
Satisfiability of
Non-Linear (Ir)rational Arithmetic?

Harald Zankl and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. We present a novel way for reasoning about (possibly ir)ratio-
nal quantifier-free non-linear arithmetic by a reduction to SAT/SMT.
The approach is incomplete and dedicated to satisfiable instances only
but is able to produce models for satisfiable problems quickly. These char-
acteristics suffice for applications such as termination analysis of rewrite
systems. Our prototype implementation, called MiniSmt, is made freely
available. Extensive experiments show that it outperforms current SMT
solvers especially on rational and irrational domains.

Key words: non-linear arithmetic, SMT solving, term rewriting, termi-
nation, matrix interpretations.

1 Introduction

Establishing termination of programs (automatically) is essential for many as-
pects of software verification. Contemporary termination analyzers for term
rewrite systems (TRSs) rely on solving (non-)linear arithmetic, mostly—but
not exclusively—over the natural numbers. Hence designated solvers for non-
linear arithmetic are very handy when implementing termination criteria for
term rewriting (e.g. recently in [7, 13, 14, 20, 31]) but also in different research
domains dealing with verification (e.g. recently in [18]).

In this paper we explain the theory underlying our SMT solver MiniSmt,
which is freely available under terms of the GNU lesser general public license
version 3 from http://cl-informatik.uibk.ac.at/software/minismt. This
tool is designed to find models for satisfiable instances of non-linear arithmetic
quickly. Integral domains are handled by bit-blasting to SAT and, alternatively,
by an appropriate transformation to bit-vector arithmetic before solvers for these
logics are employed. Non-integral domains are also supported by a suitable re-
duction to the integral setting. To solve constraints over rational domains ef-
ficiently we propose a heuristic which is easy to implement. Experiments on
various benchmarks show gains in power and efficiency compared to contempo-
rary existing approaches. The support for irrational domains (by approximating
comparisons involving

√
2) distinguishes our tool.

We expect two major effects of our contribution: MiniSmt eases the job to
develop a new termination tool (fast reasoning about arithmetic is also relevant
? This research is supported by FWF (Austrian Science Fund) project P18763.

http://cl-informatik.uibk.ac.at/software/minismt

for implementing other termination criteria) and our test benches will spark
further research in the SMT community on non-linear arithmetic.

The remainder of the paper is organized as follows. How we reduce non-linear
non-integral arithmetic over (possibly ir)rational domains to integral arithmetic
is outlined in Section 2. Experiments showing the benefit of our approach are
presented in Section 3 before Section 4 compares our approach with related work.
For the convenience of the reader an encoding of (bounded) integral non-linear
arithmetic in SAT is given in Appendix A. These encodings are similar to known
ones but take overflows into account. To obtain benchmarks for non-integral
domains we generalize a popular termination criterion for rewrite systems—
matrix interpretations [13,20]—to non-negative real coefficients in Appendix B.
To automate the method, models for non-linear arithmetic constraints must be
found quickly for satisfiable instances.

2 Encoding Non-Linear Non-Integral Arithmetic

In this section we introduce a grammar for non-linear arithmetic constraints
(which appear when automating matrix interpretations, among other termina-
tion criteria for term rewriting) and show how to reduce constraints over non-
integral arithmetic to the integral case.

Definition 1. An arithmetic constraint ϕ is described by the BNFs

ϕ ::= ⊥ | > | p | (¬ϕ) | (ϕ ◦ ϕ) | (α ? α) and α ::= a | r | (α � α) | (ϕ ?α :α)

where ◦ ∈ {∨,∧,→,↔}, ? ∈ {>,=}, and � ∈ {+,−,×}.

Here ⊥ (>) denotes contradiction (tautology), p (a) ranges over Boolean (arith-
metical) variables, ¬ (∨, ∧, →, ↔) is logical not (or, and, implication, bi-
implication), > (=) greater (equal), r ranges over the real numbers, and +
(−, ×) denotes addition (subtraction, multiplication). If-then-else is written as
(· ? · : ·). The following example shows some (non-)well-formed constraints.

Example 2. The expressions 5, p100, (p10 ? (2.1× a12) : 0), and ((((a12 + (
√

2 ×
a30)) + 7.2) > (0 − a5)) ∧ p2) are well-formed whereas −a10 (unary minus) and
a + 3 (parenthesis missing) are not.

The binding precedence × � +,− � >,= � ¬ � ∨,∧ � →,↔, (· ? · : ·)
allows to save parentheses. Furthermore the operators +, ×, ∨, ∧, and ↔ are
left-associative while − and → associate to the right. Taking these conventions
into account the most complex constraint from the previous example simplifies
to a12 +

√
2× a30 + 7.2 > 0− a5 ∧ p2. To obtain smaller constraints already at

the time of encoding trivial simplifications like ϕ ∧ > → ϕ, ϕ ∧ ⊥ → ⊥, · · · are
performed.

In Appendix A we show how to mimic arithmetic over N and Z in SAT.
Similar encodings have been presented (either for fixed bit width or for non-
negative numbers only) in [13,14,23,31]. To our knowledge the two’s complement

2

encoding taking overflows into account is new. In the remainder of this section
we show how arithmetic over Q and (a fragment of) R can be reduced to the
integral case. By N, Z, Q, and R we denote the encodings of numbers from N,
Z, Q, and R, respectively. To clarify the domain we index operations by these
sets whenever confusion can arise.

2.1 Rational Arithmetic

Rational numbers are represented as a pair consisting of the numerator and
denominator similar as in [15]. The numerator is a bit-vector representing an
integer (compared to a natural number in [15]) whereas the denominator is a
positive integer (negative denominators would demand a case analysis for >Q).
We also experimented with a fixed point representation, yielding slightly worse
performance and less flexibility. All operations with the exception of ×Q require
identical denominators. This can easily be established by expanding the fractions
beforehand (as demonstrated in Example 4).

Comparisons are performed just on the numerators if the denominators co-
incide. The operations +Q, −Q, and ×Q are inspired from arithmetic over frac-
tions.

Definition 3. For (a, d), (b, d), and (b, d′) representing rationals we define:

(a, d) >Q (b, d) := a >Z b

(a, d) =Q (b, d) := a =Z b

(a, d) +Q (b, d) := (a +Z b, d)
(a, d)−Q (b, d) := (a−Z b, d)
(a, d)×Q (b, d′) := (a×Z b, d× d′)

Next we demonstrate addition.

