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Abstract. Polynomial interpretations are a useful technique for proving termination of
term rewrite systems. They come in various flavors: polynomial interpretations with real,
rational and integer coefficients. In 2006, Lucas proved that there are rewrite systems
that can be shown polynomially terminating by polynomial interpretations with real (al-
gebraic) coefficients, but cannot be shown polynomially terminating using polynomials
with rational coefficients only. He also proved a similar theorem with respect to the use
of rational coefficients versus integer coefficients. In this paper we show that polynomial
interpretations with real or rational coefficients do not subsume polynomial interpretations
with integer coefficients, contrary to what is commonly believed. We further show that
polynomial interpretations with real coefficients subsume polynomial interpretations with
rational coefficients.

1. Introduction

Polynomial interpretations are a simple yet useful technique for proving termination of
term rewrite systems (TRSs, for short). While originally conceived in the late seventies by
Lankford [Lan79] as a means for establishing direct termination proofs, polynomial inter-
pretations are nowadays often used in the context of the dependency pair (DP) framework
[Art00, Gie05, Hir05]. In the classical approach of Lankford, one considers polynomials with
integer coefficients inducing polynomial algebras over the well-founded domain of the nat-
ural numbers. To be precise, every n-ary function symbol f is interpreted by a polynomial
Pf in n indeterminates with integer coefficients, which induces a mapping or interpretation
from terms to integer numbers in the obvious way. In order to conclude termination of a
given TRS, three conditions have to be satisfied. First, every polynomial must be well-
defined, i.e., it must induce a well-defined polynomial function fN : Nn → N over the natural
numbers. In addition, the interpretation functions fN are required to be strictly monotone
in all arguments. Finally, one has to show compatibility of the interpretation with the given
TRS. More precisely, for every rewrite rule l → r the polynomial Pl associated with the
left-hand side must be greater than Pr, the corresponding polynomial of the right-hand
side, i.e., Pl > Pr for all values of the indeterminates.
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Already back in the seventies, an alternative approach using polynomials with real co-
efficients instead of integers was proposed by Dershowitz [Der79]. However, as the real
numbers R equipped with the standard order >R are not well-founded, a subterm property
is explicitly required to ensure well-foundedness. And it was not until 2005 that this lim-
itation was overcome, when Lucas [Luc05] presented a framework for proving polynomial
termination over the real numbers, where well-foundedness is basically achieved by replacing
>R with a new ordering >R,δ requiring comparisons between terms to not be below a given
positive real number δ. Moreover, this framework also facilitates polynomial interpretations
over the rational numbers.

Thus, one can distinguish three variants of polynomial interpretations, polynomial in-
terpretations with real, rational and integer coefficients, and the obvious question is: what
is their relationship with regard to termination proving power? For Knuth-Bendix orders it
is known [Kor03, Lep01] that extending the range of the underlying weight function from
natural numbers to non-negative reals does not result in an increase in termination proving
power. In 2006, a partial answer to this question was given by Lucas [Luc06], who man-
aged to show that there are rewrite systems that can be shown polynomially terminating
by polynomial interpretations with rational coefficients, but cannot be shown polynomi-
ally terminating using polynomials with integer coefficients only. Likewise, he proved that
there are systems that can be handled by polynomial interpretations with real (algebraic)
coefficients, but cannot be handled by polynomial interpretations with rational coefficients.
Based on these results and the fact that we have the strict inclusions Z ⊂ Q ⊂ R, there is
the common yet unproven belief in the term rewriting community that polynomial inter-
pretations with real coefficients properly subsume polynomial interpretations with rational
coefficients, which in turn properly subsume polynomial interpretations with integer coef-
ficients.1 However, in this paper we show that it is not true by (constructively) proving
that polynomial interpretations with real or rational coefficients do not properly subsume
polynomial interpretations with integer coefficients. Besides, we also prove that polyno-
mial interpretations with real coefficients subsume polynomial interpretations with rational
coefficients.

The remainder of this paper is organized as follows. In Section 2, we introduce some
preliminary definitions and terminology concerning polynomials and polynomial interpre-
tations. In Section 3, we show that polynomial interpretations with real coefficients sub-
sume polynomial interpretations with rational coefficients. Section 4 is dedicated to our
main result showing that polynomial interpretations with real or rational coefficients do
not properly subsume polynomial interpretations with integer coefficients. We conclude in
Section 5.

2. Preliminaries

As usual, we denote by N, Z, Q and R the sets of natural, integer, rational and real
numbers, respectively. An irrational number is a real number, which is not in Q. Given
some N ∈ {N, Z, Q, R} and m ∈ N , >N denotes the standard order of the respective domain
and Nm := {x ∈ N | x ≥ m}. A sequence of real numbers (xn)n∈N converges to the limit
x if for every real number ε > 0 there exists a natural number N such that the absolute
distance |xn − x| is less than ε for all n > N ; we denote this by limn→∞ xn = x. As

1E.g., [Luc07] states that “polynomial interpretations over the reals are strictly better for proving poly-
nomial termination of rewriting than those which only use integer coefficients”.
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convergence in Rk is equivalent to componentwise convergence, we use the same notation
also for limits of converging sequences of vectors of real numbers (~xn ∈ Rk)n∈N. A real
function f : Rk → R is continuous in Rk if for every converging sequence (~xn ∈ Rk)n∈N it
holds that limn→∞ f(~xn) = f(limn→∞ ~xn). Finally, as Q is dense in R, every real number
is a rational number or the limit of a converging sequence of rational numbers.

