, ..., qn are polynomials with abstract coefficients
without “max”. In contrast, p, q are max-polynomials with abstract coefficients.

The first inference rule eliminates an inner occurrence of “max” from the
inequality p > q. If p or q have a sub-expression max(p′, q′) where p′ and q′ do
not contain “max”, then we can replace this sub-expression by p′ or q′ when
adding the appropriate condition p′ > q′ or q′ > p′ + 1, respectively.

I. Eliminating “max”

p1 > q1 ∧ . . . ∧ pn > qn ⇒ . . . max(p′, q′) . . .

p1 > q1 ∧ . . . ∧ pn > qn ∧ p′ > q′ ⇒ . . . p′ . . . ∧
p1 > q1 ∧ . . . ∧ pn > qn ∧ q′ > p′ + 1 ⇒ . . . q′ . . .

if p′ and q′ do
not contain
“max”

Obviously, by repeated application of inference rule (I), all occurrences of
“max” can be removed. In our example, the constraint (4) is transformed into
the following new constraint that does not contain “max” anymore.

a1 x + a2 y > a′1 x + a′2 y ⇒ b + a1 x + a2 y > y ∧ (6)
a′1 x + a′2 y > a1 x + a2 y + 1 ⇒ b + a′1 x + a′2 y > y (7)

Since the existing methods for eliminating universally quantified variables
only work for unconditional inequalities, the next inference rule eliminates the
conditions pi > qi from a constraint of the form (5).14 To this end, we introduce
two new abstract polynomials p and q (that do not contain “max”). The polyno-
mial q over the variables x1, ..., xn is used to “measure” the polynomials p1, ..., pn

resp. q1, ..., qn in the premise of (5) and the unary polynomial p measures the
polynomials p and q in the conclusion of (5). We write q[p1, ..., pn] to denote the
result of instantiating the variables x1, ..., xn in q by p1, ..., pn, etc.

II. Eliminating Conditions

p1 > q1 ∧ . . . ∧ pn > qn ⇒ p > q

p[p]− p[q] > q[p1, . . . , pn]− q[q1, . . . , qn]

if q and p do not contain “max”, p is
strictly monotonic, and q is weakly mono-
tonic

Here, the monotonicity conditions mean that x > y ⇒ p[x] > p[y] must hold
and similarly that x1 > y1 ∧ . . . ∧ xn > yn ⇒ q[x1, . . . , xn] > q[y1, . . . , yn].

To see why Rule (II) is sound, let p[p]−p[q] > q[p1, . . . , pn]−q[q1, . . . , qn] hold
and assume that there is an instantiation σ of all variables in the polynomials
with numbers that refutes p1 > q1 ∧ . . . ∧ pn > qn ⇒ p > q. Now p1σ > q1σ ∧
... ∧ pnσ > qnσ implies q[p1, . . . , pn]σ > q[q1, . . . , qn]σ by weak monotonicity
of q. Hence, p[p]σ − p[q]σ > 0. Since the instantiation σ is a counterexample
to our original constraint, we have pσ 6> qσ and thus pσ < qσ. But then strict
monotonicity of p would imply p[p]σ − p[q]σ < 0 which gives a contradiction.
14 Such conditional polynomial constraints also occur in other applications, e.g., in the

termination analysis of logic programs. Indeed, we used a rule similar to inference
rule (II) in the tool Polytool for termination analysis of logic programs [15]. However,
Polytool only applies classical polynomial interpretations without “max”.



