
Root-Labeling?

Christian Sternagel and Aart Middeldorp

Institute of Computer Science
University of Innsbruck

Austria

Abstract. In 2006 Jambox, a termination prover developed by Endrullis,
surprised the termination community by winning the string rewriting di-
vision and almost beating AProVE in the term rewriting division of the
international termination competition. The success of Jambox for strings
is partly due to a very special case of semantic labeling. In this paper we
integrate this technique, which we call root-labeling, into the dependency
pair framework. The result is a simple processor with help of which TTT2
surprised the termination community in 2007 by producing the first au-
tomatically generated termination proof of a string rewrite system with
non-primitive recursive complexity (Touzet, 1998). Unlike many other
recent termination methods, the root-labeling processor is trivial to au-
tomate and completely unsuitable for producing human readable proofs.

1 Introduction

Semantic labeling is a complete method for proving the termination of term
rewrite systems (TRSs), introduced by Zantema [24]. It transforms a given TRS
into a termination equivalent TRS by labeling function symbols based on their
semantics. The challenge when applying and automating semantic labeling is to
choose the labeling functions in such a way that the resulting TRS is easier to
prove terminating. Koprowski and Zantema [13, 15] showed how this can be done
when algebras over the natural numbers are used together with the lexicographic
path order to deal with the resulting infinite TRSs over infinite signatures. In
[14] Koprowski and Middeldorp combined predictive labeling—a version of se-
mantic labeling with less constraints [11]—with dependency pairs and modeled
the search space as a SAT problem.

A very special version of semantic labeling for string rewrite systems (SRSs),
due to Johannes Waldmann (Jörg Endrullis, personal communication), in which
the semantic and labeling components are completely determined by the SRS at
hand was used by Matchbox/SatELite [23] and Jambox [4] in the string rewriting
division of the 2006 international termination competition1 with remarkable suc-
cess. This special version, which we call root-labeling, is extended to TRSs in this
paper. More importantly but equally straightforward, we present root-labeling

? This research is supported by FWF (Austrian Science Fund) project P18763.
1 www.lri.fr/~marche/termination-competition/2006/

as a processor in the dependency pair framework [8, 19]. Due to this new root-
labeling processor, in 2007 TTT2 [16] could prove the termination of exactly one
SRS that had eluded all termination tools (many of which use highly specialized
techniques for SRSs) before, resulting in the first automatic termination proof of
an SRS whose derivational complexity is not primitive recursive (Touzet [21]).

The remainder of this paper is organized as follows. In the next section we
recall basic definitions and results concerning semantic labeling and dependency
pairs. In Section 3, semantic labeling is specialized to root-labeling. Incorporating
dependency pairs is the topic of Section 4 and in Section 5 we present our main
example in some detail. Experimental results are presented in Section 6 and we
conclude in Section 7 with suggestions for future research.

2 Preliminaries

We assume basic knowledge of term rewriting [2, 18]. Let R be a TRS over a
signature F and let A = (A, {fA}f∈F) be an F-algebra. Let V be the set of
variables. We say that A is a model of R if [α]A(l) = [α]A(r) for every rule
l → r ∈ R and every assignment α : V → A. A labeling ` for A consists of sets of
labels Lf for every f ∈ F together with mappings `f : An → Lf for every n-ary
function symbol f ∈ F with Lf 6= ∅. The labeled signature Flab consists of n-ary
function symbols fa for every n-ary function symbol f ∈ F and label a ∈ Lf

together with all function symbols f ∈ F such that Lf = ∅. The mapping
`f determines the label of the root symbol f of a term f(t1, . . . , tn) based on
the values of the arguments t1, . . . , tn. For every assignment α : V → A the
mapping labα : T (F ,V) → T (Flab,V) is inductively defined as follows: labα(t) = t
if t is a variable, labα(f(t1, . . . , tn)) = f(labα(t1), . . . , labα(tn)) if Lf = ∅, and
labα(f(t1, . . . , tn)) = fa(labα(t1), . . . , labα(tn)) if Lf 6= ∅ where a denotes the
label `f ([α]A(t1), . . . , [α]A(tn)). The labeled TRS Rlab over the signature Flab

consists of the rewrite rules labα(l) → labα(r) for all rules l → r ∈ R and
assignments α : V → A.

Theorem 1 (Zantema [24]). Let R be a TRS. Let the algebra A be a non-empty
model of R and let ` be a labeling for A. The TRS R is terminating if and only
if the TRS Rlab is terminating. ut

Example 2 ([24]). Consider the TRS R (Toyama [22]) consisting of the single
rule f(a, b, x) → f(x, x, x). To ease the termination proof, we label function
symbol f such that its occurrence on the left gets a different label from the
one on the right. This is achieved by taking the algebra A with carrier {0, 1}
and interpretations aA = 0, bA = 1, fA(x, y, z) = 0 for all x, y, z ∈ {0, 1},
together with La = Lb = ∅, Lf = {0, 1} and `f(x, y, z) = 0 if x = y and
`f(x, y, z) = 1 if x 6= y. The algebra A is a model of R and Rlab consists of
the rule f1(a, b, x) → f0(x, x, x). Termination of Rlab is obvious as there are no
dependency pairs.