Polynomials

For any ring R (e.g., Z, Q, R), we denote the associated polynomial ring in n inde-
terminates x1, . . . , xn by R[x1, . . . , xn], the elements of which are finite sums of monomials

of the form c · xi1
1

xi2
2
· · · xin

n , where the coefficient c is an element of R and the exponents
i1, . . . , in are natural numbers. An element P ∈ R[x1, . . . , xn] is called an (n-variate) poly-
nomial with coefficients in R. For example, the polynomial 2x2−x+1 is an element of Z[x],
the ring of all univariate polynomials with integer coefficients. The degree of a monomial
c · xi1

1
xi2

2
. . . xin

n is just the sum of its exponents.
In the special case n = 1, a polynomial P ∈ R[x] can be written as follows: P (x) =

∑d
k=0

akx
k (d ≥ 0). For the largest k such that ak 6= 0, we call akx

k the leading monomial of
P , ak its leading coefficient and k its degree, which is denoted by deg(P ) = k. A polynomial
P ∈ R[x] is said to be linear if deg(P ) = 1, and quadratic if deg(P ) = 2.

Polynomial Interpretations

We assume familiarity with the basics of term rewriting and polynomial interpretations
(e.g. [Baa98, Ter03]). The key concept for establishing (direct) termination of TRSs via
polynomial interpretations is the notion of well-founded monotone algebras as they induce
reduction orders on terms.

Definition 2.1. Let F be a signature, i.e., a set of function symbols equipped with
fixed arities. A (well-founded) monotone F-algebra (A, >A) is a non-empty algebra A =
(A, {fA}f∈F ) together with a (well-founded) order >A on the carrier A of A such that every
algebra operation fA is strictly monotone in all arguments, i.e., if f ∈ F has arity n ≥ 1 then
fA(a1, . . . , ai, . . . , an) >A fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n}
with ai >A b. Moreover, every function symbol f ∈ F is said to be interpreted by its
associated interpretation function fA.

Given some monotone algebra (A, >A), we define the relations �A and ≻A on terms as
follows: s �A t if [α]A(s) ≥A [α]A(t) and s ≻A t if [α]A(s) >A [α]A(t), for all assignments
α of elements of A to the variables in s and t ([α]A(·) denotes the usual evaluation function
associated with the algebra A). Now if (A, >A) is a well-founded monotone algebra, then
≻A is a reduction order that can be used to prove termination of TRSs via the following
theorem.

Theorem 2.2. A TRS is terminating if and only if it is compatible with a well-founded
monotone algebra.

Here, a TRS R is compatible with a well-founded monotone algebra (A, >A) if l ≻A r
for every rewrite rule l → r ∈ R.
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Definition 2.3. A polynomial interpretation over N for a signature F consists of a poly-
nomial fN ∈ Z[x1, . . . , xn] for every n-ary function symbol f ∈ F , such that for all f ∈ F
the following two properties are satisfied:

(1) well-definedness: fN(x1, . . . , xn) ∈ N for all x1, . . . , xn ∈ N,
(2) strict monotonicity of fN in all arguments with respect to >N, the standard order

on N.

Now (N, {fN}f∈F , >N) constitutes a well-founded monotone algebra, and we say that a
polynomial interpretation over N is compatible with a TRS R if the well-founded monotone
algebra (N, {fN}f∈F , >N) is compatible with R. Finally, a TRS is polynomially terminating
over N if it admits a compatible polynomial interpretation over N.

Remark 2.4. In principle, one could take any set Nm (or even Zm) instead of N as the
carrier for polynomial interpretations. However, it is well-known [Ter03, Con05] that all
these sets are order-isomorphic to N and hence do not change the class of polynomially
terminating TRSs. In other words, a TRS R is polynomially terminating over N if and only
if it is polynomially terminating over Nm. Thus, we can restrict to N as carrier without loss
of generality.

Now if one wants to extend the notion of polynomial interpretations to the rational or
real numbers, the main problem one is confronted with is the non-well-foundedness of these
domains with respect to the standard orders >Q and >R. In [Hof01, Luc05], this problem
is overcome by replacing these orders with new non-total orders >R,δ and >Q,δ, the first of
which is defined as follows: given some fixed positive real number δ,

x >R,δ y : ⇐⇒ x − y ≥R δ for all x, y ∈ R.