If we choose15 the abstract polynomials p = c x1 and q = d x1 for (6) and
p = c′ x1 and q = d′ x1 for (7), then (6) and (7) are transformed into the following
unconditional inequalities. (Note that we also have to add the inequalities c > 1
and c′ > 1 to ensure that p is strictly monotonic.)

c · (b + a1 x + a2 y)− c · y > d · (a1 x + a2 y)− d · (a′1 x + a′2 y) ∧ (8)
c′ · (b + a′1 x + a′2 y)− c′ · y > d′ · (a′1 x + a′2 y)− d′ · (a1 x + a2 y + 1) (9)

Of course, such inequalities can be transformed into inequalities with 0 on their
right-hand side. For example, (8) is transformed to

(c a1 − d a1 + d a′1) x + (c a2 − c− d a2 + d a′2) y + c b > 0 (10)

Thus, we now have to ensure non-negativeness of “polynomials” over variables
like x, y, where the “coefficients” are polynomials over the abstract variables like
c a1 − d a1 + d a′1. To this end, it suffices to require that all these “coefficients”
are > 0 [11]. In other words, now one can eliminate all universally quantified
variables like x, y and (10) is transformed into the Diophantine constraint

c a1 − d a1 + d a′1 > 0 ∧ c a2 − c− d a2 + d a′2 > 0 ∧ c b > 0

III. Eliminating Universally Quantified Variables
p0 +p1 xe11

1 . . . xen1
n + · · ·+pk x

e1k
1 . . . x

enk
n > 0

p0 > 0 ∧ p1 > 0 ∧ . . . ∧ pk > 0

if the pi neither contain “max” nor
any variable from V

To search for suitable values for the abstract coefficients that satisfy the
resulting Diophantine constraints, one fixes an upper bound for these values.
Then we showed in [2] how to translate such Diophantine constraints into a
satisfiability problem for propositional logic which can be handled by SAT solvers
efficiently. In our example, the constraints resulting from the initial inequality
(4) are for example satisfied by a1 = 1, a2 = 0, a′1 = 0, a′2 = 1, b = 0, c = 1,
d = 1, c′ = 1, d′ = 0. With these values, the abstract interpretation max(a1 x1 +
a2 x2, a′1 x1 +a′2 x2) for ? is turned into the concrete interpretation max(x1, x2).

4.2 Automating Thm. 10

Now we show how to automate the improved reduction pair processor of Thm. 10.
As before, our aim is to translate the resulting constraints into Diophantine
constraints and further into propositional satisfiability problems.

Again, we start with an abstract polynomial interpretation Pol. But since
the values for the abstract coefficients can now be from Z, we add the constraint

[f ] > 0 for all function symbols f (11)

to ensure the well-foundedness of the resulting order. In the TRS of Ex. 12,
we could start with an abstract interpretation where minusPol = max(m1x1 +
m2x2,m0). Here, m0,m1,m2 are abstract coefficients which can later be instan-
15 A good heuristic is to choose q = b1x1 + . . . + bnxn where all bi are from {0, 1} and

p = a · x1 where 1 6 a 6 max(Σn
i=1bi, 1).



tiated by integers. Thus, we obtain the constraint max(m1x1 + m2x2,m0) > 0.
The challenge when automating Thm. 10 is that the general usable rules

GU and the conditions (weakly) ν-MM and ν-RL depend on the (yet unknown)
monotonicity specification ν, which itself enforces constraints on the quasi-order
%Pol that one searches for. Nevertheless, if one uses max-polynomial interpreta-
tions, then the search for reduction pairs can still be mechanized efficiently. More
precisely, we show how to encode all conditions of Thm. 10 as a formula which
is independent of ν. In other words, this formula only contains Diophantine and
Boolean variables. The latter are used to encode ν. The formula has the form

Orient ∧Usable ∧
(
More ∨ (Wmore ∧ Rlinear)

)
∧ Compat ∧Depend (12)

where Orient requires that the DPs and general usable rules are weakly decreas-
ing and at least one DP is strictly decreasing. Here, we use Boolean variables
that state which rules are usable and Usable ensures that these variables have the
correct values. More, Wmore, and Rlinear correspond to ν-MM, weak ν-MM,
and ν-RL, respectively. Compat requires that %Pol is ν-compatible. Finally, the
formula Depend computes the sets ν(t, p) from the monotonicity specification ν.

We start with defining Depend . To represent a monotonicity specification
ν, for every function symbol f of arity n and every 1 6 i 6 n we introduce
two Boolean variables ⇑f,i and ⇓f,i which encode the set ν(f, i). So ⇑f,i is true
iff ⇑ ∈ ν(f, i) and likewise for ⇓f,i. Depend is the conjunction of the following
formulas for every term t in P ∪U(P) and every position p of t. They introduce
two Boolean variables ⇑t,p and ⇓t,p to encode the sets ν(t, p) according to Def. 6.

