
AC Completion with Termination Tools?

Sarah Winkler and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. We present mascott, a tool for Knuth-Bendix completion
modulo the theory of associative and commutative operators. In con-
trast to classical completion tools, mascott does not rely on a fixed AC-
compatible reduction order. Instead, a suitable order is implicitly con-
structed during a deduction by collecting all oriented rules in a similar
fashion as done in the tool Slothrop. This allows for convergent systems
which cannot be completed using standard orders. We outline the under-
lying inference system and comment on implementation details such as
the use of multi-completion, term indexing techniques, and critical pair
criteria.

1 Introduction

Reasoning modulo an equational theory A is required in many practical prob-
lems. The generalization of the classical Knuth-Bendix completion algorithm to
rewriting modulo A is well-known (see [3] for an overview). Like ordinary comple-
tion, completion modulo A critically depends on the choice of the A-compatible
reduction order supplied as input. In this system description we show how the
use of termination tools supporting termination modulo A can replace a fixed
reduction order, in a similar fashion as proposed by the authors of the tool
Slothrop [20]. Recent developments in the area of termination proving can thus
be directly exploited to obtain convergent systems for theories which were diffi-
cult to complete before. Our method can be combined with the multi-completion
approach proposed by Kondo and Kurihara [14]. For equational theories A con-
sisting of AC axioms, this approach is implemented in our new tool mascott.
Our contribution can thus be viewed as an extension of the completion tool
mkbTT [19, 21] to AC theories. As an example, mascott successfully completes
the following system (adapted from [17]) describing addition on natural numbers
represented in binary:

#0 ' # (x+ y)1 ' x0 + y1 triple(x) ' x0 + x

(x+ y)0 ' x0 + y0 x0 + y0 + #10 ' x1 + y1

Here + is an AC operator, 0 and 1 are unary operators in postfix notation,
and # denotes the empty bit sequence. For example, #100 represents the num-
ber 4 in binary. The following completed system is obtained when using (e.g.)
AProVE [11] as a termination prover, but cannot be shown terminating by any
? The first author is supported by a DOC-fFORTE fellowship of the Austrian Academy

of Sciences.



standard AC-compatible simplification order:

#0→ # triple(x)→ x0 + x

(x+ #)0→ x0 + # (x+ #)1→ x1 + #
x0 + y0→ (x+ y)0 x0 + y0 + z → (x+ y)0 + z

x0 + y1→ (x+ y)1 x0 + y1 + z → (x+ y)1 + z

x1 + y1→ (x+ y + #1)0 x1 + y1 + z → (x+ y + #1)0 + z

Our tool mascott can be accessed via a simple web interface.1 The sources and
a binary are available as well. In the sequel we outline the underlying inference
system, describe the implementation, and give some (preliminary) experimental
results for mascott.

2 Inference System

We assume familiarity with term rewriting and Knuth-Bendix completion, and
recall only some central notions. We consider a rewrite system R and a set of
equations A. A term s rewrites to t in R modulo A, denoted by s →R/A t,
whenever s↔∗A · →R · ↔∗A t. The system R terminates modulo A whenever the
relation→R/A is well-founded. It is convergent modulo A if in addition for every
conversion s↔∗A∪R t there exist terms u and v such that s→∗R u↔∗A v ←∗R t. To
check termination of R modulo A, A-compatible reduction orders > satisfying
↔∗A ·> ·↔∗A ⊆ > can be used. Since the relation→R/A is undecidable in general,
one typically considers the rewrite system RA consisting of all rules s→ t such
that s ↔∗A `σ and t = rσ for some rule ` → r in R and substitution σ. We
obviously have →R ⊆ →RA

⊆ →R/A. Thus, if R is convergent modulo A then
also RA is convergent modulo A [3], and defines the same normal forms as R/A.
Hence rewriting using rules in RA constitutes a decidable way to compute with
respect to R/A.

We confine our analysis to theories A for which minimal sets of complete
unifiers are computable, and denote by CPA(R) the set of A-critical pairs among
rules in R.2 For a rule `→ r and a variable-disjoint equation u ' v in A such that
a proper non-variable subterm u|p of u and ` are A-unifiable, u[`]p → u[r]p is an
A-extended rule [18]. The set of A-extended rules of R is denoted by EXTA(R).