A stronger version of semantic labeling is obtained by equipping the car-
rier of the algebra and the label sets with a well-founded order such that all

2

algebra functions and all labeling functions are weakly monotone in all coor-
dinates. The model condition is then weakened to [α]A(l) > [α]A(r) for every
rule l → r ∈ R and every assignment α : V → A. Further, all rules of the form
fa(x1, . . . , xn) → fb(x1, . . . , xn) with a, b ∈ Lf such that a > b have to be added
to Rlab in order to obtain a sound transformation (Zantema [24]). This version
of semantic labeling is capable of transforming any terminating TRS into a TRS
whose termination proof is particularly simple, see [17]. This result is however
only of theoretical interest. Recent variants inspired by the need for automation
are presented in [11, 20].

The dependency pair method [1] is a powerful approach for proving termi-
nation of TRSs. It is used in most termination tools for term rewriting. The
dependency pair framework [8, 19] is a modular reformulation and improvement
of this approach. We present a simplified version which is sufficient for our pur-
poses. Let R be a TRS over a signature FR. The signature FR is extended with
symbols f] for every symbol f ∈ {root(l) | l → r ∈ R}, where f] has the same
arity as f . In examples we write F for f]. If t ∈ T (F ,V) with root(t) defined
then t] denotes the term that is obtained from t by replacing its root symbol
with root(t)]. If l → r ∈ R and t is a subterm of r with a defined root symbol
that is not a proper subterm of l then the rule l] → t] is a dependency pair of
R. The set of dependency pairs of R is denoted by DP(R). A DP problem is a
pair of TRSs (P,R) such that symbols in F] = {root(l), root(r) | l → r ∈ P}
do neither occur in R nor in proper subterms of the left and right-hand sides
of rules in P. Writing FP for the signature of P, the signature FR ∪ (FP \ F])
is denoted by F . The problem (P,R) is said to be finite if there is no infinite
sequence s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · · such that all terms t1, t2, . . . are

terminating with respect to R. Such an infinite sequence is said to be minimal.
Here the ε in ε−→P denotes that the application of the rule in P takes place at the
root position. The main result underlying the dependency pair approach states
that a TRS R is terminating if and only if the DP problem (DP(R),R) is finite.

In order to prove finiteness of a DP problem a number of so-called DP proces-
sors have been developed. DP processors are functions that take a DP problem
as input and return a set of DP problems as output. In order to be employed
to prove termination they need to be sound, that is, if all DP problems in a
set returned by a DP processor are finite then the initial DP problem is finite.
Complete DP processors, which are those processors with the property that if
one of the returned DP problems is not finite then the original DP problem is
not finite, can be used to prove non-termination.

3 Plain Root-Labeling2

The challenge when implementing semantic labeling is to find an appropriate
carrier and suitable interpretation and labeling functions such that the labeled

2 As stated in the introduction, the results in this section for SRSs are due to Johannes
Waldmann; they are mentioned in [26].

3

system is easier to prove terminating. This issue has been addressed in several
recent papers ([13, 15, 14]).

In the special version of semantic labeling defined in this section, everything
is fixed. This has the disadvantage of reducing the power of semantic labeling
significantly but the advantage of making automation a trivial issue.

Definition 3. Let R be a TRS over a signature F . The algebra AF has carrier
F and interpretation functions fAF (x1, . . . , xn) = f for every n-ary f ∈ F and
all x1, . . . , xn ∈ F . The labeling ` is defined as follows: Lf = Fn if the arity n of
f is at least 1 and Lf = ∅ otherwise, and `f (x1, . . . , xn) = (x1, . . . , xn) for all
f with Lf 6= ∅ and all x1, . . . , xn ∈ F . In examples we write x1 for (x1). The
resulting labeled TRS Rlab is denoted by Rrl.

Example 4. Consider the TRS R from Example 2, extended with the two rules
c → a and c → b. The TRS Rrl consists of the six rules

f(a,b,a)(a, b, x) → f(a,a,a)(x, x, x) f(a,b,c)(a, b, x) → f(c,c,c)(x, x, x) c → a

f(a,b,b)(a, b, x) → f(b,b,b)(x, x, x) f(a,b,f)(a, b, x) → f(f,f,f)(x, x, x) c → b

and is terminating because there are no dependency pairs. The TRS R, however,
admits an infinite rewrite sequence starting from the term f(a, b, c).

The problem in the previous example is that AF is not a model of R. In
order to solve this problem we close every rule l → r where l and r have different
root symbols under flat contexts, before performing the root-labeling operation.

Definition 5. Let R be a TRS over a signature F . The rules in Rp = {l → r ∈
R | root(l) = root(r)} are root-preserving. The rules in Ra = R \ Rp are root-
altering. The set {f(x1, . . . , xi−1,�, xi+1, . . . , xn) | f ∈ F has arity n > 1 and
1 6 i 6 n} of flat contexts is denoted by FC. The flat context closure of R is
defined as FC(R) = Rp ∪ {C[l] → C[r] | l → r ∈ Ra and C ∈ FC}.