Example 4. Consider 3
2 +Q

−1
4 = 5

4 . In the sequence below first both denomi-
nators are made equal. Then addition of the numerators is performed using +Z

(see Appendix A for an explanation of the notation):

(〈⊥,>,>〉, 2) +Q (〈>,>〉, 4) = (〈⊥,>,>,⊥〉, 4) +Q (〈>,>〉, 4)
= (〈⊥,>,>,⊥〉+Z 〈>,>〉, 4) = (〈⊥,⊥,>,⊥,>〉, 4)

We conclude this subsection by introducing a concept that drastically improves
performance of rational arithmetic. Consider the following computation where
(intermediate) results are not canceled:(

1
2
× 4

2

)
× 3

2
+

1
2

=
4
4
× 3

2
+

1
2

=
12
8

+
1
2

=
16
8

(1)

Exactly this happens in the implementation since there the numerator is a bit-
vector consisting of Boolean formulas. Hence its concrete value is unknown and

3

no cancellation is possible. We propose the following elegant escape which is very
easy to implement and has positive effects on run-times (as shown in Section 3).
We force that a fraction is canceled if the denominator exceeds some given limit.
Computation (2) shows the positive aspects of this heuristic by allowing a de-
nominator of at most 2:(

1
2
× 4

2

)
× 3

2
+

1
2

=
2
2
× 3

2
+

1
2

=
3
2

+
1
2

=
4
2

(2)

After every addition or multiplication the fraction is canceled whenever the de-
nominator exceeds 2. The negative aspects become apparent if the denominator
is chosen too small. Then some computations can no longer be performed, e.g.,
when allowing a denominator of 1, computation (3) gets stuck in the second step
since 3

2 cannot be canceled:(
1
2
× 4

2

)
× 3

2
+

1
2

=
1
1
× 3

2
+

1
2

=
?
1

+
1
2

(3)

In the implementation, canceling by two is achieved by dividing the denominator
by two and dropping the least significant bit of the numerator while demanding
that this bit evaluates to false. The latter is achieved by adding a suitable con-
straint. Hence in contrast to the example above, computations do not get stuck
but may produce unsatisfiable formulas. In Section 3 we will see that this does
not happen very frequently. Furthermore, there also the effectiveness of this very
simple but efficient heuristic is demonstrated.

Some remarks are in order. Although our representation of rationals allows
fractions like a

3 , choosing the denominators as multiples of two is beneficial. This
allows to efficiently extend fractions to equal denominators by bit-shifting the
numerators. Furthermore, the heuristic (canceling by two) is most effective for
even denominators. Obviously the technique extends to different denominators
in principle but division by two can again be performed by bit-shifting while
division by, e.g., three cannot and hence is more costly. However, for termination
analysis the main benefit of rationals is that some number between zero and
one can be represented while the exact value of this number is usually not so
important.

2.2 Extending Rational Arithmetic by Roots of Numbers

Arithmetic over irrational numbers is the most challenging. To allow a finite
representation we only consider a subset of R using a pair (c,d) where c and d are
numbers from Q. Such a pair (c,d) has the intended semantics of c + d

√
2. But

problems arise when comparing two abstract numbers. Therefore the definition of
>R given below is just an approximation of>R. The idea is to under-approximate
d
√

2 on the left-hand side while over-approximating it on the right-hand side.
We under-approximate d

√
2 by (5, 4)×Qd if d is not negative and by (3, 2)×Qd

if d is negative.1 The approach is justified since 5
4 = 1.25 <R 1.41 ≈

√
2 and

1 We abbreviate numbers by denoting them in boldface, i.e., 5 represents 〈⊥,>,⊥,>〉
from Z and (〈⊥,>,⊥,>〉,1) from Q. The context clarifies which one is meant.

4

similarly − 3
2 = −1.5 <R −1.41 ≈ −

√
2. Analogous reasoning yields the over-

approximation. This trick allows to implement >R (an approximation of >R)
based on >Q which can be expressed exactly (cf. Definition 3).

Next we formally define the under- and over-approximation of a
√

2 based
on a from Q depending on the sign (denoted sign(a) with obvious definition)
using the if-then-else operator. Recall that sign > indicates negative numbers
(cf. Appendix A).

Definition 5. For a number a from Q we define:

under(a) := (sign(a) ? (3, 2) : (5, 4))×Q a

over(a) := (sign(a) ? (5, 4) : (3, 2))×Q a

Using the under- and over-approximations we define >R and =R. Note that
since >R is just an approximation, it may not appear at negative positions in
Boolean formulas (which is not the case for the benchmarks we consider) and
designing suitable approximations for >R at negative positions is easy.

Definition 6. For pairs (c,d) and (e, f) from R we define:

(c,d) >R (e, f) := c +Q under(d) >Q e +Q over(f)
(c,d) =R (e, f) := c =Q e ∧ d =Q f

For readability we unravel the pair notation in the sequel whenever useful, i.e.,
(3,1) is identified with 3 +R

√
2.

Example 7. The expression (1,1) >R (2,0) approximates 1 +
√

2 >R 2. The
√

2
on the left-hand side is under-approximated by 5

4 which allows to replace >R
by >Q. The resulting 1 + 5

4 >Q 2, i.e., 9
4 >Q

8
4 shows that the above comparison

is valid. Note that (0,6) >R (0,5) does not hold since obviously 6× 5
4 >Q 5× 3

2
evaluates to false.

The definitions for +R, −R, and ×R are directly inspired from the intended
semantics of pairs.

Definition 8. For pairs (c,d) and (e, f) from R we define:

(c,d) +R (e, f) := (c +Q e,d +Q f)
(c,d)−R (e, f) := (c−Q e,d−Q f)
(c,d)×R (e, f) := (c×Q e +Q 2×Q d×Q f , c×Q f +Q d×Q e)

The next example demonstrates addition and multiplication for reals.

Example 9. The equality (1,2) +R (5,3) = (6,5) is justified since the left-hand
side represents the calculation 1 + 2

√
2 + 5 + 3

√
2 which simplifies to 6 + 5

√
2

corresponding to the right-hand side. The product (1,2)×R (5,3) = (17,13) is
justified by (1 + 2

√
2)× (5 + 3

√
2) = 5 + 10

√
2 + 3

√
2 + 6

√
2
√

2 = 17 + 13
√

2.

5

A natural question is if the approach from this section can be extended to a
larger fragment of the reals. Before the limitations of the approach are discussed
we mention possible generalizations. Triples (c,d,n) with c,d ∈ Q and n ∈ N
(i.e., n is a variable taking non-negative integral values) allow to represent num-
bers of the shape c + d

√
n. Adapting the constant factor for multiplication in

Definition 8 and providing suitable under- and over-approximations for
√

n al-
lows to replace

√
2 by a square root of some arbitrary natural number. But

intrinsic to the approach is that the same (square) root must be used within all
constraints to keep the triple representation of numbers. The reason is that e.g.,
(a,b,n)×R (c,d,n) = (ac+Rnbd,ad +R bc,n) but in general there is no triple
corresponding to (a,b,n)×R (c,d,m) if n and m represent different numbers.
Similar problems occur if non-square roots should be considered. Although the
shape of real numbers allowed appears restricted at first sight, it suffices to prove
the key system of [25] (see Example 10).