Our tool is based on a variant of the inference system E for extended comple-
tion developed by Bachmair [3, Chapter 3]. In order to get rid of a fixed reduction
order and have termination checks as side conditions, the system was modified to
resemble the calculus underlying Slothrop [20]. The inference rules thus operate
on a set of equations E, a set of rewrite rules R partitioned into unprotected
rules N and protected rules S, and a constraint system C. The resulting infer-
ence system ETT for completion modulo the theory A is depicted in Figure 1.
1 http://cl-informatik.uibk.ac.at/software/mascott
2 Although our tool is restricted to the theory of associative and commutative op-

erators, the underlying inference system is presented for arbitrary theories A that
satisfy the stated condition.



deduce
E, N, S, C

E ∪ {s ' t}, N, S, C
if s↔∗A∪R t

extend
E, N, S, C

E, N, S ∪ {s→ t}, C if s ' t ∈ EXTA(R)

orient
E ∪ {s ' t}, N, S, C

E, N ∪ {s→ t}, S, C ∪ {s→ t} if C ∪ {s→ t} terminates modulo A

protect
E, N ∪ {s→ t}, S, C

E, N, S ∪ {s→ t}, C

delete
E ∪ {s ' t}, N, S, C

E, N, S, C
if s↔∗A t

simplify
E ∪ {s ' t}, N, S, C

E ∪ {s ' u}, N, S, C
if t→R/A u

compose
E, N ∪ {s→ t}, S, C

E, N ∪ {s→ u}, S, C
if t→R/A u

E, N, S ∪ {s→ t}, C
E, N, S ∪ {s→ u}, C if t→R/A u

collapse
E, N ∪ {t→ s}, S, C

E ∪ {u ' s}, N, S, C
if t↔6p

A t′ →p
`→r u for some rule

`→ r in R with t� `

Fig. 1. System ETT of extended completion with termination checks.

Here � is some well-founded order on terms such as the encompassment order3

and the relation ' is assumed to be symmetric.
A sequence (E0,∅,∅,∅) ` (E1, N1, S1, C1) ` (E2, N2, S2, C2) ` · · · of in-

ference steps in ETT is called a run. Note that orient is the only inference rule
which actually modifies the set C of constraint rules. Since an A-termination
check is performed whenever a rule is added, all constraint systems Cn are ter-
minating modulo A. Hence the transitive closure of the rewrite relation →+

Cn/A

is an A-compatible reduction order, so runs in ETT can be simulated in E :

Lemma 1.

1. For every finite run (E0,∅,∅,∅) `∗ (En, Nn, Sn, Cn) in ETT there is a cor-
responding run (E0,∅,∅) `∗ (En, Nn, Sn) in E using the A-compatible re-
duction order →+

Cn/A.
2. Every run (E0,∅,∅) `∗ (En, Nn, Sn) in E using an A-compatible reduction

order > can be simulated in an ETT run (E0,∅,∅,∅) `∗ (En, Nn, Sn, Cn)
such that Cn ⊆ > holds. ut

3 in which s is greater than t if a subterm of s is an instance of t but not vice versa.



The straightforward induction proofs closely resemble the respective counter-
parts for standard completion and are thus omitted. Since our implementation
is restricted to the theory AC of associative and commutative operators in FAC ,
we will now focus on this setting. Let Re denote the rewrite system containing
R, extended with all rules of the form f(`, x) → f(r, x) such that f ∈ FAC ,
`→ r ∈ R and x is a fresh variable.

Corollary 1. If a non-failing finite ETT run (E0,∅,∅,∅) `∗ (∅, Nn, Sn, Cn)
satisfies CPAC(Rn) ⊆

⋃
iEi and (Rn)e ⊆

⋃
i Si then (Rn)AC is convergent

modulo AC. ut

3 Implementation

In this section we present some implementation details of mascott, which stands
for multi-associative/commutative completion with termination tools.

If an equation s ' t can be oriented in both directions, the orient rule in ETT

allows for a choice. In order not to restrict to one orientation, we adapted the
multi-completion approach proposed by Kondo and Kurihara [14] to the setting
of completion modulo a theory A. Similar to standard completion the obtained
method can be described by an inference system operating on sets of nodes N ,
which are defined as in [19], the difference being that a rewrite label Ri is now
split into unprotected and protected labels (Ni, Si). Figure 2 shows the inference
rules orient and extend which are specific to completion modulo A.

As an example, on input {d(s(x)+y) ' d(p(s(x))+y), p(s(s(x))) ' s(p(s(x)))}
with + an AC symbol, any completion procedure using standard AC-compatible
simplification orders orients the first equation from right to left, causing diver-
gence of the procedure. In contrast, our tool keeps track of both orientations and
immediately outputs the AC-convergent system obtained when orienting both
rules from left to right.

The termination checks required in orient inference steps may be performed
by an external tool supporting AC termination such as AProVE or muterm [1].
Alternatively, a modified version of TTT2 [13] can be used internally, supporting
AC-dependency pairs [10, 17, 2] and reduction pairs induced by polynomial or
matrix interpretations. A criterion for AC-compatibility of polynomial interpre-
tations was given in [5]. It is not difficult to check that matrix interpretations [7]
are AC-compatible if every AC symbol f is interpreted as fM(x, y) = Ax+By+b
where the square matrices A and B satisfy A = A2 = B in addition to the usual
constraint that the top-left entry of A is positive.

In order to limit the number of equational consequences, only prime critical
pairs are computed [12]. For AC-unification, the algorithms proposed in [16, 8]
were used, in the latter case incorporating the SMT solver Yices to solve linear
Diophantine equations. For rewriting, AC-discrimination trees allow for a fast
pre-selection of matching rules [4].

The tool is equipped with a simple command-line interface. The termination
prover is given as argument to the -tp option. It is supposed to take the name of



orient
N ∪ { 〈s : t, (N0, S0), (N1, S1), E, C0, C1〉 }

splitP (N ) ∪ { 〈s : t, (N0 ∪Rlr, S0), (N1 ∪Rrl, S1), E′, C0 ∪Rlr, C1 ∪Rrl〉 }
with Elr, Erl ⊆ E such that Elr∪Erl 6= ∅, P = Elr∩Erl, E′ = E \(Elr∪Erl),
C[N, p] ∪ {s → t} terminates modulo A for all p ∈ Elr, C[N, p] ∪ {t → s}
terminates modulo A for all p ∈ Erl, Rlr = (Elr \ Erl) ∪ {p0 | p ∈ P} and
Rrl = (Erl \ Elr) ∪ {p1 | p ∈ P} where splitP (N) replaces every p ∈ P in any
label of a node in N by p0 and p1

extend
N

N ∪ { 〈`′ : r′, (∅, N0 ∪ S0), (∅, ∅), ∅, ∅, ∅〉 }
if 〈` : r, (N0, S0), . . . 〉 ∈ N , `′ → r′ ∈ EXTA{`→ r} and N0 ∪ S0 6= ∅

Fig. 2. Two inference rules for multi-completion modulo A.

a file describing the termination problem in the TPDB4 format and print YES on
the first line of the output if termination modulo AC could be established. Our
tool accepts two time limits: for the overall procedure (-t) and for each call to
the termination prover (-T). The option -cp prime allows to apply primality as
a critical pair criterion. Further options are -ct to print the completed system
and -st to obtain some statistics. An example call might thus look as follows:

mascott -t 300 -T 1 -st -tp muterm binary_arithmetic.trs

4 Experiments

For our experiments we collected AC completion problems from a number of
different sources and ran mascott with different termination provers as backends.
All of the tests were performed on an Intel Core Duo running at a clock rate of
1.4 GHz with 2.8 GB of main memory.

The results are summarized in Table 1, where the superscripts attached to
the problems indicate their source: a refers to [9], b refers to [17], and c is asso-
ciated with [15]. The remaining examples were added by the authors. Columns
(1) list the total time in seconds while columns (2) give the percentage of time
spent on termination. The symbol∞ marks a timeout of 300 seconds. For inter-
nal termination checks a termination strategy employing dependency pairs and
matrix interpretations was used. As expected, this strategy is far less powerful
than the techniques used by AProVE or muterm.

We also include a comparison with CiME [6], the only other current tool for
AC completion that we are aware of, although this requires the specification of
a concrete AC-RPO or AC-compatible polynomial interpretation by the user.
For our experiments we supplied an appropriate order whenever possible, and in
4 Termination Problem Data Base, http://www.lri.fr/~marche/tpdb/



mascott CiME
internal AProVE muterm
(1) (2) (1) (2) (1) (2) (1)

Abelian groups (AG)a 14.48 63 9.33 70 3.02 7 0.05
AG + homomorphism 169.62 87 73.87 84 30.20 15 0.05
arithmetica ∞ 24.58 47 35.03 8 ?
AC-ring with unita ∞ 64.15 53 55.96 38 0.1
associative ring with unita ∞ ∞ 163.96 71 0.1

binary arithmeticb ∞ 78.36 89 23.94 20 ?
commutative monoida 0.5 2 0.7 95 0.03 32 0.01
example 5.4.2c 8.26 97 5.94 98 0.39 79 0.01
example from Section 3 ∞ ∞ 0.74 91 ?
ICSa 12.75 7 9.03 34 6.10 1 0.01
maxc ∞ 8.34 98 0.29 58 ?
multisets over {0, 1} ∞ 117.11 96 9.76 52 ?
nondeterministic machinea ∞ ∞ ∞ 0.2
ringa ∞ 224.99 75 125.88 67 0.07
ring with unita ∞ 201.11 76 81.94 62 0.1
semiringa ∞ 24.90 75 12.35 45 0.1
semilatticea 10.12 4 5.66 12 5.33 1 0.01
sum ∞ 7.58 98 0.33 54 ?

completed systems 6 13 17 12
average time for success 33.54 58.60 42.71 0.07

Table 1. Comparison of mascott using different termination backends and CiME.

these cases CiME completed the given problems considerably faster. However, a
suitable order does not always exist (as for the example mentioned in Section 3)
or is not known (as for the binary addition example from the introduction or
the arithmetic problem). In Table 1 the symbol ? marks these cases.

In line with previous work on AC completion, the use of critical pair criteria
turned out to be highly beneficial. Restricting to so-called prime critical pairs
increases performance on the examples from Table 1 by 40%. For example, with-
out the criterion the theory of associative rings with unit cannot be completed
within 300 seconds.

5 Conclusion

Apparently, mascott is the only tool for AC completion which is automatic in
that it does not require a fixed reduction order as input. To the best of our knowl-
edge, mascott is also the first AC completion tool not restricted to AC-RPO or
AC-compatible polynomial interpretations as termination methods. Instead, all
techniques developed for AC termination can be exploited, such as the depen-
dency pair framework or matrix interpretations. Our tool is thus able to produce
novel complete systems such as the one mentioned in the introduction.



References

1. B. Alarcón, R. Gutiérrez, S. Lucas, and R. Navarro-Marset. Proving termination
properties with MU-TERM. In Proc. 13th AMAST, volume 6486 of LNCS, pages
201–208, 2011.

2. B. Alarcón, S. Lucas, and J. Meseguer. A dependency pair framework for A ∨ C-
termination. In Proc. 8th WRLA, volume 6381 of LNCS, pages 35–51, 2010.

3. L. Bachmair. Canonical Equational Proofs. Progress in Theoretical Computer
Science. Birkhäuser, 1991.

4. L. Bachmair, T. Chen, and I.V. Ramakrishnan. Associative-commutative discrim-
ination nets. In Proc. 5th TAPSOFT, volume 668 of LNCS, pages 61–74, 1993.

5. A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by polynomial
interpretations and its implementation. SCP, 9(2):137–159, 1987.

6. E. Contejean and C. Marché. CiME: Completion modulo E. In Proc. 7th RTA,
volume 1103 of LNCS, pages 416–419, 1996.

7. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. JAR, 40(2-3):195–220, 2008.

8. A. Fortenbacher. An algebraic approach to unification under associativity and
commutativity. JSC, 3(3):217–229, 1987.

9. W. Gehrke. Detailed catalogue of canonical term rewrite systems generated auto-
matically. Technical report, RISC Linz, 1992.

10. J. Giesl and D. Kapur. Dependency pairs for equational rewriting. In Proc. 12th
RTA, volume 2051 of LNCS, pages 93–108, 2001.

11. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. 3rd IJCAR, volume 4130
of LNAI, pages 281–286, 2006.

12. D. Kapur, D.R. Musser, and P. Narendran. Only prime superpositions need be
considered in the Knuth-Bendix completion procedure. JSC, 6(1):19–36, 1988.

13. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool
2. In Proc. 20th RTA, volume 5595 of LNCS, pages 295–304, 2009.

14. M. Kurihara and H. Kondo. Completion for multiple reduction orderings. JAR,
23(1):25–42, 1999.

15. K. Kusakari. AC-Termination and Dependency Pairs of Term Rewriting Systems.
PhD thesis, JAIST, 2000.

16. P. Lincoln and J. Christian. Adventures in associative-commutative unification.
JSC, 8:393–416, 1989.

17. C. Marché and X. Urbain. Modular and incremental proofs of AC-termination.
JSC, 38(1):873–897, 2004.

18. G.E. Peterson and M.E. Stickel. Complete sets of reductions for some equational
theories. JACM, 28(2):233–264, 1981.

19. H. Sato, S. Winkler, M. Kurihara, and A. Middeldorp. Multi-completion with
termination tools (system description). In Proc. 4th IJCAR, volume 5195 of LNAI,
pages 306–312, 2008.

20. I. Wehrman, A. Stump, and E.M. Westbrook. Slothrop: Knuth-Bendix completion
with a modern termination checker. In Proc. 17th RTA, volume 4098 of LNCS,
pages 287–296, 2006.

21. S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Optimizing mkbTT (system
description). In Proc. 21st RTA, volume 6 of LIPIcs, pages 373–384, 2010.