Analogously, one defines >Q,δ on Q. Thus, >R,δ (>Q,δ) is well-founded on subsets of R (Q)
that are bounded from below. Therefore, any set Rm (Qm) could be used as carrier for
polynomial interpretations over R (Q). However, without loss of generality we may restrict
to R0 (Q0) because the main argument of Remark 2.4 also applies to polynomials over R

(Q), as is already mentioned in [Luc05].

Definition 2.5. A polynomial interpretation over R for a signature F consists of a poly-
nomial fR ∈ R[x1, . . . , xn] for every n-ary function symbol f ∈ F and some positive real
number δ >R 0, such that for all f ∈ F :

(a) well-definedness: fR(x1, . . . , xn) ∈ R0 for all x1, . . . , xn ∈ R0

(b) strict monotonicity of fR in all arguments with respect to >R0,δ, the restriction of
>R,δ to R0.

Analogously, one defines polynomial interpretations over Q by the obvious adaptation
of the definition above. Again, (R0, {fR}f∈F , >R0,δ) and (Q0, {fQ}f∈F , >Q0,δ) constitute
well-founded monotone algebras, and we say that a TRS is polynomially terminating over
R (Q) if it is compatible with such an algebra.

We conclude this section with a more useful characterization of monotonicity with
respect to the orders >R0,δ and >Q0,δ than the one obtained by specializing Definition 2.1.
To this end, we note that a function f : Rn

0 → R0 is strictly monotone in its i-th argument
with respect to >R0,δ if and only if f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xi, . . . , xn) ≥R δ for
all x1, . . . , xn, h ∈ R0 with h ≥R δ. From this and from the analogous characterization of
>Q0,δ-monotonicity, it is easy to derive the following lemmata.
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Lemma 2.6. A linear polynomial fR(x1, . . . , xn) =
∑n

i=1
aixi+a0 in R[x1, . . . , xn] is strictly

monotone in all arguments with respect to >R0,δ if and only if ai ≥R 1 for all i ∈ {1, . . . , n}.

Lemma 2.7. A linear polynomial fQ(x1, . . . , xn) =
∑n

i=1
aixi+a0 in Q[x1, . . . , xn] is strictly

monotone in all arguments with respect to >Q0,δ if and only if ai ≥Q 1 for all i ∈ {1, . . . , n}.

In the remainder of this paper we will sometimes use the term “polynomial inter-
pretations with integer coefficients” as a synonym for polynomial interpretations over N.
Likewise, the term “polynomial interpretations with real (rational) coefficients” refers to
polynomial interpretations over R (Q).

3. Polynomial Termination over the Reals and Rationals

In this section we show that polynomial termination over Q implies polynomial ter-
mination over R. The proof is based upon the fact that polynomials induce continuous
functions, whose behavior at irrational points is completely defined by the values they take
at rational points.

Lemma 3.1. Let f : Rk → R be continuous in Rk. If f(x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈
Q0 then f(x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈ R0.

Proof. Let ~x := (x1, . . . , xk) ∈ Rk
0 and let (~xn)n∈N be a sequence of vectors of non-negative

rational numbers ~xn ∈ Qk
0 whose limit is ~x. Such a sequence exists because Qk is dense in

Rk. Then
f(~x) = f( lim

n→∞
~xn) = lim

n→∞
f(~xn)

by continuity of f . Thus f(~x) is the limit of (f(~xn))n∈N, which is a sequence of non-negative
real numbers by assumption. Hence, f(~x) is non-negative, too.

Theorem 3.2. If a TRS is polynomially terminating over Q, then it is also polynomially
terminating over R.

Proof. Let R be a TRS over the signature F that is polynomially terminating over Q.
So there exists some polynomial interpretation I over Q consisting of a positive rational
number δ and a polynomial fQ ∈ Q[x1, . . . , xn] for every n-ary function symbol f ∈ F such
that:

(a) for all n-ary f ∈ F , fQ(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ Q0,
(b) for all f ∈ F , fQ is strictly monotone with respect to >Q0,δ in all arguments,
(c) for every rewrite rule l → r ∈ R, Pl >Q0,δ Pr for all x1, . . . , xm ∈ Q0.

Here Pl (Pr) denotes the polynomial associated with l (r) and the variables x1, . . . , xm are
those occurring in l → r. Next we note that all three conditions are quantified polynomial
inequalities of the shape “P (x1, . . . , xk) ≥ 0 for all x1, . . . , xk ∈ Q0” for some polynomial
P with rational coefficients. This is easy to see for the first and third condition. As
to the second condition, the function fQ is strictly monotone in its i-th argument with
respect to >Q0,δ if and only if fQ(x1, . . . , xi + h, . . . , xn) − fQ(x1, . . . , xi, . . . , xn) ≥ δ for all
x1, . . . , xn, h ∈ Q0 with h ≥ δ, which is equivalent to

fQ(x1, . . . , xi + δ + h, . . . , xn) − fQ(x1, . . . , xi, . . . , xn) − δ ≥ 0

for all x1, . . . , xn, h ∈ Q0. From Lemma 3.1 and the fact that polynomials induce continuous
functions we infer that all these polynomial inequalities do not only hold in Q0 but also in
R0. Hence, the polynomial interpretation I proves termination over R.
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We conclude this section with the following remark that emphasizes the essence of the
proof of Theorem 3.2.