Example 6. For the TRS R from Example 4, the TRS FC(R) consisting of the
rules

f(a, b, x) → f(x, x, x) f(c, x, y) → f(a, x, y) f(c, x, y) → f(b, x, y)
f(x, c, y) → f(x, a, y) f(x, c, y) → f(x, b, y)
f(x, y, c) → f(x, y, a) f(x, y, c) → f(x, y, b)

is obtained. Note that like R, FC(R) is non-terminating for f(a, b, c).

Lemma 7. The transformation FC(·) on TRSs is termination preserving and
reflecting, i.e., R is terminating if and only if FC(R) is terminating.

Proof. By construction, every rewrite step in FC(R) can be simulated by a
rewrite step in R. This proves the “only if” direction. For the “if” direction we
reason as follows. Suppose R is not terminating. Then there exists an infinite
sequence t1 →R t2 →R · · · . Let C ∈ FC be an arbitrary flat context. Since

4

rewriting is closed under contexts, we obtain C[t1] →R C[t2] →R · · · . We claim
that this sequence is a rewrite sequence in FC(R). Fix i > 1 and consider the step
C[ti] →R C[ti+1]. Let l → r ∈ R be the employed rewrite rule. We distinguish
two cases.

1. If l → r is root-preserving then l → r belongs to FC(R) and the result is
clear.

2. Suppose l → r is root-altering. If the rule was applied below the root position
in ti →R ti+1, then ti →FC(R) ti+1 by applying the rule C ′[l] → C ′[r] for
the flat context C ′ ∈ FC uniquely determined by the function symbol in
ti directly above the redex and the position of the redex. Formally, if π·j
is the redex position in ti then C ′ = f(x1, . . . , xj−1,�, xj+1, . . . , xn) with
f = root(ti|π). Hence also C[ti] →FC(R) C[ti+1]. If the rule l → r was
applied at the root position in ti →R ti+1 then C[ti] →FC(R) C[ti+1] by
applying the rule C[l] → C[r] ∈ FC(R).

So C[t1] →FC(R) C[t2] →FC(R) · · · and thus FC(R) is non-terminating. ut

To pave the way for the developments in the next section, we need the ob-
servation that Lemma 7 remains true if we allow an arbitrary extension G of the
signature F of R when building flat contexts. We write FCG when we want to
make the signature of the flat contexts clear.

Theorem 8. The transformation FC(·)rl on TRSs is termination preserving
and reflecting, i.e., R is terminating if and only if FC(R)rl is terminating.

Proof. According to Lemma 7, termination of R is equivalent to termination of
FC(R). By construction, all rules in FC(R) are root-preserving. Hence AF is a
model for FC(R) and Theorem 1 yields the termination equivalence of FC(R)
and FC(R)rl. Combining the two equivalences yields the desired result. ut

We conclude this section with two more examples. A string rewrite system
(SRS) is a TRS over a signature consisting of unary function symbols. We write
strings a(b(c(x))) as abc (the variable is implicit).

Example 9. Consider the SRSR = {aa → aba}. Since the rule is root-preserving,
FC(R) = R. The SRS FC(R)rl consists of the two rules aaaa → abbaaa and
aaab → abbaab, and is terminating because its rules are oriented from left to
right by the polynomial interpretation [aa](x) = x + 1 and [ab](x) = [ba](x) = x.

Example 10. Consider the TRS R (teparla3.trs) consisting of the two rules
f(y, f(x, f(a, x))) → f(f(a, f(x, a)), f(a, y)) and f(x, f(x, y)) → f(f(f(x, a), a), a).
None of the tools participating in the 2007 international competition could prove
its termination. Like in the preceding example we have R = Rp and hence
FC(R) = R. The TRS FC(R)rl consists of the following eight rules

f(a,f)(y, f(a,f)(x, f(a,a)(a, x))) → f(f,f)(f(a,f)(a, f(a,a)(x, a)), f(a,a)(a, y))
f(f,f)(y, f(a,f)(x, f(a,a)(a, x))) → f(f,f)(f(a,f)(a, f(a,a)(x, a)), f(a,f)(a, y))

5

f(a,f)(y, f(f,f)(x, f(a,f)(a, x))) → f(f,f)(f(a,f)(a, f(f,a)(x, a)), f(a,a)(a, y))
f(f,f)(y, f(f,f)(x, f(a,f)(a, x))) → f(f,f)(f(a,f)(a, f(f,a)(x, a)), f(a,f)(a, y))

f(a,f)(x, f(a,a)(x, y)) → f(f,a)(f(f,a)(f(a,a)(x, a), a), a)
f(a,f)(x, f(a,f)(x, y)) → f(f,a)(f(f,a)(f(a,a)(x, a), a), a)
f(f,f)(x, f(f,a)(x, y)) → f(f,a)(f(f,a)(f(f,a)(x, a), a), a)
f(f,f)(x, f(f,f)(x, y)) → f(f,a)(f(f,a)(f(f,a)(x, a), a), a)

and can be proved terminating by the 2007 competition versions of AProVE [7],
Jambox, and TTT2.

4 Root-Labeling with Dependency Pairs

The performance of Jambox and Matchbox/SatELite [23] in the 2006 international
termination competition revealed that root-labeling is a powerful transformation
on SRSs. So it is not a surprise that other tools adopted this technique, too. In
2007, MultumNonMulta [12] and Torpa [25] followed suit. So did TTT2, with one
important difference: the combination with dependency pairs.