3 Experimental Evaluation

In the experiments2 we considered the 470 problems from the quantifier-free non-
linear integer arithmetic benchmarks (QF NIA) of SMT-LIB 20093 and the 1391
TRSs in the termination problems database (TPDB) version 5.0 (available via
http://termination-portal.org/wiki/TPDB). All tests have been performed
on a server equipped with 8 dual-core AMD Opteron R© processors 885 running
at a clock rate of 2.6 GHz and 64 GB of main memory. Unless stated otherwise
only a single core of the server was used.

We implemented the approach presented in Appendix A and Section 2 and
used MiniSat [11] as back-end (after a satisfiability preserving transformation
to CNF [28]). The result, called MiniSmt, accepts the SMT-LIB syntax for
quantifier-free non-linear arithmetic. For a comparison of MiniSmt with other
SMT solvers see Section 3.1. We also integrated matrix interpretations as pre-
sented in Appendix B in the termination prover TTT2 [22] based on the constraint
language of Definition 1. The constraints within TTT2 are solved with an inter-
faced version of MiniSmt. Experiments are discussed in Section 3.2.

3.1 Comparison with SMT Solvers

First we compare MiniSmt with other recent SMT solvers. Since 2009 the QF NIA
category is part of SMT-COMP in which Barcelogic [27] and CVC3 [5] partic-
ipated. The results when comparing these tools on the QF NIA benchmarks
of SMT-LIB are given in Table 1. The column labeled yes (no) counts how
many systems could be proved (un)satisfiable while time indicates the total
time needed by the tool in seconds. A “–” indicates that the solver does not
support the corresponding setting. If no answer was produced within 60 seconds

2 See http://cl-informatik.uibk.ac.at/ttt2/arithmetic for full details.
3 See http://www.smtcomp.org/2009 for information on SMT-COMP and SMT-LIB.

6

http://termination-portal.org/wiki/TPDB
http://cl-informatik.uibk.ac.at/ttt2/arithmetic
http://www.smtcomp.org/2009

Table 1. SMT solvers on 470 problems from SMT-LIB

yes no time t/o

Barcelogic 266 189 1188 15
CVC3 113 139 13169 218
MiniSmt(sat) 267 – 6427 54
MiniSmt(bv) 268 – 3190 42P

269 194

Table 2. Statistics on various benchmarks

#var #add #mul
avg max avg max avg max

SMT-LIB (calypto) 303 10 50 6 36 6 33
SMT-LIB (leipzig) 167 301 2606 113 1136 164 1420
SMT-LIB (calypto + leipzig) 470 113 2606 44 1136 62 1420
matrices (dimension 1) 1391 25 811 145 5824 226 10688
matrices (dimension 2) 1391 78 2726 1420 164276 1863 164452

the execution is killed (column t/o). The row labeled
∑

shows the accumulative
yes (no) score for the corresponding column. In Table 1 MiniSmt makes use of
the multi-core architecture of the server and searches for satisfying assignments
based on two different settings. Instances where small domains suffice are han-
dled by the configuration which uses 3 bits for arithmetic variables and 4 bits
for intermediate results. The second setting employs 33 and 50 bits, respectively.
As an alternative to the SAT back-end (denoted MiniSmt(sat)) in MiniSmt we
also developed a transformation that allows to use SMT solvers for bit-vector
logic to solve arithmetic constraints (called MiniSmt(bv)). Although bit-vector
arithmetic cannot be used blindly for our setting—it does not take overflows
into account and hence can produce unsound results—it can be adapted for
solving non-linear arithmetic by sign-extension operations. Given the details in
Appendix A this transformation is straightforward to implement. As a back-end
for MiniSmt(bv) we use Yices [10] as designated SMT solver for bit-vector logic.
As can be inferred from Table 1 even when dealing with large numbers MiniSmt
performs competitively, i.e., it solves the most satisfiable instances. MiniSmt(bv)
finds models for the problems calypto/problem-006547.cvc.1, leipzig/term-gZE9f0,
and leipzig/term-lFYv5w while Barcelogic finds a model for leipzig/term-BKc7xf
which MiniSmt(bv) misses. MiniSmt(sat) cannot handle leipzig/term-XbWQfu in
contrast to its bit-vector pendant.

Since the SMT-LIB benchmarks consider only the integers as domain we also
generated (with TTT2) typical constraints from termination analysis. More pre-
cisely we generated for every TRS a constraint that is satisfiable if and only if
a direct proof with matrix interpretations over a non-negative carrier of a fixed
dimension removes at least one rewrite rule.4 This constraint is then solved
4 Our benchmarks are available from the URL in Footnote 2.

7

Table 3. SMT solvers on 1391 matrix constraints (dimension 1)

N Z Q
yes no time t/o yes no time t/o yes no time t/o

Barcelogic 335 3 23k 172 414 3 16k 95 – – – –
CVC3 168 415 45k 748 197 380 45k 754 120 409 48k 802
MiniSmt(sat) 337 – 1701 5 539 – 7279 40 337 – 1592 3
MiniSmt(bv) 337 – 902 5 553 – 1387 8 337 – 1258 6
nlsol 332 – 3203 14 479 – 8158 83 333 – 3924 20P

338 415 553 380 338 409

Table 4. SMT solvers on 1391 matrix constraints (dimension 2)

N Z Q
yes no time t/o yes no time t/o yes no time t/o

Barcelogic 408 3 41k 578 832 3 17k 204 – – – –
CVC3 117 130 66k 1084 112 84 68k 1135 58 125 69k 1147
MiniSmt(sat) 402 – 7193 63 995 – 23k 214 407 – 6505 60
MiniSmt(bv) 405 – 5248 57 1068 – 13k 140 400 – 6418 69
nlsol 301 – 18k 190 454 – 51k 771 289 – 20k 240P

412 130 1142 84 409 125

over various domains, to allow a comprehensive comparison with nlsol [6], a
recent solver for polynomial arithmetic, which follows a similar approach as
Barcelogic but in addition handles non-integral domains. Our benchmarks are
in the QF NIA syntax but are of a different structure than the SMT-LIB in-
stances. Specifically, our problems admit more arithmetic operations while typi-
cally having less variables. In Table 2 some statistics and comparisons regarding
the different test benches are given. There the column # indicates the num-
ber of systems in the respective benchmark family and the other columns give
accumulated information on the size (i.e., number of variables, additions, and
multiplications) of the problems. Since nlsol requires a slightly different input
format our benchmarks are preprocessed for this tool.