Remark 3.3. Not only does the result established in this section show that polynomial
termination over Q implies polynomial termination over R, but it even reveals that the
same interpretation applies.

4. Polynomial Termination over the Reals and Integers

As far as the relationship of polynomial interpretations with real, rational and integer
coefficients with regard to termination proving power is concerned, the only results published
to date are due to Lucas [Luc06], who managed to prove the following two theorems.

Theorem 4.1 (Lucas, 2006). There are TRSs that are polynomially terminating over Q

but not over N.

Theorem 4.2 (Lucas, 2006). There are TRSs that are polynomially terminating over R

but not over Q.

Hence, the extension of the coefficient domain from the integers to the rational numbers
entails the possibility to prove some rewrite systems polynomially terminating, which could
not be proved polynomially terminating otherwise. Moreover, a similar statement holds for
the extension of the coefficient domain from the rational numbers to the real numbers. Based
on these results and the fact that we have the strict inclusions Z ⊂ Q ⊂ R, it is tempting
to believe that polynomial interpretations with real coefficients properly subsume polyno-
mial interpretations with rational coefficients, which in turn properly subsume polynomial
interpretations with integer coefficients. Indeed, the former proposition holds according
to Theorem 3.2. However, the latter proposition does not hold, as will be shown in this
section. In particular, we present a TRS that can be proved terminating by a polynomial
interpretation with integer coefficients, but cannot be proved terminating by a polynomial
interpretation with real or rational coefficients.

4.1. Motivation

In order to motivate the construction of this particular rewrite system, let us first
observe that from the viewpoint of number theory there is a fundamental difference between
the integers and the real or rational numbers. More precisely, the integers are an example of
a discrete domain, whereas both the real and rational numbers are dense2 domains. In the
context of polynomial interpretations, the consequences of this major distinction are best
explained by an example. To this end, we consider the polynomial function x 7→ 2x2 − x
depicted in Figure 1 and assume that we want to use it as the interpretation of some
unary function symbol. Now the point is that this function is permissible in a polynomial
interpretation over N as it is both non-negative and strictly monotone over the natural
numbers. However, viewing it as a function over a real (rational) variable, we observe that
non-negativity is violated in the open interval (0, 1

2
) (and monotonicity requires a properly

chosen value for δ). Hence, the polynomial function x 7→ 2x2 − x is not permissible in any
polynomial interpretation over R (Q).

2Given two distinct real (rational) numbers a and b, there exists a real (rational) number c in between.
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Figure 1: The polynomial function x 7→ 2x2 − x.

Thus, the idea is to design a rewrite system that enforces an interpretation of this shape
for some unary function symbol, and the tool that can be used to achieve this is polynomial
interpolation. To this end, let us consider the following scenario, which is fundamentally
based on the assumption that some unary function symbol f is interpreted by a quadratic
polynomial f(x) = ax2 +bx+c with (unknown) coefficients a, b and c. Then, by polynomial
interpolation, these coefficients are uniquely determined by the image of f at three pairwise
different locations; in this way the interpolation constraints f(0) = 0, f(1) = 1 and f(2) = 6
enforce the interpretation f(x) = 2x2 − x. Next we encode these constraints in terms of the
TRS R consisting of the following rewrite rules, where sn(x) abbreviates s(s(· · · s

︸ ︷︷ ︸

n-times

(x) · · · )),

s(0) → f(0)

s2(0) → f(s(0)) f(s(0)) → 0

s7(0) → f(s2(0)) f(s2(0)) → s5(0)

and consider the following two cases: polynomial interpretations over N on the one hand
and polynomial interpretations over R on the other hand.

In the context of polynomial interpretations over N, we observe that if we equip the
function symbols s and 0 with the (natural) interpretations sN(x) = x + 1 and 0N = 0,
then the TRS R indeed implements the above interpolation constraints.3 For example, the
constraint fN(1) = 1 is expressed by f(s(0)) → 0 and s2(0) → f(s(0)). The former encodes
fN(1) > 0, whereas the latter encodes fN(1) < 2. Moreover, the rule s(0) → f(0) encodes
fN(0) < 1, which is equivalent to fN(0) = 0 in the domain of the natural numbers. Thus,
this interpolation constraint can be expressed by a single rewrite rule, whereas the other
two constraints require two rules each. Summing up, by virtue of the method of polynomial
interpolation, we have reduced the problem of enforcing a specific interpretation for some
unary function symbol to the problem of enforcing natural semantics for the symbols s and
0.