In the previous section we defined root-labeling as a transformation on TRSs.
In order to benefit from the numerous termination techniques that are available
in connection with the dependency pair framework, it is worthwhile to extend
root-labeling to dependency pair problems. (For the same reason, in [14] semantic
labeling with respect to quasi-models is extended to dependency pair problems.)
In this section we present two different approaches that achieve this.

In the first approach, which is the one implemented in the 2007 competition
version of TTT2, the insertion of a fresh unary function symbol below depen-
dency pair symbols ensures that the strict separation of rules in P and in R is
maintained.

Definition 11. Let (P,R) be a DP problem. Let FR be the signature of R and
let FP be the signature of P. We denote {root(l), root(r) | l → r ∈ P} by F]

and FR ∪ (FP \ F]) by F . Let 4 be a fresh unary function symbol. The func-
tion block inserts 4 between the root symbol f and the arguments t1, . . . , tn of
a term f(t1, . . . , tn) with n > 1: block(t) = t if t is a variable or a constant
and block(t) = f(4(t1), . . . ,4(tn)) if t = f(t1, . . . , tn) with n > 1. We de-
fine FC1(P,R) as the pair (block(P),FC1(R)) where block(P) = {block(l) →
block(r) | l → r ∈ P} and FC1(R) = FCF∪{4}(R).

Lemma 12. The pair FC1(P,R) is a DP problem.

Proof. The set {root(l), root(r) | l → r ∈ block(P)} coincides with F] and
function symbols in F] do occur neither in FC1(R) (as F] ∩ (F ∪ {4}) = ∅)
nor in proper subterms of terms in block(P). ut

Lemma 13. The DP problem (P,R) is finite if and only if the DP problem
FC1(P,R) is finite.

6

Proof. First assume that (P,R) is not finite. Then there exists a minimal se-
quence s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · · . We may assume without loss of

generality that all function symbols occurring at non-root positions belong to
F . (By replacing all maximal proper subterms with a root symbol that belongs
to F] by the same variable, we obtain a minimal sequence that satisfies this
property.) We claim that

block(s1)
ε−→block(P) block(t1) →∗

FC1(R) block(s2)
ε−→block(P) block(t2) →∗

FC1(R) · · ·

is a minimal sequence with respect to FC1(P,R). Fix i > 1. By construction of
block(P), the step si

ε−→P ti gives rise to the step block(si)
ε−→block(P) block(ti).

Next we consider the sequence ti →∗
R si+1. Let s →R t be an arbitrary step

in this sequence, using the rewrite rule l → r ∈ R at position π. Since π > ε
we may write s = F (u1, . . . , un) and t = F (u1, . . . , uj−1, vj , uj+1, . . . , un) with
uj →R vj and π > j. If l → r is root-preserving then l → r ∈ FC1(R) and thus
uj →FC1(R) vj , which implies 4(uj) →FC1(R) 4(vj). Similar as in the proof
of Lemma 7, if l → r is root-altering then we obtain 4(uj) →FC1(R) 4(vj) by
using an appropriate flat context from FCF when π > j and the flat context
4(�) when π = j. So in all cases we have 4(uj) →FC1(R) 4(vj) and hence
also block(s) →FC1(R) block(t). Since the step s →R t was an arbitrary step
in the sequence ti →∗

R si+1, we obtain block(ti) →∗
FC1(R) block(si+1). Next we

show that block(ti) is terminating with respect to FC1(R). By construction of
FC1(R), every application of a rule in FC1(R) can be performed by a rule in
R. Hence if block(ti) is not terminating with respect to FC1(R) then block(ti)
is not terminating with respect to R and this implies in turn that ti is not
terminating with respect to R as 4 does not appear in the rules of R. This,
however, contradicts the minimality of the initial sequence s1

ε−→P t1 →∗
R s2

ε−→P
t2 →∗

R · · · . It follows that the sequence displayed above is a minimal sequence
with respect to FC1(P,R). Therefore, FC1(P,R) is not finite, which concludes
the proof of the “if” direction.

For the “only if” direction, suppose that

s1
ε−→block(P) t1 →∗

FC1(R) s2
ε−→block(P) t2 →∗

FC1(R) · · ·

is a minimal sequence with respect to FC1(P,R). Let the mapping unblock erase
all occurrences of 4 from terms:

unblock(t) =

t if t is a variable,
unblock(t1) if t = 4(t1),
f(unblock(t1), . . . , unblock(tn)) if t = f(t1, . . . , tn) with f 6= 4.

Using similar reasoning as in the “if” direction, we easily obtain

unblock(s1)
ε−→P unblock(t1) →∗

R unblock(s2)
ε−→P unblock(t2) →∗

R · · ·

To show minimality, suppose that unblock(ti) is non-terminating with respect to
R. Using the special structure of ti, it readily follows that ti is non-terminating
with respect to R and with respect to FC1(R). The latter provides the desired
contradiction. ut

7

When applying root-labeling to FC1(P,R), it is not useful to label the root
symbols of block(P), since identical symbols will always have identical labels
consisting solely of 4’s. This is reflected in the following definition.