⇑t,ε ⇔ true
⇑f(t1,...,tn),i p ⇔

(
⇑f,i ∧ ⇑ti,p

)
∨

(
⇓f,i ∧ ⇓ti,p

)
∨(

⇑f,i ∧ ⇓f,i

)
∨

(
⇑ti,p ∧ ⇓ti,p

)
⇓t,ε ⇔ false
⇓f(t1,...,tn),i p ⇔

(
⇑f,i ∧ ⇓ti,p

)
∨

(
⇓f,i ∧ ⇑ti,p

)
∨(

⇑f,i ∧ ⇓f,i

)
∨

(
⇑ti,p ∧ ⇓ti,p

)
Next we define Usable. We use two Boolean variables usf and usf for every

defined symbol f . Here, usf (resp. usf ) is true if the f -rules (resp. reversed f -
rules) are usable according to Def. 7. So whenever an f occurs at a non-decreasing
position of a right-hand side of P then the f -rules are usable. Similarly, if f occurs
at a non-increasing position, then the reversed f -rules are usable. Moreover, if
(possibly reversed) f -rules are already usable then this may yield new usable
rules due to right-hand sides of f -rules. Here, one has to keep the direction of
the rules for non-decreasing positions and reverse the direction for non-increasing
positions. This gives rise to the following formula Usable.∧

s→t∈P, t|p=f(...), f defined

(¬⇓t,p ⇒ usf ) ∧ (¬⇑t,p ⇒ usf ) ∧

V
`→r∈Rls(f), r|p=g(...), g defined

`
usf ⇒ (¬⇓r,p⇒usg) ∧ (¬⇑r,p⇒usg)

´
∧

`
usf ⇒ (¬⇓r,p⇒usg) ∧ (¬⇑r,p⇒usg)

´
With the Boolean variables usf and usf we can easily formalize that the

rules in P ∪ GU(P) are weakly decreasing and that at least one pair is strictly



decreasing. We obtain the following constraint Orient which is analogous to (3).

∧
s→t∈P

[s]Pol > [t]Pol ∧
∨

s→t∈P
[s]Pol > [t]Pol + 1 ∧∧

`→r∈R, f=root(`)

(
usf ⇒ [`]Pol > [r]Pol

)
∧

(
usf ⇒ [r]Pol > [`]Pol

)
To ensure that P ∪ Ucontr(P) is ν-RL, we interpret the Boolean values true

and false as 1 and 0. Then we express ν-RL as a Diophantine constraint which
we solve in the same way as the ones obtained from Orient later on. For any
variable x, any term t, and any set M ⊆ {⇑,⇓}, let #M

x (t) be a polynomial that
describes the number of occurrences of x in t at positions p where ν(t, p) = M .
Thus, #∅

x (t) =
∑

t|p=x(¬⇑t,p∧¬⇓t,p) and #{⇑}
x (t), #{⇓}

x (t), #{⇑,⇓}
x (t) are defined

accordingly. Moreover, #x(t) =
∑

t|p=x(¬⇑t,p ∨ ¬⇓t,p) encodes the number of
occurrences of x at dependent positions of t. Then the constraint Rlinear is:V

s→t∈P, x∈V(s)

#x(t)61 ∧
V

`→r∈R, x∈V(`), f=root(`)