3In fact, one can even show that sN(x) = x + 1 is sufficient for this purpose.
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Next we elaborate on the ramifications of considering the TRS R in the context of
polynomial interpretations over R. To this end, let us assume that the symbols s and 0 are
interpreted by sR(x) = x + s0 and 0R = 0, so that s has some kind of successor function
semantics. Then the TRS R translates to the following constraints:

s0 − δ ≥R fR(0)

2s0 − δ ≥R fR(s0) fR(s0) ≥R 0 + δ

7s0 − δ ≥R fR(2s0) fR(2s0) ≥R 5s0 + δ

Hence, fR(0) is confined to the closed interval [0, s0 − δ], whereas fR(s0) is confined to [0 +
δ, 2s0−δ] and fR(2s0) to [5s0+δ, 7s0−δ]. Basically, this means that these constraints do not
uniquely determine the function fR. In other words, the method of polynomial interpolation
does not readily apply to the case of polynomial interpretations over R. However, we can
make it work. To this end, we observe that if s0 = δ, then the above system of inequalities
actually turns into the following system of equations, which can be viewed as a set of
interpolation constraints (parameterized by s0) that uniquely determine fR:

fR(0) = 0 fR(s0) = s0 fR(2s0) = 6s0

Clearly, if s0 = δ = 1, then the symbol f is fixed to the interpretation 2x2 − x, as was
the case in the context of polynomial interpretations over N (note that in the latter case
δ = 1 is implicit because of the equivalence x >N y ⇐⇒ x ≥N y + 1). Hence, we conclude
that once we can manage to design a TRS that enforces s0 = δ, we can again leverage
the method of polynomial interpolation to enforce a specific interpretation for some unary
function symbol. Moreover, we remark that the actual value of s0 is irrelevant for achieving
our goal. That is to say that s0 only serves as a scale factor in the interpolation constraints
determining fR. Clearly, if s0 6= 1, then fR is not fixed to the interpretation 2x2−x, however,
it is still fixed to an interpretation of the same (desired) shape. But more on this later.

4.2. Main Theorem

In the previous subsection we have presented the basic method that we use in order
to show that polynomial interpretations with real or rational coefficients do not properly
subsume polynomial interpretations with integer coefficients. The construction presented
there was based on several assumptions, the essential ones of which are:

(a) The symbol s had to be interpreted by a linear polynomial of the shape x + s0.
(b) The condition s0 = δ was required to hold.
(c) The function symbol f had to be interpreted by a quadratic polynomial.

Now the point is that one can get rid of all these assumptions by adding suitable rewrite
rules to the TRS R. The resulting TRS will be referred to as S, and it consists of the
following rewrite rules:
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s(0) → f(0) (1)

s2(0) → f(s(0)) (2)

s7(0) → f(s2(0)) (3)

f(s(0)) → 0 (4)

f(s2(0)) → s5(0) (5)

f(s2(x)) → h(f(x), g(h(x, x))) (6)

f(g(x)) → g(g(f(x))) (7)

g(s(x)) → s(s(g(x))) (8)

g(x) → h(x, x) (9)

s(x) → h(0, x) (10)

s(x) → h(x, 0) (11)

h(f(x), g(x)) → f(s(x)) (12)

In this system the rewrite rules (7) and (8) serve the purpose of ensuring the first of the above
items. Informally, (8) constrains the interpretation of the symbol s to a linear polynomial
by simple reasoning about the degrees of the left- and right-hand side polynomials, and (7)
does the same thing with respect to g. Because both interpretations are linear, compatibility
with (8) can only be achieved if the leading coefficient of the interpretation of s is one.

Concerning item (c) above, we remark that the tricky part is to enforce the upper bound
of two on the degree of the polynomial fR that interprets the symbol f. To this end, we make
the following observation. If fR is at most quadratic, then the function fR(x + s0)− fR(x) is
at most linear; that is, there is a linear function gR(x) such that gR(x) > fR(x+ s0)− fR(x),
or equivalently, fR(x)+gR(x) > fR(x+ s0), for all values of x. This can be encoded in terms
of rule (12) as soon as the interpretation of h corresponds to addition of two numbers. And
this is exactly the purpose of rules (9), (10) and (11). More precisely, by linearity of the
interpretation of g, we infer from (9) that the interpretation of h must have the linear shape
h2x + h1y + h0. Furthermore, compatibility with (10) and (11) implies h2 = h1 = 1 due to
item (a) above. Hence, the interpretation of h is x + y + h0, and it really models addition
of two numbers (modulo adding a constant).

Next we comment on how to enforce the second of the above assumptions. To this end,
we remark that the hard part is to enforce the condition s0 ≤ δ. The idea is as follows. First,
we consider rule (2), observing that if f is interpreted by a quadratic polynomial fR and s by
the linear polynomial x + s0, then (the interpretation of) its right-hand side will eventually
become larger than its left-hand side with growing s0, thus violating compatibility. In
this way, s0 is bounded from above, and the faster the growth of fR, the lower the bound.
The problem with this statement, however, is that it is only true if fR is fixed (which is a
priori not the case); otherwise, for any given value of s0, one can always find a quadratic
polynomial fR such that compatibility with (2) is satisfied. The parabolic curve associated
with fR only has to be flat enough. So, in order to prevent this, we have to somehow control
the growth of fR. Now that is where rule (6) comes into play, which basically expresses
that if you increase the argument of fR by a certain amount (i.e., 2s0), then the value of
the function is guaranteed to increase by a certain minimum amount, too. Thus, this rule
establishes a lower bound on the growth of fR. And it turns out that if fR has just the right
amount of growth, then we can readily establish the desired upper bound δ for s0.