Definition 14. Let (P,R), F], F , and 4 be as in Definition 11. The first root-
labeling transformation FC1(P,R)rl is defined as the pair (block(P)rl,FC1(R)rl)
with Lf = ∅ if f ∈ F] or if f is a constant in F and Lf = Fn if f ∈ F ∪ {4}
has arity n > 1, and fAF∪F]∪{4}

(x1, . . . , xn) = g for every f ∈ F] and arbitrary
but fixed g ∈ F].

The modification of the algebra AF∪F]∪{4} in the last line of the above
definition ensures that the model condition is trivially satisfied for the rules in
P. Hence these rules need not be closed under flat contexts, even if they are
root-altering.

Theorem 15. The DP problem (P,R) is finite if and only if the DP problem
FC1(P,R)rl is finite.

In other words, the mapping (P,R) 7→ {FC1(P,R)rl} is a sound and com-
plete DP processor.

Proof. According to Lemma 13 finiteness of (P,R) is equivalent to finiteness of
FC1(P,R). The latter is equivalent to finiteness of FC1(P,R)rl. The proof is
standard. Starting from a minimal sequence in FC1(P,R), a minimal sequence
in FC1(P,R)rl is obtained by applying labα to every term in the sequence in
FC1(P,R), where α assigns an arbitrary element of F to every variable. Con-
versely, a minimal sequence in FC1(P,R)rl is transformed into a minimal se-
quence in FC1(P,R) by simply erasing all labels. ut

In the second approach for incorporating root-labeling into the dependency
pair framework, we preserve the model condition by closing the rules of R also
under flat contexts with a root symbol from F]. To avoid problems by mixing
up dependency pair symbols with symbols of R, those additional closure rules
are moved to the first component of dependency pair problems.

Definition 16. Let (P,R), F], and F be as in Definition 11. Let FC2(P,R)
be the pair (P ∪ FCF](Ra),FCF (R)). The second root-labeling transformation
FC2(P,R)rl is defined as the pair (Prl ∪ FCF](Ra)rl,FCF (R)rl) with Lf = ∅ if
f is a constant in F ∪ F] and Lf = Fn if f ∈ F ∪ F] has arity n > 1, and
fAF∪F]

(x1, . . . , xn) = g for every f ∈ F] and arbitrary but fixed g ∈ F].

It is obvious that the pair FC2(P,R) is a DP problem.

Lemma 17. The DP problem (P,R) is finite if and only if the DP problem
FC2(P,R) is finite.

Proof. We abbreviate P ∪ FCF](Ra) to FC2(P). Assume that (P,R) is not
finite. Hence there exists a minimal sequence s1

ε−→P t1 →∗
R s2

ε−→P t2 →∗
R · · · .

8

Without loss of generality we assume that all function symbols occurring at
non-root positions belong to F . We claim that

s1
ε−→P t1 →∗

FCF (R)∪FCF] (Ra)
s2

ε−→P t2 →∗
FCF (R)∪FCF] (Ra)

· · ·

is a minimal sequence with respect to FC2(P,R). Fix i > 1. We obviously
have si

ε−→P ti. Let s →R t be an arbitrary step in the sequence ti →∗
R si+1,

using the rewrite rule l → r ∈ R at position π. Since π > ε we may write
s = F (u1, . . . , un) and t = F (u1, . . . , uj−1, vj , uj+1, . . . , un) with uj →R vj

and π > j. If l → r is root-preserving then l → r ∈ FCF (R) and thus
s →FCF (R) t. Similar as in the proof of Lemma 7, if l → r is root-altering
and π > j then we obtain uj →FCF (R) vj and thus s →FCF (R) t by using an
appropriate flat context from FCF . If π = j then s →FCF] (Ra) t by using the
flat context F (x1, . . . , xj−1,�, xj+1, . . . , xn) ∈ FCF] . So in all cases we have
s →FCF (R)∪FCF] (Ra) t. Hence the sequence displayed above exists. By pinpoint-
ing the steps from P ∪ FCF](Ra), this sequence can be written as

s1
ε−→FC2(P) t′1 →∗

FCF (R) s′2
ε−→FC2(P) t′2 →∗

FCF (R) · · ·

where for every i > 1 there exists a j > i such that ti = t′j . We need to
show that every t′j is terminating with respect to FCF (R). Let j > 1. We
distinguish two cases. If t′j = ti for some i then t′j is terminating with respect
to R, due to the minimality of the initial sequence in (P,R). According to
Lemma 7, more precisely the extension of Lemma 7 mentioned in the paragraph
after the proof, t′j is terminating with respect to FCF (R). In the other case we
have ti →∗

FCF (R)∪FCF] (Ra)
t′j for some i. If t′j is not terminating with respect to

FCF (R) then it is also not terminating with respect to FCF∪F](R) and hence ti
is not terminating with respect FCF∪F](R). This contradicts Lemma 7 because
ti is terminating with respect to R, due to minimality. This concludes the proof
of minimality. We conclude that FC2(P,R) is not finite, which settles the “if”
direction.

For the “only if” direction, suppose that

s1
ε−→FC2(P) t1 →∗

FCF (R) s2
ε−→FC2(P) t2 →∗

FCF (R) · · ·

is a minimal sequence with respect to FC2(P,R). Without loss of generality
we assume that symbols from F] occur exclusively at root positions. Using the
termination equivalence of FCF (R) and FCF∪F](R), which is a consequence of
Lemma 7, and the fact that every ti is terminating with respect to FCF (R), it
follows that this sequence contains infinitely many steps in P. Since every rule
in FCF∪F](R) is simulated by a rule in R, the sequence is a sequence in (P,R).
After dropping the (possibly empty) initial steps using rules from Ra, we obtain
a sequence in (P,R) which is easily shown to be minimal. ut
Theorem 18. The DP problem (P,R) is finite if and only if the DP problem
FC2(P,R)rl is finite.

Proof. According to Lemma 17 finiteness of (P,R) is equivalent to finiteness of
FC2(P,R). The equivalence of the latter with finiteness of FC2(P,R)rl follows
as in the proof of Theorem 15. ut

9

5 Touzet’s SRS

The first approach detailed in the preceding section, FC1(·)rl, was implemented
and incorporated into the 2007 competition version of TTT2. Together with lin-
ear polynomial interpretations with coefficients from {0, 1} and standard de-
pendency pair refinements (usable rules with argument filtering [9], recursive
SCC [10]), TTT2 could automatically prove termination of z090.srs, which is
an example from Touzet [21] of a simply terminating SRS whose derivational
complexity is not primitive recursive. This prompted Johannes Waldmann to
write

“ I find this astonishing: (link to url omitted)
To my knowledge, this would be the first automatic proof
for an SRS with non-primitive-recursive complexity ”

on the termtools3 mailing list (7 June 2007).
The SRS T consists of the rules

bu → bs sbs → bt tb → bs ts → tt

sb → bsss su → ss tbs → utb tu → ut

and simulates the following process on fixed-length lists of natural numbers (s
denotes successor and b separates numbers):

(· · · , n + 1,m, · · ·) → (· · · , n,m + 3, · · ·)
(· · · , n + 1,m + 1, k, · · ·) → (· · · , n, k, m + 1, · · ·)

Moreover, the function

φ : (x, y) 7→ max { z | (y + 1,

2x+1︷ ︸︸ ︷
0, · · · , 0) →∗ (

2x+1︷ ︸︸ ︷
0, · · · , 0, z + 1) }

dominates the Ackermann function (Touzet [21]), which proves that the deriva-
tional complexity of T is not primitive recursive. The (simple) termination of T
is shown in [21] by a complicated ad-hoc argument.

Below we present some details of the termination proof generated by TTT2.
The SRS T has the following 17 dependency pairs:

Bu → Bs (1) Sb → S (6) Su → S (10) Tbs → B (14)
Bu → S (2) Sbs → Bt (7) Tb → Bs (11) Ts → Tt (15)
Sb → Bsss (3) Sbs → T (8) Tb → S (12) Ts → T (16)
Sb → Sss (4) Su → Ss (9) Tbs → Tb (13) Tu → T (17)
Sb → Ss (5)

In the first step of the proof, the ensuing DP problem (DP(T), T) is subjected
to the interpretations [B](x) = [S](x) = [T](x) = [s](x) = [t](x) = [u](x) =

3 http://lists.lri.fr/pipermail/termtools/

10

x and [b](x) = x + 1. which causes the pairs (3)–(8), (11), (12), (14) to be
eliminated. The eight remaining dependency pairs give rise to three SCCs: {(1)},
{(9), (10)}, and {(13), (15)–(17)}. The first two are easily handled. The last one
is the problematic one. Dependency pairs (15) and (16), subsequently followed
by pair (17), are removed by using the following interpretations (and considering
the induced usable rules):

– [T](x) = [u](x) = x, [b](x) = [t](x) = 0, and [s](x) = x + 1,
– [T](x) = x, [u](x) = x + 1, and [b](x) = [s](x) = [t](x) = 0.

The remaining DP problem ({(13)}, T) is very resistant against automatic ter-
mination proof methods, even though it has just one dependency pair. This is
the point where root-labeling comes into play. Since Ta contains five of the eight
rules of T , the second component of the flat context closure

FC1({(13)}, T) = ({T4bs → T4b},FC{b,s,t,u,4}(T))

consists of 28 rewrite rules. As there are four symbols in the carrier for the
labeling step, FC1({(13)}, T)rl = (P,R) with 112 rules in R, which the reader
will be spared, and P consisting of the rules

T4bbssb → T4bbb (a) T4bbsst → T4bbt (c)
T4bbsss → T4bbs (b) T4bbssu → T4bbu (d)

Rule (a) is eliminated as it is not part of any SCC. By counting function symbols,
the 112 rules in R are successively reduced to 104 (4s is counted), 92 (4t is
counted), and 78 (us is counted) rules. Now all rules of R that hindered the
automatic orientation of the rules (b)–(d) were removed and the termination
proof of T is concluded by using the following interpretations:

[ss](x) = [st](x) = [su](x) = x + 1
[T](x) = [4b](x) = [bs](x) = [bt](x) = [bu](x) = x

[bb](x) = [sb](x) = [ss](x) = [st](x) = [su](x) = [tb](x) = [ts](x)
= [tt](x) = [tu](x) = [ub](x) = [ut](x) = [uu](x) = 0

Inspired by the success of TTT2 on Touzet’s SRS, Hans Zantema announced on
the termtools mailing list (16 August 2007) a much simpler example of a simply
terminating SRS whose derivational complexity is not primitive recursive:

ab → baa abb → bc ca → ac cb → bb

This SRS can be automatically proved terminating by Torpa [25] (and several
other tools as well), without using root-labeling.