Table 3 presents the results for the matrix benchmarks of dimension one.
Times postfixed with “k” should be multiplied by a factor of 1000. For the solvers
nlsol and MiniSmt variables range over the domain {0, . . . , 15} (N), {−16, . . . , 15}
(Z), and { 0

2 ,
1
2 ,

2
2 , . . . ,

15
2 } (Q). Table 4 considers the benchmarks with matrices

of dimension two. Since these constraints are much larger, MiniSmt and nlsol use
one bit less for representing numbers. We also considered different domains which
produced similar results. In Tables 3 and 4 only the benchmarks considering the
domains N and Q correspond to valid (parts of) termination proofs. The reason
for including the Z benchmarks in the tables is that they allow the bit-vector
back-end of MiniSmt to show its performance best.

We note that nlsol allows more flexibility in choosing the variable domain
since MiniSmt bounds variables by powers of two. However our approach admits
more freedom in bounding intermediate results which reduces the search space

8

Table 5. Matrices with dependency pairs for 1391 TRSs

1× 1 2× 2 3× 3
yes time t/o yes time t/o yes time t/o

P
N 545 8885 83 618 23820 326 627 25055 349 659
Q 599 8574 67 597 20238 261 496 19490 252 638
Q1 606 5906 46 655 15279 173 643 14062 164 685
Q2 627 10109 93 651 23102 308 619 23806 330 687
R 535 17029 198 630 16517 200 599 29346 415 648P

639 674 664 703

(e.g. for columns Q in Tables 3 and 4 we require that intermediate results are
integers) which results in efficiency gains. For the sake of a fair comparison we
configured our tool such that arithmetic variables are represented in as many
bits as intermediate results. However, usually it is a good idea to allow more bits
for intermediate results.

We summarize the tables with the following observations: (a) MiniSmt is sur-
prisingly powerful on the SMT-LIB benchmarks (containing few multiplications
but large numbers, i.e., requiring more than 30 bits), (b) our tool performs best
(note its speed) on the matrix benchmarks (containing many multiplications and
usually small domains suffice), (c) MiniSmt is by far the most powerful tool on
rational domains, (d) while in general the SMT back-end of MiniSmt is favorable,
for column Q in Table 4 the SAT back-end shows more problems satisfiable than
the SMT counterpart, and (e) CVC3 could be used to cancel termination proof
attempts early due to its power concerning unsatisfiability.

Our tool fills two gaps that current SMT solvers admit. It is fastest on small
and rational domains and to our knowledge the only solver that efficiently sup-
ports irrational domains, e.g., only our tool can solve the constraint 2 = x×x for
a real-valued variable x. Due to a lack of interesting benchmarks and competitor
tools, MiniSmt cannot show its full strength here.

3.2 Evaluation within a Termination Prover

Next we compare matrix interpretations over N, Q, and R (cf. Appendix B) and
show that MiniSmt admits a fast automation of the method. The coefficients of a
matrix over dimension d are represented in max{2, 5− d} bits (for reals we allow
max{1, 3−d} bits due to the more expensive pair representation). Every rational
coefficient is represented as a fraction with denominator two. Hence a matrix
of dimension two admits natural coefficients {0, 1, . . . , 7}, rational coefficients
{0, 1

2 , 1, 1
1
2 , 2, 2

1
2 , 3, 3

1
2}, and real coefficients {0, 1,

√
2, 1 +

√
2}. The number of

bits for representing intermediate computations was chosen to be one more than
the number of bits allowed for the coefficients. Restricting the bit-width is es-
sential for performance, especially for larger dimensions. It is well-known that
for interpretation based termination criteria usually small coefficients suffice.

In Table 5 matrices of dimensions one to three are considered. The rows
labeled N indicate that only natural numbers are allowed as coefficients whereas

9

Q refers to the naive representation of rationals without canceling the fractions
and R to the subset of real coefficients mentioned above. The rows Qn indicate
that a fraction is canceled if its denominator exceeds n. The column labeled
yes shows the number of successful termination proofs while time indicates the
total time needed by the tool in seconds. If no answer was produced within 60
seconds the execution is killed (column t/o). The row (column) labeled

∑
shows

the accumulative yes score for the corresponding column (row).
Matrix interpretations over N are used by most contemporary termination

tools and serve as a reference. The performance of Q is satisfactory for matri-
ces with dimension one (which correspond to linear polynomial interpretations
and confirms the results in [15]) but poor for larger dimensions. In contrast, the
overall performance of Q1 is excellent, i.e., it is much faster than N and more
powerful. The combination of all 15 methods from Table 5 together can prove
703 systems terminating, yielding a gain of almost 50 systems compared to the
standard setting allowing natural coefficients only. This number is remarkable
since Jambox [12]—a powerful termination prover based on various termination
criteria—proved 750 systems terminating in the 2008 competition and took 3rd
place. Since the competition execution software allows to run 16 processes in
parallel the (single!) method we propose is a good starting point for new ter-
mination analyzers. Looking beyond TPDB, our implementation also shows its
strength for real coefficients. It masters the TRS RR from Example 10 below.
This system stems from [25] where it was proved that no direct termination proof
based on polynomial interpretations over the natural or rational numbers can
exist which orients all rules strictly. However a proof over the reals is possible and
our implementation finds such a proof fully automatically. Due to the statement
“. . . only the techniques [. . .] which concern non-negative rational numbers have
been included in Mu-term . . . ” in [26], we believe that TTT2 is the only auto-
matic termination analyzer for TRSs that supports reasoning about irrational
domains.

Example 10. For the TRS RR from [25] consisting of the seven rules

k(x, x, b1)→ k(g(x), b2, b2) g(c(x))→ f(c(f(x)))
k(x, a2, b1)→ k(a1, x, b1) f(f(x))→ g(x)
k(a4, x, b1)→ k(x, a3, b1) f(f(f(f(x))))→ k(x, x, x)

k(g(x), b3, b3)→ k(x, x, b4)

TTT2 finds the following interpretation that orients all rules strictly

a1R = 0 b1R = 2 +
√

2 fR(x) =
√

2x+
√

2

a2R = 1 + 2
√

2 b2R = 0 gR(x) = 2x+ 1 +
√

2

a3R = 0 b3R = 1 +
√

2 cR(x) = x+ 1 + 2
√

2

a4R = 1 +
√

2 b4R =
√

2 kR(x, y, z) = x+ y +
√

2z + 3
√

2

within a fraction of a second. While a direct proof with polynomials over N is
not possible, natural coefficients suffice in the dependency pair setting (after

10

computing the SCCs of the dependency graph). Hence all modern termination
tools can prove this system terminating.