Finally, having presented all the relevant details of our construction, it remains to
formally prove our main claim that the TRS S is polynomially terminating over N, but not
over R or Q.

Lemma 4.3. The TRS S is polynomially terminating over N.

Proof. We consider the following interpretation:

0N = 0 sN(x) = x + 1 fN(x) = 2x2 − x gN(x) = 4x + 4 hN(x, y) = x + y
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Note that the polynomial 2x2 − x is a permissible interpretation function as it is both non-
negative and strictly monotone over the natural numbers (cf. Figure 1). The rewrite rules
of S are compatible with this interpretation because the resulting inequalities

1 >N 0 32x2 + 60x + 28 >N 32x2 − 16x + 20

2 >N 1 4x + 8 >N 4x + 6

7 >N 6 4x + 4 >N 2x

1 >N 0 x + 1 >N x

6 >N 5 x + 1 >N x

2x2 + 7x + 6 >N 2x2 + 7x + 4 2x2 + 3x + 4 >N 2x2 + 3x + 1

are clearly satisfied for all natural numbers x.

Lemma 4.4. The TRS S is not polynomially terminating over R.

Proof. Let us assume that S is polynomially terminating over R and derive a contradiction.
Compatibility with rule (8) implies

deg(gR(x)) · deg(sR(x)) ≥ deg(sR(x)) · deg(sR(x)) · deg(gR(x))

As a consequence, deg(sR(x)) ≤ 1, and because sR and gR must be strictly monotone, we
conclude deg(sR(x)) = 1. The same reasoning applied to rule (7) yields deg(gR(x)) = 1.
Hence, the symbols s and g must be interpreted by linear polynomials. So sR(x) = s1x+ s0

and gR(x) = g1x + g0 with s0, g0 ∈ R0 and, due to Lemma 2.6, s1 ≥R 1 and g1 ≥R 1. Then
the compatibility constraint imposed by rule (8) gives rise to the inequality

g1s1x + g1s0 + g0 >R0,δ s2
1g1x + s2

1g0 + s1s0 + s0 (13)

which must hold for all non-negative real numbers x. This implies the following condition
on the respective leading coefficients: g1s1 ≥R s2

1
g1. Because of s1 ≥R 1 and g1 ≥R 1, this

can only hold if s1 = 1. Hence, sR(x) = x+ s0. This result simplifies (13) to g1s0 >R0,δ 2s0,
which implies g1s0 >R 2s0. From this, we conclude that s0 >R 0 and g1 >R 2.

Now suppose that the function symbol f were also interpreted by a linear polynomial
fR. Then we could apply the same reasoning to rule (7) because it is structurally equivalent
to (8), thus inferring g1 = 1. However, this would contradict g1 >R 2; therefore, fR cannot
be linear.

Next we turn our attention to the rewrite rules (9), (10) and (11). Because gR is linear,
compatibility with (9) constrains the function h : R0 → R0, x 7→ hR(x, x) to be at most
linear. This can only be the case if hR contains no monomials of degree two or higher.
In other words, hR(x, y) = h1 · x + h2 · y + h0, where h0 ∈ R0, h1 ≥R 1 and h2 ≥R 1
(cf. Lemma 2.6). Because of sR(x) = x + s0, compatibility with (11) implies h1 = 1, and
compatibility with (10) implies h2 = 1; thus, hR(x, y) = x + y + h0.

Using the obtained information in the compatibility constraint associated with rule
(12), we get

gR(x) + h0 >R0,δ fR(x + s0) − fR(x) for all x ∈ R0

This implies that deg(gR(x) + h0) ≥ deg(fR(x + s0) − fR(x)), which simplifies to 1 ≥
deg(fR(x))− 1 because s0 6= 0. Consequently, fR must be a quadratic polynomial. Without
loss of generality, let fR(x) = ax2 + bx + c, subject to the constraints: a >R 0 and c ≥R 0
because of non-negativity (for all x ∈ R0), and aδ + b ≥R 1 because fR(δ) >R0,δ fR(0) due
to strict monotonicity of fR.
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Next we consider the compatibility constraint associated with rule (6), from which we
deduce an important auxiliary result. After unraveling the definitions of >R0,δ and the
interpretation functions, this constraint simplifies to

4as0x + 4as2
0 + 2bs0 ≥R 2g1x + g1h0 + g0 + h0 + δ for all x ∈ R0,

which implies the following condition on the respective leading coefficients: 4as0 ≥R 2g1;
from this and g1 >R 2, we conclude

as0 >R 1 (14)

and note that as0 = f ′R(s0/2) − f ′R(0). Hence, as0 expresses the change of the slopes of the
tangents to fR at the points (0, fR(0)) and (s0/2, fR(s0/2)), and thus (14) actually sets a
lower bound on the growth of fR.