`
usf ∨ usf ⇒ #x(r)61

´
More and Wmore ensure that P ∪Ucontr(P) is (weakly) ν-MM. For every rule

` → r and every variable x at a ν-dependent position p of r, this variable must
also occur at a unique less monotonic “partner” position q of `. Thus, we could
require #∅

x (r) 6 #∅
x (`), #{⇑}

x (r) 6 #{⇑}
x (`), and #{⇓}

x (r) 6 #{⇓}
x (`). However,

these requirements would be too strong, because they ignore the possibility that
the “partner” position in ` may also be strictly less monotonic than the one in
r. Therefore, for every rule ` → r we introduce two new Diophantine variables
pt⇑x and pt⇓x which stand for the number of those positions p ∈ Posν

x(r) with
ν(r, p) = {⇑} (resp. ν(r, p) = {⇓}) where the “partner” position q ∈ Posν

x(`) is
non-monotonic (i.e., ν(`, q) = ∅). Then Wmore is the following formula:^
s→t∈P, x∈V(t)

`
#x(s)>1 ⇒ mm(s → t, x)

´
∧

^
`→r∈R, x∈V(r), f=root(`)

`
(usf ∨ usf ) ∧#x(`)>1 ⇒ mm(` → r, x)

´
where mm(` → r, x) is the following formula to encode ν-MM. Its first part
ensures that ` contains enough non-monotonic occurrences of x to “cover” all
occurrences of x in r that have a non-monotonic “partner” position in `.

#∅
x (r)+pt⇑x+pt⇓x 6 #∅

x (`) ∧ #{⇑}
x (r) 6 pt⇑x+#{⇑}

x (`) ∧ #{⇓}
x (r) 6 pt⇓x+#{⇓}

x (`)

Now More results from Wmore by removing the premises “#x(·) > 1”.
Compat ensures that whenever the Boolean variable ⇑f,i is true, then fPol

is a max-polynomial that is (weakly) monotonically increasing on its i-th argu-
ment (similarly for ⇓f,i). We express such monotonicity conditions by the partial
derivatives of fPol. If fPol is differentiable (i.e., fPol contains no “max”), then
%Pol is monotonically increasing on f ’s i-th argument iff ∂fPol

∂xi
> 0 (similarly

for monotonic decrease). If fPol is a max-polynomial, then it is in general not
differentiable, but piecewise differentiable and continuous. Then

%Pol is monotonically increasing (resp. decreasing) on f ’s i-th argument iff
∂fPol

∂xi
> 0 (resp. ∂fPol

∂xi
6 0) holds for all values where ∂fPol

∂xi
is defined.



For instance, max(x1−1, 2) is not differentiable at x1 = 3. We have ∂ max(x1−1,2)
∂x1

= 0 for x1 < 3 and ∂ max(x1−1,2)
∂x1

= 1 for x1 > 3. But as ∂ max(x1−1,2)
∂x1

> 0 when-
ever it is defined, the function max(x1−1, 2) is indeed monotonically increasing.

Therefore we introduce a new function symbol derx for partial derivatives.
Here, derx(p) stands for ∂p

∂x whenever p is a function depending on x. However,
at the moment the expressions derx(p) are not “evaluated”. Thus, we can also
write derx(p) if p is not differentiable. Then, Compat is the conjunction of the
following constraints for all function symbols f and all 1 6 i 6 arity(f):(

⇑f,i ⇒ derxi(fPol) > 0
)

∧
(
⇓f,i ⇒ 0 > derxi(fPol)

)
This is indeed sufficient to guarantee that (%Pol,�Pol) is ν-compatible. In

particular, ⇑f,i ∧ ⇓f,i now implies derxi(fPol) = 0, which ensures that %Pol is
independent on f ’s i-th argument. Thus, the third condition of Def. 6 is always
satisfied for quasi-orders like %Pol, cf. Footnote 8.

So to automate Thm. 10,16 we start with the constraint (12) instead of (3).
In addition, we need the constraints of the form (11). Then we again apply the
inference rules (I) - (III) in order to obtain Diophantine constraints.

However, now inequalities also contain “derx(p)” for max-polynomials p.
Here, we apply Rule (I) repeatedly in order to eliminate “max”. So by Rule
(I), the constraint derx1(max(m1x1 +m2x2,m0)) > 0 would be transformed into(

m1x1 + m2x2 > m0 ⇒ derx1(m1x1 + m2x2) > 0
)

∧(
m0 > m1x1 + m2x2 + 1 ⇒ derx1(m0) > 0

) (13)

To eliminate “derx” afterwards, we need the following rule for partial derivation:

IV. Eliminating “der”
. . . derxi(p0 + p1 xe11

1 . . . xen1
n + · · ·+ pk x

e1k
1 . . . x

enk
n ) . . .