4 Related Work and Concluding Remarks

First we discuss related approaches for solving non-linear arithmetic. Barcelogic
follows [6] where constraints are linearized by assigning a finite domain to vari-
ables occurring in non-linear constraints. The resulting linear arithmetic formula
is solved by a variant of the simplex algorithm. In contrast to the work in [6]
which mentions heuristics (decide which variables should be used for the lin-
earization) our approach does not require such considerations. However both
approaches require some fixed domain for the variables. CVC3 implements a
Fourier-Motzkin procedure for linear arithmetic while treating non-linear terms
as if they were linear (Dejan Jovanović, personal conversation, 2009). The last
tool we considered for comparison, nlsol, uses a similar approach as Barcelogic but
also supports non-integral domains. It transforms non-linear constraints to lin-
ear arithmetic before it calls Yices as back-end. The difference to MiniSmt(bv) is
that nlsol employs Yices for solving linear arithmetic whereas our tool uses it for
bit-vector arithmetic. We are aware of the fact that the first order theory of real
arithmetic is decidable [29] but because of the underlying computational com-
plexity of the method the result is mainly of theoretical interest. Improvements
of the original procedure are still of double exponential time complexity [8].
Nevertheless it might be interesting to investigate how this worst case complex-
ity affects the performance for applications. Note that SAT solving techniques
and the simplex method admit exponential time worst case complexity but are
surprisingly efficient in practice.

Next we discuss related work on matrix interpretations. An extension to ra-
tional domains was already proposed in 2007 [16] (for termination proofs of string
rewrite systems) where evolutionary algorithms [3] were suggested to find suit-
able rational coefficients. However, no benchmarks are given there that show a
gain in power. In [15] polynomial interpretations are extended to rational coeffi-
cients. This work is related since linear polynomial interpretations coincide with
matrix interpretations of dimension one. Our experiments confirm the gains in
power when using matrices of dimension one but the method from [15] results in
a poor performance for larger dimensions without further ado. Independently to
our research, [1] extends the theory of matrix interpretations to coefficients over
the reals. However their (preliminary) implementation can only deal with ratio-
nals. Furthermore no benchmarks are given in [1] showing any gains in power by
allowing rationals. Hence our contribution for the first time gives evidence that
matrix interpretations over the non-negative reals do really extend the power of
termination criteria in practice. Recently non-linear matrix interpretations have
been introduced [9] by considering matrix domains instead of vector domains.
We would like to investigate if this more general setting can also benefit from
rational domains.

11

Before we conclude this section with ideas for future work we mention one
specialty of MiniSmt. Due to the bottom-up representation of domains (natu-
rals, integers, rationals, reals) our solver can be used for instances that require
arithmetic variables of different types. This distinguishes MiniSmt from the other
solvers that do currently not support such problems appropriately. In the future
we would like to add support for reasoning about unsatisfiable instances. As
an immediate consequence this would improve the cumulative execution time of
MiniSmt and as a side effect this would also be beneficial for termination analysis
of rewriting; a termination proof can be aborted immediately if the correspond-
ing constraints are unsatisfiable and a different termination criterion can be
considered. Another extension aims at improving the handling of real domains.
Instead of restricting to approximations of

√
2 one could consider

√
n where n

is some abstract expression representing a non-negative integer (as discussed at
the end of Section 2.2). Moreover, allowing n to be negative admits reasoning
about complex domains. However, we are not aware of any termination criteria
that require such a domain.

Acknowledgments. We thank Nikolaj Bjørner for encouraging us to investi-
gate the bit-vector back-end, René Thiemann for pointing out a bug, and the
anonymous referees for numerous suggestions that helped to improve the pre-
sentation.

References

1. Alarcón, B., Lucas, S., Navarro-Marset, R.: Proving termination with matrix in-
terpretations over the reals. In: WST 2009. pp. 12–15 (2009)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. TCS
236(1-2), 133–178 (2000)

3. Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer
(2006)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press, Cambridge (1998)

5. Barrett, C., Tinelli, C.: CVC3. In: CAV 2007. LNCS, vol. 4590, pp. 298–302 (2007)
6. Borralleras, C., Lucas, S., Navarro-Marset, R., Rodriguez-Carbonell, E., Rubio, A.:

Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In:
CADE 2009. LNCS (LNAI), vol. 5663, pp. 294–305 (2009)

7. Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO
termination. JSAT 5, 193–215 (2008)

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition. In: Proc. 2nd International Conference on Automata Theory and
Formal Languages 1975. LNCS, vol. 33, pp. 134–183 (1975)

9. Courtieu, P., Gbedo, G., Pons, O.: Improved matrix interpretation. In: SOFSEM
2010. LNCS, vol. 5901, pp. 283–295 (2010)

10. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: CAV
2006. LNCS, vol. 4144, pp. 81–94 (2006)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT 2004. LNCS, vol. 2919,
pp. 502–518 (2004)

12

12. Endrullis, J.: (Jambox). Available from http://joerg.endrullis.de.
13. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-

mination of term rewriting. JAR 40(2-3), 195–220 (2008)
14. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: SAT
2007. LNCS, vol. 4501, pp. 340–354 (2007)

15. Fuhs, C., Navarro-Marset, R., Otto, C., Giesl, J., Lucas, S., Schneider-Kamp, P.:
Search techniques for rational polynomial orders. In: AISC 2008. LNCS (LNAI),
vol. 5144, pp. 109–124 (2008)

16. Gebhardt, A., Hofbauer, D., Waldmann, J.: Matrix evolutions. In: WST 2007. pp.
4–8 (2007)

17. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3), 155–203 (2006)

18. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: CAV 2008. LNCS, vol. 5123, pp. 190–203 (2008)

19. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. I&C
199(1-2), 172–199 (2005)

20. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix inter-
pretations. In: RTA 2006. LNCS, vol. 4098, pp. 328–342 (2006)

21. Hofbauer, D.: Termination proofs by context-dependent interpretations. In: RTA
2001. LNCS, vol. 2051, pp. 108–121 (2001)

22. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: RTA 2009. LNCS, vol. 5595, pp. 295–304 (2009)

23. Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)
24. Lucas, S.: Polynomials over the reals in proofs of termination: From theory to

practice. TIA 39(3), 547–586 (2005)
25. Lucas, S.: On the relative power of polynomials with real, rational, and integer

coefficients in proofs of termination of rewriting. AAECC 17(1), 49–73 (2006)
26. Lucas, S.: Practical use of polynomials over the reals in proofs of termination. In:

PPDP 2007. pp. 39–50 (2007)
27. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:

from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

28. Plaisted, D., Greenbaum, S.: A structure-preserving clause form translation. JSC
2(3), 293–304 (1986)

29. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. 2nd edn.
University of California Press, Berkeley (1957)

30. Zankl, H.: Lazy Termination Analysis. PhD thesis, University of Innsbruck (2009)
31. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201

(2009)
32. Zantema, H.: Termination. In: TeReSe (ed.) Term Rewriting Systems. Cambridge

University Press, Cambridge 181–259 (2003)

A Encoding Non-Linear Integral Arithmetic in SAT

In this section arithmetic constraints (cf. the grammar in Definition 1) are re-
duced to SAT. To obtain formulas of finite size, every arithmetic variable is
represented by a given number of bits. Then operations such as +N and ×N

are unfolded according to their definitions using circuits. Such definitions for

13

http://joerg.endrullis.de

+N and ×N have already been presented in [13] for bit-vectors of a fixed width.
In contrast, we take overflows into account. The encodings of >N and =N for
bit-vectors given below are similar to the ones in [7].

A.1 Arithmetic over N

We fix the number k of bits that is available for representing natural numbers in
binary. Let a < 2k. We denote by ak = 〈ak, . . . , a1〉 the binary representation of a
where ak is the most significant bit. Hence e.g. 〈>,>,⊥〉 = 6. Whenever k is not
essential we abbreviate ak to a. Furthermore the operation (·)k on bit-vectors is
used to drop bits, i.e., 〈a4, a3, a2, a1〉2 = 〈a2, a1〉.

Definition 11. For natural numbers in binary representation we define:

ak >N bk :=

{
⊥ if k = 0
(ak ∧ ¬bk) ∨

(
(bk → ak) ∧ ak−1 >N bk−1

)
if k > 0

ak =N bk :=
k∧
i=1

(ai ↔ bi)

Since two k-bit bit-vectors sum up to a (k + 1)-bit number an additional bit
is needed for the result. Hence the case arises when two summands are not
of equal bit-width. Thus, before adding ak and bk′ the shorter one is padded
with |k − k′| ⊥’s. To keep the presentation simple we assume that ⊥-padding is
implicitly performed before the operations +N, >N, and =N.

Definition 12. We define ak +N bk as 〈ck, sk, . . . , s1〉 for 1 6 i 6 k with

c0 = ⊥ si = ai ⊗ bi ⊗ ci−1 ci = (ai ∧ bi) ∨ (ai ∧ ci−1) ∨ (bi ∧ ci−1)

were ⊗ denotes exclusive or, i.e., x⊗ y := ¬(x↔ y).

Note that in practice it is essential to introduce new variables for the carry
and the sum since in consecutive additions each bit ai and bi is duplicated
(twice for the carry and once for the sum). Using fresh variables for the sum
prevents an exponential blowup of the resulting formula. A further method to
keep formulas small is to limit the bit-width when representing naturals. This can
be accomplished after addition (or multiplication) by fixing a maximal number
m of bits. To restrict ak to m bits we demand that all ai for m + 1 6 i 6 k
are ⊥ as a side constraint. Then it is sound (i.e., restricting bits can result
in unsatisfiable formulas but never produce models for unsatisfiable input) to
continue any computations with am instead of ak.

The next example demonstrates addition. To ease readability we only use ⊥
and > in the following examples and immediately simplify formulas.

Example 13. We compute 3 +N 14 = 17. In the sequence below the first step
performs ⊥-padding. Afterwards Definition 12 applies.

〈>,>〉+N 〈>,>,>,⊥〉 = 〈⊥,⊥,>,>〉+N 〈>,>,>,⊥〉 = 〈>,⊥,⊥,⊥,>〉

14

Multiplication is implemented by addition and bit-shifting. Here a << n denotes
a left-shift of a by n bits, e.g., 〈x, y〉 << 3 yields 〈x, y,⊥,⊥,⊥〉. The operation
(·) takes a bit-vector and a Boolean variable and performs scalar multiplication,
i.e., ak · x = 〈ak ∧ x, . . . , a1 ∧ x〉. In the sequel the operator (·) binds stronger
than <<, i.e., a · x << 2 abbreviates (a · x) << 2.
The product of two bit-vectors with m and n bits has m+ n bits.

Definition 14. For bit-vectors am and bn we define:

am ×N bn :=
(
(am · b1 << 0) +N · · ·+N (am · bn << (n− 1))

)
m+n

In the following example we demonstrate multiplication.

Example 15. Let a = 〈>,⊥,>〉 and b = 〈>,>,⊥〉, i.e., we compute 5×N 6 = 30.
The first step below unfolds Definition 14. Then the scalar multiplications are
evaluated before shifting is performed. After addition (using +N) the sum is
restricted to six bits.

a×N b =
(
(a · ⊥ << 0) +N (a · > << 1) +N (a · > << 2)

)
6

=
(
(〈⊥,⊥,⊥〉 << 0) +N (a << 1) +N (a << 2)

)
6

=
(
〈⊥,⊥,⊥〉+N 〈>,⊥,>,⊥〉+N 〈>,⊥,>,⊥,⊥〉

)
6

= 〈⊥,>,>,>,>,⊥〉

If-then-else is an abbreviation, i.e., x ? a : b := (a·x)+N(b·¬x). This expression
evaluates to a if x is true and to b otherwise. We omit its straightforward redef-
initions when considering arithmetic over Z, Q, and R. Note that this operator
can encode the maximum of two numbers, i.e., max(a,b) := a >N b ? a : b.

A.2 Arithmetic over Z

We represent integers using two’s complement which allows a straightforward
encoding of arithmetic operations. For a k-bit number the most significant bit
denotes the sign, e.g., ak = 〈ak, . . . , a1〉 with sign ak and bits ak−1, . . . , a1. Sign
> indicates negative values. Again some definitions expect operands to be of
equal bit-width. This is accomplished by implicitly sign-extending the shorter
operand. The operation (·)k is abused for both sign-extending and discarding
bits, e.g., 〈⊥,>〉4 = 〈⊥,⊥,⊥,>〉, 〈>,>〉4 = 〈>,>,>,>〉, and 〈>,>,>〉2 =
〈>,>〉. The integer represented by the bit-vector does not change when sign-
extending. Similar to the case for N, a bit-vector ak can be restricted to m bits.
If the dropped bits take the same value as the sign, then ak and am denote the
same number. Adding a side constraint ak ↔ ai for m 6 i 6 k allows to proceed
with am instead of ak.

Comparisons are defined based on the corresponding operations over N.
For >Z a separate check on the sign is needed, i.e., a is greater than b if b
is negative while a is not and otherwise the bits are compared using >N. For
+Z and ×Z numbers are first sign-extended before the corresponding operation
over N is employed. Superfluous bits are discarded afterwards.

15

Definition 16. The operations >Z, =Z, +Z, and ×Z are defined as follows:

ak >Z bk :=
(
¬ak ∧ bk

)
∨
(
(ak → bk) ∧ ak−1 >N bk−1

)
ak =Z bk := ak =N bk
ak +Z bk := (ak+1 +N bk+1)k+1

am ×Z bn := (am+n ×N bm+n)m+n

Subtraction is encoded using addition and two’s complement, i.e., a −Z b :=
a +Z tcZ(b) with tcZ(·) as defined below.

Definition 17. For a bit-vector ak we define ones’ and two’s complement as:

oc(ak) := 〈¬ak, . . . ,¬a1〉 tcZ(ak) :=
(
oc(ak+1) +N 〈>〉

)
k+1

Ones’ complement flips all bits and two’s complement computes ones’ comple-
ment incremented by one. To avoid a case distinction on the sign for two’s
complement the operand first is sign-extended by one auxiliary bit. After com-
puting ones’ complement, one is added and then the overflow bit is discarded as
shown in the next example.

Example 18. Since −2k can be represented in k bits but 2k cannot, tcZ(ak) must
have k+1 bits (recall that we take overflows into account). For two’s complement
of 0 it is essential to first sign-extend the operand and then restrict the result
to k + 1 bits. We demonstrate this with 0 represented by two bits, using an
additional bit for the sign:

tcZ(〈⊥,⊥,⊥〉) =
(
oc(〈⊥,⊥,⊥〉4) +N 〈>〉

)
4

=
(
oc(〈⊥,⊥,⊥,⊥〉) +N 〈>〉

)
4

=
(
〈>,>,>,>〉+N 〈>〉

)
4

=
(
〈>,⊥,⊥,⊥,⊥〉

)
4

= 〈⊥,⊥,⊥,⊥〉

Next we calculate two’s complement of −4 which evaluates to 4:

tcZ(〈>,⊥,⊥〉) =
(
oc(〈>,⊥,⊥〉4) +N 〈>〉

)
4

=
(
oc(〈>,>,⊥,⊥〉) +N 〈>〉

)
4

=
(
〈⊥,⊥,>,>〉+N 〈>〉

)
4

=
(
〈⊥,⊥,>,⊥,⊥〉

)
4

= 〈⊥,>,⊥,⊥〉

The next example illustrates addition/subtraction and multiplication.

Example 19. We compute 5−Z 2 = 3. The sequence below translates subtraction
(−Z) into addition (+Z) in the first step. Then two’s complement of 2 is calcu-
lated. Afterwards addition for integers is performed by first sign-extending both
operands by one additional bit and then performing addition for naturals (+N).
After this step the superfluous carry bit is disregarded, i.e.,

〈⊥,>,⊥,>〉 −Z 〈⊥,>,⊥〉 = 〈⊥,>,⊥,>〉+Z tc(〈⊥,>,⊥〉)
= 〈⊥,>,⊥,>〉+Z 〈>,>,>,⊥〉 =

(
〈⊥,>,⊥,>〉5 +N 〈>,>,>,⊥〉5

)
5

=
(
〈⊥,⊥,>,⊥,>〉+N 〈>,>,>,>,⊥〉

)
5

=
(
〈>,⊥,⊥,⊥,>,>〉

)
5

= 〈⊥,⊥,⊥,>,>〉.

16

Multiplication is similar, i.e., both operands am and bn are first sign-extended
to have m + n bits. After multiplication (×N) only the relevant m + n bits are
taken. We demonstrate multiplication by computing −2×Z 5 = −10:

〈>,>,⊥〉 ×Z 〈⊥,>,⊥,>〉 =
(
〈>,>,⊥〉7 ×N 〈⊥,>,⊥,>〉7

)
7

=
(
〈>,>,>,>,>,>,⊥〉 ×N 〈⊥,⊥,⊥,⊥,>,⊥,>〉

)
7

=
(
〈⊥,⊥,⊥,⊥,>,⊥,⊥,>,>,>,⊥,>,>,⊥〉

)
7

= 〈>,>,>,⊥,>,>,⊥〉

B Matrix Interpretations over the Reals

This section unifies two termination criteria for rewrite systems—matrix in-
terpretations [13, 20] and polynomial interpretations over the non-negative re-
als [24,25]—to obtain matrix interpretations over the reals.

B.1 Preliminaries

We assume familiarity with the basics of rewriting [4] and termination [32].
A signature F is a set of function symbols with fixed arities. Let V denote

an infinite set of variables disjoint from F . Then T (F ,V) forms the set of terms
over the signature F using variables from V. Next we shortly recapitulate the
key features of the dependency pair framework [2,17,19]. Let R be a finite TRS
over a signature F . Function symbols that appear as a root of a left-hand side
are called defined. The signature F is extended with dependency pair symbols
f] for every defined symbol f , where f] has the same arity as f , resulting in
the signature F]. If l → r ∈ R and t is a subterm of r with a defined root
symbol that is not a proper subterm of l then the rule l] → t] is a dependency
pair of R. Here l] and t] are the result of replacing the root symbols in l and t
by the corresponding dependency pair symbols. The dependency pairs of R are
denoted by DP(R).

A DP problem (P,R) is a pair of TRSs P and R such that the root symbols
of rules in P do neither occur in R nor in proper subterms of the left- and
right-hand sides of rules in P. The problem is said to be finite if there exists no
infinite sequence s1 →P t1 →∗R s2 →P t2 →∗R · · · such that all terms t1, t2, . . .
are terminating with respect to R. The main result underlying the dependency
pair approach states that termination of a TRS R is equivalent to finiteness of
the DP problem (DP(R),R).

To prove a DP problem finite, a number of DP processors have been devel-
oped. DP processors are functions that take a DP problem (P,R) as input and
return a set of DP problems as output. In order to be employed for proving
termination DP processors must be sound, i.e., if all DP problems returned by
a DP processor are finite then (P,R) is finite.

Reduction pairs provide a standard approach for obtaining sound DP pro-
cessors. Formally, a reduction pair (&, >) consists of a rewrite pre-order &
(a pre-order on terms that is closed under contexts and substitutions) and a

17

well-founded order > that is closed under substitutions such that the inclusion
> · & ⊆ > (compatibility) holds. Here · denotes composition of relations.

Theorem 20 (cf. [2,17,19]). Let (&, >) be a reduction pair. The processor that
maps a DP problem (P,R) to {(P \ >,R)} if P ⊆ & ∪ > and R ⊆ & and to
{(P,R)} otherwise is sound. ut

Next we address how to obtain reduction pairs. For a signature F an F-algebraA
consists of a carrier A and an interpretation fA for every f ∈ F . If F is irrelevant
or clear from the context we call an F-algebra simply algebra.

Definition 21. An F-algebra A over the non-empty carrier A together with two
relations > and > on A is called weakly monotone if fA is monotone in all its
coordinates with respect to >, > is well-founded, and > ·> ⊆ >.

Let A be an algebra over a non-empty carrier A. An assignment α for A is a
mapping from the set of term variables V to A. Interpretations are lifted from
function symbols to terms, using assignments, as usual. The induced mapping is
denoted by [α]A(·). For two terms s and t we define s >A t if [α]A(s) > [α]A(t)
holds for all assignments α. The comparison >A is similarly defined. Whenever
α is irrelevant we abbreviate [α]A(s) to [s]A.

Weakly monotone algebras give rise to reduction pairs.

Theorem 22. If (A,>, >) is weakly monotone then (>A, >A) is a reduction
pair.

Proof. Immediate from [13, Theorem 2, part 2] which is a stronger result. ut

B.2 Matrix Interpretations

Next we present a DP processor based on matrix interpretations over the re-
als. Formally, matrix interpretations are weakly monotone algebras (M,>, >)
where M is an algebra over some carrier Md for a fixed d ∈ N>0. In the se-
quel we consider M = R>0. To define the relations > and > that compare
elements from Md, i.e., vectors with non-negative real entries, we must fix how
to compare elements from M first. The obvious candidate >R is not suitable
because it is not well-founded. As already suggested in earlier works on poly-
nomial interpretations [21, 24, 25], >R can be approximated by >δR defined as
x >δR y := x − y >R δ for x, y ∈ R and any δ ∈ R>0. The next lemma shows
that >δR has the desired property.

Lemma 23. The order >δR is well-founded on R>0 for any δ ∈ R>0.

Proof. Obvious. ut

With the help of >δR it is now possible to define a well-founded order on Md

similar as in [13].

18

Definition 24. For vectors u and v from Md we define:

u > v := ui >R vi for 1 6 i 6 d u >δ v := u1 >
δ
R v1 and u > v

Next the shape of the interpretations is fixed. For an n-ary function symbol
f ∈ F] we consider linear interpretations fMd(x1, . . . ,xn) = F1x1+· · ·+Fnxn+f
where F1, . . . , Fn ∈ Md×d and f ∈ Md if f ∈ F and F1, . . . , Fn ∈ M1×d and
f ∈M if f ∈ F] \F . (As discussed in [13], using matrices of a different shape for
dependency pair symbols reduces the search space while preserving the power
of the method.) Before addressing how to compare terms with respect to some
interpretation we fix the comparison of matrices. Let m,n ∈ N. For B,C ∈
Mm×n we define:

B > C := Bij >R Cij for all 1 6 i 6 m, 1 6 j 6 n

Because of the linear shape of the interpretations, for a rewrite rule l → r with
variables x1, . . . , xk, matrices L1, . . . , Lk, R1, . . . , Rk and vectors l and r can be
computed such that

[α]M(l) = L1x1 + · · ·+ Lkxk + l (4)
[α]M(r) = R1x1 + · · ·+Rkxk + r (5)

where α(x) = x for x ∈ V. The next lemma states how to test s >δM t (i.e.,
[α]M(s) >δ [α]M(t) for all assignments α) and s >M t effectively.

Lemma 25. Let l → r be a rewrite rule with [α]M(l) and [α]M(r) as in (4)
and (5), respectively. Then for any δ ∈ R>0

– l >M r if and only if Li > Ri (1 6 i 6 k) and l > r,
– l >δM r if and only if Li > Ri (1 6 i 6 k) and l >δ r.

Proof. Immediate from the proof of [13, Lemma 4]. ut

Matrix interpretations over the reals yield weakly monotone algebras.

Theorem 26. Let F be a signature, M = R>0, and M an F-algebra over the
carrier Md for some d ∈ N>0 with fMd of the shape described above for all
f ∈ F . Then for any δ ∈ R>0 the algebra (M,>, >δ) is weakly monotone.

Proof. The interpretation functions are monotone with respect to > because
of the non-negative carrier. From Definition 24 it is obvious that >δ is well-
founded (on the carrier Md) since >δR is well-founded on R>0 for any δ ∈ R>0.
The latter holds by Lemma 23. The last condition for a weakly monotone algebra
is compatibility, i.e., >δ · > ⊆ >δ, which trivially holds. ut

Matrix interpretations yield reduction pairs due to Theorems 26 and 22, making
them suitable for termination proofs in the dependency pair setting.

Corollary 27. If (M,>, >δ) is a weakly monotone algebra then (>M, >δM) is
a reduction pair. ut

19

We demonstrate matrix interpretations on a simple example.

Example 28. The DP problem ({f](s(x), s(y)) → f](x, y)},∅) can be solved by
the following interpretation of dimension 2 with δ = 1:

f]M2(x,y) =
(
1 0
)
x sM2(x) =

(
1 0
0 1

)
x +

(√
2
0

)
We have [f](s(x), s(y))]M =

(
1 0
)
x+
√

2 >1
(
1 0
)
x = [f](x, y)]M. By Lemma 25

and Definition 24 we get
(
1 0
)

>
(
1 0
)

and
√

2 >1
R 0. The latter holds since√

2− 0 >R 1.

Since δ influences if a rule can be oriented strictly or not, it cannot be chosen
arbitrarily. E.g., the interpretation from Example 28 with δ = 2 can no longer
orient the rule strictly since

√
2 6>2

R 0. For DP problems containing only finitely
many rules (this is the usual setting) a suitable δ can easily be computed. The
reason is that for such DP problems only finitely many rules are involved in the
strict comparison, i.e., to test for a rule s→ t if s >δM t the comparison s >δ t
is needed (cf. Lemma 25) which boils down to s1 >δR t1 (cf. Definition 24). Since
s1 − t1 >R δ is tested for only finitely many rules s → t, the minimum of all
s1−t1 is well-defined and provides a suitable δ. The next lemma (generalizing [24,
Section 5.1] to matrices) states that actually there is no need to compute δ
explicitly.

Lemma 29. Let (P,R) be a DP problem. If P contains finitely many rules
then δ need not be computed.

Proof. The discussion preceding Lemma 29 allows to obtain a δ ∈ R>0 such that
for every s→ t ∈ P we have s1 >δR t1 if and only if s1 >R t1. Hence for all strict
comparisons that occur the relations >δR and >R coincide. Consequently it is
safe if an implementation uses >R instead of >δR in Definition 24 and ignores the
exact δ. ut

This section is concluded with some comments on automating matrix interpre-
tation, i.e., the problem to find for a given DP problem a matrix interpreta-
tion that achieves some progress in the termination proof. Implementing matrix
interpretations is a search problem. After fixing the dimension d, for every n-
ary function symbol f we obtain matrices F1, . . . , Fn and a vector f filled with
arithmetic variables. Lifting addition, multiplication, and comparisons from co-
efficients to matrices as usual allows to interpret terms. Comparing the term
interpretations using Lemma 25 yields an encoding of the DP processor from
Theorem 20. For details see [13, 30]. From a model returned by the underlying
solver the rules which are deleted by the DP processor and the corresponding
(part of the) termination proof can be determined. We stress that for matrix
interpretations (and many other termination criteria) a plain YES/NO answer
from the underlying SMT solver is not sufficient whenever a (modular) proof
should be constructed.

20

	Satisfiability of Non-Linear (Ir)rational Arithmetic
	Harald Zankl and Aart Middeldorp