Now let us consider the combined compatibility constraint imposed by rule (2) and
rule (4), namely 0R + 2s0 >R0,δ fR(sR(0R)) >R0,δ 0R, which implies 0R + 2s0 ≥R 0R + 2δ
by definition of >R0,δ. Thus, we conclude s0 ≥R δ. In fact, we even have s0 = δ, which
can be derived from the compatibility constraint of rule (2) using the conditions s0 ≥R δ,
aδ + b ≥R 1 and as0 + b ≥R 1, the combination of the former two conditions:

0R + 2s0 >R0,δ fR(sR(0R))

0R + 2s0 − δ ≥R fR(sR(0R))

= a(0R + s0)
2 + b(0R + s0) + c

= a02
R + 0R(2as0 + b) + as2

0 + bs0 + c

≥R a02
R + 0R + as2

0 + bs0 + c

≥R 0R + as2
0 + bs0

≥R 0R + as2
0 + (1 − aδ)s0

= 0R + as0(s0 − δ) + s0

Hence, 0R + 2s0 − δ ≥R 0R + as0(s0 − δ) + s0, or equivalently, s0 − δ ≥R as0(s0 − δ). But
because of (14) and s0 ≥R δ, this inequality can only be satisfied if:

s0 = δ (15)

This result has immediate consequences concerning the interpretation of the constant 0. To
this end, we consider the compatibility constraint of rule (10), which simplifies to s0 ≥R

0R +h0 + δ. Because of (15) and the fact that 0R and h0 must be non-negative, we conclude
0R = h0 = 0.

Moreover, condition (15) is the key to the proof of this lemma. To this end, we consider
the compatibility constraints associated with the five rewrite rules (1)–(5):

s0 >R0,s0
fR(0)

2s0 >R0,s0
fR(s0) fR(s0) >R0,s0

0

7s0 >R0,s0
fR(2s0) fR(2s0) >R0,s0

5s0

By definition of >R0,s0
, these inequalities give rise to the following system of equations:

fR(0) = 0 fR(s0) = s0 fR(2s0) = 6s0

After unraveling the definition of fR and substituting z := as0, we get a system of linear
equations in the unknowns z, b and c

c = 0 z + b = 1 4z + 2b = 6
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which has the unique solution z = 2, b = −1 and c = 0. Hence, fR must have the shape
fR(x) = ax2−x = ax(x− 1

a
) in every compatible polynomial interpretation over R. However,

this function is not a permissible interpretation for the function symbol f because it is not
non-negative for all x ∈ R0. In particular, it is negative in the open interval (0, 1

a
); e.g.,

fR( 1

2a
) = − 1

4a
. Hence, S is not compatible with any polynomial interpretation over R.

Remark 4.5. In this proof the interpretation of f is fixed to fR(x) = ax2 − x, which
violates well-definedness in R0. However, this function is obviously well-defined in Rm for
a properly chosen negative real number m. So, what happens if we take this Rm instead
of R0 as carrier of a polynomial interpretation? To this end, we observe that fR(0) = 0
and fR(δ) = δ(aδ − 1) = δ(as0 − 1) = δ. Now let us consider some negative real number
x0 ∈ Rm. Then fR(x0) >R 0 such that fR(δ) − fR(x0) <R δ, which means that fR violates
monotonicity with respect to the order >Rm,δ.

The previous lemma, together with Theorem 3.2, yields the following corollary.

Corollary 4.6. The TRS S is not polynomially terminating over Q.

Finally, combining the results presented in this section, we establish the main theorem
of this paper.

Theorem 4.7. There are TRSs that can be proved polynomially terminating over N, but
cannot be proved polynomially terminating over R or Q.

5. Conclusion and Future Work

In this paper, we investigated the relationship of polynomial interpretations with real,
rational and integer coefficients with respect to termination proving power. In particular,
we presented two new results, the first of which shows that polynomial interpretations with
real coefficients subsume polynomial interpretations with rational coefficients, and the sec-
ond of which shows that polynomial interpretations with real or rational coefficients do not
properly subsume polynomial interpretations with integer coefficients, a result that comes
somewhat unexpected. Together with the results of Lucas [Luc06], our results imply that
polynomial interpretations with real or rational coefficients are incomparable to polyno-
mial interpretations with integer coefficients with respect to termination proving power.
Notwithstanding all these facts, the overall picture is not quite complete yet, there is still
an open question: Are there TRSs that are polynomially terminating over N and R, but
not over Q? Graphically, this question amounts to the inhabitation of the area depicted in
red in Figure 2, which summarizes our results and the results of Lucas [Luc06].

We conclude this paper with two additional observations. First, we show that for
polynomial interpretations over R it suffices to consider real algebraic4 numbers as interpre-
tation domain. Second, we present an alternative proof of Theorem 4.1, which shows the
inhabitation of the area with the symbol Q in Figure 2.

Concerning the use of real algebraic numbers in polynomial interpretations, in [Luc07,
Section 6] it is shown that it suffices to consider polynomials with real algebraic coefficients
as interpretations of function symbols. Now the obvious question is whether it is also
sufficient to consider only the (non-negative) real algebraic numbers Ralg instead of the

4A real number is said to be algebraic if it is a root of a non-zero polynomial in one variable with rational
coefficients.
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terminating TRSs

R Q

N

Figure 2: Comparison.

entire set R of real numbers as interpretation domain. We give an affirmative answer to
this question by extending the result of [Luc07]. To this end, let us assume that R is a
TRS that is polynomially terminating over R. So, using the result of [Luc07], there exist
a positive real number δ and a polynomial fR ∈ Ralg[x1, . . . , xn] for every n-ary function
symbol f ∈ F such that:

(a) for all n-ary f ∈ F , fR(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ R0,
(b) for all f ∈ F , fR is strictly monotone with respect to >R0,δ in all arguments,
(c) for every rewrite rule l → r ∈ R, Pl >R0,δ Pr for all x1, . . . , xm ∈ R0.

Treating δ as a variable (which we will later quantify existentially), we note that, similarly
to the proof of Theorem 3.2, all three conditions can be phrased as quantified polynomial
inequalities of the shape “P (x1, . . . , xk, δ) ≥ 0 for all x1, . . . , xk ∈ R0” for some polynomial
P with real algebraic coefficients. Moreover, we note that there are finitely many of them
if we assume R to be a finite TRS over a finite signature. Next we observe that any of
these quantified inequalities can readily be expressed as a formula in the first order theory of
ordered fields (where the atoms are polynomial (in)equalities, cf. [Bas06]) with δ as only free
variable. Taking the conjunction of all these formulas and existentially quantifying δ and
adding the conjunct δ > 0, we obtain a sentence S in the first order theory of ordered fields,
where all coefficients are real algebraic numbers. By assumption, this sentence holds in R,
and since both R and Ralg are real closed fields with Ralg ⊂ R and all coefficients in S are
from Ralg, we may apply the Tarski-Seidenberg transfer principle ([Bas06, Theorem 2.80]),
from which we infer that S holds in R if and only if it holds in Ralg. Hence S also holds in
Ralg and therefore the TRS R is polynomially terminating over Ralg (whose formal definition
is the obvious specialization of Definition 2.5). This shows that polynomial termination over
R implies polynomial termination over Ralg. As the reverse implication can be shown to
hold by the same technique, we conclude that polynomial termination over R is equivalent
to polynomial termination over Ralg.

Finally, we present our proof of Theorem 4.1, which is both shorter and simpler than
the original proof in [Luc06, pp. 62–67]. Moreover, it shows that the strict inclusion holds
even for ground TRSs.

Proof of Theorem 4.1. Consider the TRS T comprising the two rewrite rules

f(a) → f(b) g(b) → g(a)

We claim that T is polynomially terminating over Q, but not over N. We start with the
latter. In every compatible polynomial interpretation over N, we have aN > bN or aN ≤ bN.
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Strict monotonicity of fN and gN yields gN(aN) > gN(bN) or fN(aN) ≤ fN(bN). In both cases
compatibility is violated. It remains to show that T is polynomially terminating over Q.
The following interpretation applies:

δ := 1 aQ := 0 bQ := 1

2
gQ(x) := 2x fQ(x) := 6x2 − 5x + 2

First, we show compatibility of this interpretation with the rules of T . To this end, we
observe that the inequalities

fQ(aQ) >Q0,δ fQ(bQ) gQ(bQ) >Q0,δ gQ(aQ)

which simplify to 2 >Q0,1 1 and 1 >Q0,1 0, do indeed hold by definition of >Q0,1. Next we
show well-definedness (non-negativity) and monotonicity of fQ and gQ.

For well-definedness we have to show fQ(x) ≥ 0 and gQ(x) ≥ 0 for all non-negative
rational numbers x. While gQ obviously satisfies this condition, fQ requires further reason-
ing. To this end, it suffices to observe that fQ has a global minimum at x0 = 5

12
, namely

fQ(x0) = 23

24
, which is positive.

The strict monotonicity of gQ follows from Lemma 2.7. The function fQ is strictly
monotone with respect to >Q0,δ if and only if fQ(x + h) − fQ(x) ≥ δ for all non-negative
rational numbers x and h ≥ δ. Thus, we have to show that h(6h − 5 + 12x) ≥ 1 for all
non-negative rational numbers x and h ≥ 1. As x is non-negative and occurs only with a
positive sign, this is equivalent to showing that h(6h − 5) ≥ 1 for all non-negative rational
numbers h ≥ 1, which is easy. Note that fQ is not strictly monotone with respect to the
standard order >Q on Q.
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