6 Experiments

Extensive tests were conducted to evaluate the usefulness of the root-labeling
processors. We used the rewrite systems in version 4.0 of the Termination Prob-

11

Table 1. Experimental results for SRSs.

FC1(·)rl FC2(·)rl FC2(·)∗rl
P(1) 25 (1.12) 94 (2.30) 98 (2.31) 119 (3.03)
P(1) with usable rules 37 (0.06) 112 (1.84) 118 (2.32) 138 (3.00)
P(2) 49 (0.63) 144 (4.14) 148 (4.05) 172 (6.84)
P(2) with usable rules 57 (0.53) 155 (4.01) 169 (4.40) 188 (6.33)
P(1;2) 50 (0.80) 160 (3.40) 165 (3.36) 198 (5.28)
P(1;2) with usable rules 57 (3.35) 171 (3.10) 183 (3.54) 209 (4.92)
M(2,1) with usable rules 87 (0.73) 181 (3.61) 181 (4.12) 193 (4.36)
M(3,1) with usable rules 109 (2.99) 151 (10.67) 158 (7.98) 163 (7.50)

total number of proofs 118 214 220 241

lems Data Base,4 extended with the secret systems of the 2007 termination com-
petition, which amount to 1381 TRSs and 724 SRSs. All tests were performed
on a workstation equipped with an Intel R© PentiumTM M processor running at
a CPU rate of 2 GHz on 1 GB of system memory and with a time limit of 60
seconds.

Our results for SRSs are summarized in Table 1. Numbers in parentheses
indicate the average time (in seconds) to prove termination. For every entry in
the table the dependency pair framework with common processors based on an
estimation of the dependency graph, the recursive SCC algorithm [10], and the
rule removal processor [8] (which in the case of P(1) amounts to counting certain
function symbols) together with some reduction pair processor are used. Different
rows in the table correspond to different reduction pair processors based on
polynomial (P) and matrix (M) interpretations. For polynomial interpretations
the numbers in parentheses indicate how many bits are used for coefficients
in the SAT-encoding described in [6]. Rows with P(1;2) indicate that 2 bits
are used only when no progress can be made with 1 bit. This is faster (and
thus more powerful) than P(2). For matrix interpretations [5] the first number
in parentheses provides the dimension of the matrices and the second number
denotes the number of bits used for the matrix elements in the SAT-encoding.
In rows containing ‘with usable rules’ the respective processor is used to orient
the usable rules of R with respect to the implicit argument filtering obtained
from the 0 coefficients in the interpretations [9], as opposed to all rules of the R
component of a DP problem (P,R).

In columns FC1(·)rl and FC2(·)rl the two root-labeling processors are executed
as soon as the processors described in the preceding paragraph no longer make
progress. In the final column an optimization of the FC2(·)rl processor is used
which takes effect when root-labeling an already labeled SRS is attempted. This
is described at the end of this section and goes back to the implementation of
root-labeling in Jambox. We now comment on the obtained data.

4 www.lri.fr/~marche/tpdb

12

Table 2. Experimental results for TRSs.

FC1(·)rl FC2(·)rl

P(1) with usable rules 549 (0.16) 636 (0.61) 631 (0.39)
P(2) with usable rules 584 (0.52) 663 (0.92) 665 (0.93)
M(2,1) with usable rules 666 (0.57) 697 (0.91) 700 (0.88)
M(3,1) with usable rules 662 (1.58) 680 (1.94) 684 (2.05)
M(2,2) with usable rules 648 (2.17) 664 (2.62) 668 (2.74)
M(3,2) with usable rules 608 (4.29) 613 (4.49) 614 (4.51)

total number of proofs 686 716 719

– First of all, when increasing the number of bits for polynomial or matrix in-
terpretations, it can happen that systems which can be proved using smaller
values, are no longer handled due to a timeout in the SAT solver (in our case
Minisat [3]).

– Due to the nature of root-labeling, every run that does not succeed to prove
termination results in a timeout or a memory overflow.

– On first sight it seems that FC2(·)rl is strictly stronger than FC1(·)rl. How-
ever, what is not apparent from the table is that for every row there are a
number of systems which can be proved terminating using FC1(·)rl but not
using FC2(·)rl. These numbers are 1, 1, 5, 2, 4, 2, 9, and 6 (top to bottom).

Our results for TRSs are summarized in Table 2. Most of the remarks for
SRSs also hold for TRSs. The optimization for SRSs detailed below is however
not implemented for TRSs (which is apparent from the missing fourth column).

We conclude this experimental section with a brief description of the op-
timized root-labeling processor FC2(·)∗rl. During the execution of FC1(·)rl and
FC2(·)rl, function symbols of an already labeled DP problem do not have struc-
ture, which entails that both closure under flat contexts as well as the actual
root-labeling steps create many more new rules due the increased size of the
labeled signature. The implementation of plain root-labeling for SRSs in Jambox
reduces the number of new rules by using the original signature in subsequent
root-labeling steps. This is best explained on a concrete example. When labeling
the rule abba → acca, the unlabeled rule ab → ac is closed under flat contexts

aab → aac bab → bac cab → cac

and subsequently labeled by propagating all one symbol extensions (aa, ab, ac)
of the original starting assignment a, resulting in the nine rules:5

aabababaa → aacacacaa aabababab → aacacacab aabababac → aacacacac

babababaa → bacacacaa babababab → bacacacab babababac → bacacacac

cabababaa → cacacacaa cabababab → cacacacab cabababac → cacacacac

5 The transformation FC2(·)∗rl is easily formalized, starting from the F-algebra AF×F
in Definition 3 with fAF×F (a, b) = (f, a).

13

With FC2(·)rl we would obtain at least sixteen rules. Although the numbers in
Table 1 may suggest otherwise, FC2(·)∗rl does not subsume FC2(·)rl. For instance,
three (x02.srs, z108.srs, and z114.srs) of the 181 systems in the FC2(·)rl
entry of the row ‘M(2,1) with usable rules’ are not included in the 193 systems
in the FC2(·)∗rl entry.

7 Summary and Future Work

In this paper we introduced the technique of root-labeling for TRSs into the
dependency pair framework, resulting in two different root-labeling processors.
Touzet’s example showed the usefulness of these processors for SRSs. Although
root-labeling is trivial to automate, further research is needed to determine when
to apply it. Besides, it is unclear whether one of the two introduced processors
is (at least in theory) strictly stronger than the other. As explained in the ex-
perimental section, the current implementation in TTT2 applies root-labeling as
soon as the other processors do not make progress. In particular, we never undo
the effect of root-labeling. Since the root-labeling processors are always appli-
cable, the DP problems quickly grow too large. This is especially a problem for
TRSs, where a single application of root-labeling typically blows up the system.
A related problem is the possibility to verify the correctness of the produced
termination proofs.

Acknowledgments. We are grateful to Johannes Waldmann for inventing root-
labeling (for string rewrite systems) and for drawing our attention to the ter-
mination proof of z090.srs that TTT2 produced during the 2007 international
termination competition. Without these contributions, this paper would not have
been written. Discussions with Jörg Endrullis and Johannes Waldmann improved
our results.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. 6th SAT, volume
2919 of LNCS, pages 502–518, 2003.

4. J. Endrullis. Jambox, 2005. Available from http://joerg.endrullis.de.

5. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. In Proc. 3rd IJCAR, volume 4130 of LNAI, pages
574–588, 2006.

6. C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc. 10th
SAT, volume 4501 of LNCS, pages 340–354, 2007.

14

7. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. 3rd IJCAR, volume 4130
of LNAI, pages 281–286, 2006.

8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. 11th LPAR,
volume 3425 of LNAI, pages 301–331, 2004.

9. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

10. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

11. N. Hirokawa and A. Middeldorp. Predictive labeling. In Proc. 17th RTA, volume
4098 of LNCS, pages 313–327, 2006.

12. D. Hofbauer. MultumNonMulta, 2006. Available from www.theory.informatik.

uni-kassel.de/~dieter/multum/.
13. A. Koprowski. TPA: Termination proved automatically. In Proc. 17th RTA, volume

4098 of LNCS, pages 275–266, 2006.
14. A. Koprowski and A. Middeldorp. Predictive labeling with dependency pairs using

SAT. In Proc. 21st CADE, volume 4603 of LNAI, pages 410–425, 2007.
15. A. Koprowski and H. Zantema. Recursive path ordering for infinite labelled rewrite

systems. In Proc. 3rd IJCAR, volume 4130 of LNAI, pages 332–346, 2006.
16. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool

2, 2007. Available from http://colo6-c703.uibk.ac.at/ttt2.
17. A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination by self-

labelling. In Proc. 13th CADE, volume 1104 of LNAI, pages 373–386, 1996.
18. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2003.
19. R. Thiemann. The DP Framework for Proving Termination of Term Rewriting.

PhD thesis, RWTH Aachen, 2007. Available as technical report AIB-2007-17.
20. R. Thiemann and A. Middeldorp. Innermost termination of rewrite systems by

labeling. In Proc. 7th WRS, volume 204 of ENTCS, pages 3–19, 2008.
21. H. Touzet. A complex example of a simplifying rewrite system. In Proc. 25th

ICALP, volume 1443 of LNCS, pages 507–517, 1998.
22. Y. Toyama. Counterexamples to the termination for the direct sum of term rewrit-

ing systems. Information Processing Letters, 25:141–143, 1987.
23. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc. 15th

RTA, volume 3091 of LNCS, pages 85–94, 2004.
24. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta

Informaticae, 24:89–105, 1995.
25. H. Zantema. TORPA: Termination of rewriting proved automatically. In Proc.

15th RTA, volume 3091 of LNCS, pages 95–104, 2004.
26. H. Zantema and J. Waldmann. Termination by quasi-periodic interpretations. In

Proc. 18th RTA, volume 4533 of LNCS, pages 404–418, 2007.

15