. . . p1 ei1 x
e11
1 . . . x

ei1−1
i . . . xen1

n + · · ·+ pk eik x
e1k
1 . . . x

eik−1
i . . . x

enk
n

if the pi neither con-
tain “max” nor any
variable from V

So in (13), one could replace derx1(m1x1 + m2x2) by m1 and derx1(m0) by 0.

5 Experiments and Conclusion

We showed how to use integer polynomial interpretations with “max” in termina-
tion proofs with DPs and developed a method to encode the resulting search
problems into SAT. All our results are implemented in the systems AProVE and
TTT2. While AProVE and TTT2 were already the two most powerful termination
provers for TRSs at the International Competition of Termination Tools 2007
[14], our contributions increase the power of both tools considerably without
affecting their efficiency. More precisely, when using a time limit of 1 minute
per example, AProVE and TTT2 can now automatically prove termination of 15
16 The automation of Thm. 5 works as for Thm. 2. To automate the combination of

Thm. 5 and Thm. 10, one first generates the constraints for Thm. 10 and tries to
solve them. If one does not find a solution, one checks whether P ∪ U(P) is non-
duplicating. In this case, one uses Thm. 5(a) and otherwise, one uses Thm. 5(b).



additional examples from the Termination Problem Data Base that is used for
the competitions. Several of these examples had not been proven terminating
by any tool at the competitions before. Moreover, AProVE and TTT2 now also
succeed on all examples from this paper (i.e., Ex. 1, 11, and 12), whereas all
previous tools from the competitions failed (with the exception of TPA that
could already solve Ex. 1). Our experiments also show the advantages over the
earlier related contributions of [7,10] which were already implemented in AProVE
and TTT2, respectively. To run the AProVE implementation via a web-interface
and for further details, we refer to http://aprove.informatik.rwth-aachen.
de/eval/maxpolo.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc.
SAT’07, LNCS 4501, pp. 340–354, 2007.

3. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
Maximal termination. Technical Report AIB-2008-03, RWTH Aachen, Germany.
Available from http://aib.informatik.rwth-aachen.de.

4. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR’04, LNAI
3452, pp. 301–331, 2005.

5. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. Proc. IJCAR’06, LNAI 4130, pp. 281–286, 2006.

6. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

7. J. Giesl, R. Thiemann, S. Swiderski, and P. Schneider-Kamp. Proving termination
by bounded increase. Proc. CADE’07, LNAI 4603, pp. 443–459, 2007.

8. T. Hardin and A. Laville. Proof of termination of the rewriting system SUBST on
CCL. Theoretical Computer Science, 46(2,3):305–312, 1986.

9. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

10. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

11. H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated
Reasoning, 21(1):23–38, 1998.

12. A. Koprowski. TPA: Termination proved automatically. In Proc. RTA’06, LNCS
4098, pp. 257–266, 2006.

13. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

14. C. Marché and H. Zantema. The termination competition. Proc. RTA’07, LNCS
4533, pp. 303–313, 2007.

15. M. Nguyen, D. De Schreye, J. Giesl, P. Schneider-Kamp. Polytool: Polynomial inter-
pretations as a basis for termination analysis of logic programs. KU Leuven, 2008.

16. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-
ing systems. Information Processing Letters, 25:141–143, 1987.

http://aprove.informatik.rwth-aachen.de/eval/maxpolo
http://aprove.informatik.rwth-aachen.de/eval/maxpolo
http://aib.informatik.rwth-aachen.de


17. TTT2. Available from http://colo6-c703.uibk.ac.at/ttt2.
18. H. Zantema. Termination. In Term Rewriting Systems, by Terese (ed.), Chapter 6,

pp. 181–259, Cambridge University Press, 2003.

http://colo6-c703.uibk.ac.at/ttt2

	Maximal Termination
	Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl

