
Layer Systems for Proving Confluence∗

Bertram Felgenhauer, Harald Zankl, and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract
We introduce layer systems for proving generalizations of the modularity of confluence for first-
order rewrite systems. Layer systems specify how terms can be divided into layers. We establish
structural conditions on those systems that imply confluence. Our abstract framework cov-
ers known results like many-sorted persistence, layer-preservation and currying. We present a
counterexample to an extension of the former to order-sorted rewriting and derive new sufficient
conditions for the extension to hold.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Term rewriting, Confluence, Modularity, Persistence

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2011.288

1 Introduction

In this paper we revisit the celebrated modularity result of confluence, due to Toyama [13]. It
states that the union of two confluent rewrite systems is confluent, provided the participating
rewrite systems do not share function symbols. This result has been reproved several times,
using category theory [10], ordered completion [6], and decreasing diagrams [14]. In practice,
modularity is of limited use. More useful techniques, in the sense that rewrite systems can
be decomposed into smaller systems that share function symbols and rules, are based on
type introduction [2], layer-preservation [11], and commutativity [12].

Type introduction [16] restricts the set of terms that have to be considered to the well-
typed terms according to any many-sorted type discipline which is compatible with the rewrite
system under consideration. A property of rewrite systems for which type introduction is
correct is called persistent and Aoto and Toyama [2] showed that confluence is persistent.
In [1] they extended the latter result by considering an order-sorted type discipline. However,
we show that the conditions imposed in [1] are not sufficient for confluence.

The proofs in [11] and [1,2] are adaptations of the proof of Toyama’s modularity result
by Klop et al. [9]. A more complicated proof using concepts from [9] has been given by
Kahrs, who showed in [7] that confluence is preserved under currying [8]. In this paper we
introduce layer systems as a common framework to capture the results of [2, 7, 11,13] and
to identify appropriate conditions to restore the persistence of confluence for order-sorted
rewriting [1]. Layer systems identify the parts that are available when decomposing terms.
The key proof idea remains the same. We treat each such layer independently from the others
where possible, and deal with interactions between layers separately. The main advantage of
and motivation for our proof is that the result becomes reusable; instead of checking every
detail of a complex proof, we have to check a couple of comparatively simple, structural
conditions on layer systems instead.

The remainder of this paper is organized as follows. In the next section we recall
preliminaries. Section 3 presents a counterexample to [1, Theorem 4.12]. Layer systems are

∗ This research was supported by the Austrian Science Fund (FWF) P22467-N23.

© Bertram Felgenhauer, Harald Zankl, and Aart Middeldorp;
licensed under Creative Commons License NC-ND

31st Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011).
Editors: Supratik Chakraborty, Amit Kumar; pp. 288–299

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.288
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

B. Felgenhauer, H. Zankl, and A. Middelorp 289

introduced in Section 4 and in Section 5 we develop conditions that guarantee the confluence
of rewrite systems if a compatible layer system exists. In Section 6 we instantiate the abstract
setting to cover the applications mentioned earlier before concluding in Section 7. Proofs can
be found in an accompanying technical report [5] but key lemmata are presented to indicate
the overall proof idea.

2 Preliminaries

We assume familiarity with rewriting [3]. A signature consists of function symbols F and
variables V. Each f ∈ F has a fixed arity arity(f). We assume that V is infinite. The set of
terms over the signature 〈F ,V〉 is denoted by T (F ,V). The sets of variables and function
symbols occurring in a term t are denoted by Var(t) and Fun(t), respectively. The positions
of a term t are strings of natural numbers, ε for the root, and ip if t = f(t1, . . . , ti, . . . , tn)
and p is a position of ti. Pos(t) is the set of all positions of t. For positions p, q, r we write
p < q if p is a proper prefix of q, p 6 q if p < q or p = q, p ‖ q if neither p < q nor q 6 p.
If p 6 q then r = q \ p denotes the unique position such that pr = q. Given terms t and
s, t|p is the subterm at position p of t, t(p) is the root symbol of t|p and t[s]p denotes the
result of replacing t|p by s in t. For X ⊆ F ∪ V, we let PosX(t) = {p ∈ Pos(t) | t(p) ∈ X}.
A substitution is a map σ : V → T (F ,V) which extends homomorphically to terms.

A rewrite rule is a pair of terms (`, r) ∈ T (F ,V)2, written ` → r such that ` /∈ V and
Var(`) ⊇ Var(r). A term rewrite system (TRS) is a set of rewrite rules. The rewrite relation
induced by a TRS R is denoted →R. We write ←, →=, →+ and →∗ to denote the inverse,
the reflexive closure, the transitive closure and the reflexive and transitive closure of a
relation →, respectively. A relation → is confluent if ∗← ·→∗ ⊆ →∗ · ∗← and terminating if
→+ is well-founded. A TRS R inherits these properties from →R.

Next we recall many-sorted terms. Let S be a set of sorts. A signature 〈F ,V〉 is
S-sorted, if every n-ary f ∈ F is equipped with a sort declaration α1 × · · · × αn → α

where α1, . . . , αn, α ∈ S and every x ∈ V has exactly one sort α ∈ S. We let Vα = {x ∈
V | x has sort α}, and require that Vα is infinite for all α ∈ S. The set of many-sorted
terms, TS(F ,V), is the union of the sets Tα(F ,V) for α ∈ S that are inductively defined as
follows: Vα ⊆ Tα(F ,V) and f(t1, . . . , tn) ∈ Tα(F ,V) whenever f ∈ F has sort declaration
α1 × · · · × αn → α and ti ∈ Tαi(F ,V) for all 1 6 i 6 n. If t ∈ Tα(F ,V) for some α ∈ S
then we say that t has sort α and write sort(t) = α. A many-sorted (or S-sorted) TRS
consists of an S-sorted signature and a set R of rewrite rules between many-sorted terms
of the same sort. A property P of TRSs is called persistent if a many-sorted TRS has the
property P if and only if its underlying (unsorted) TRS has the property P . To obtain
(S,�)-order-sorted terms, we equip the sorts of an S-sorted signature with a partial order �.
Each set Tα(F ,V) of S-sorted terms of sort α is extended with f(t1, . . . , tn) whenever f ∈ F
has sort declaration α1 × · · · ×αn → α and, for all 1 6 i 6 n, ti ∈ Tβi(F ,V) for some sort βi
with αi � βi. A variable occurrence x = t|p ∈ Vα is called strictly bound if p = ε or its sort
exactly matches that of its context, i.e., αi = βi above.

3 A Counterexample

The result claimed in [1] states that the underlying unsorted TRS R of a confluent (S,�)-
order-sorted TRS R is confluent (on arbitrary terms) provided the strict part of � is
well-founded, sort(`) � sort(r) and variable occurrences are strictly bound in ` and r for
every rewrite rule ` → r ∈ R. Below we give a counterexample to this claim (we derive a
corrected criterion in Section 6).

FSTTCS 2011

290 Layer Systems for Proving Confluence

I Example 3.1. Consider the TRS R consisting of c(x)→ x and the following rewrite rules:

f(x, y)→ F(x, c(x), y) f(x,O)→ A F(x, y,O)→ g(x, y) F(x, y, y)→ g(x,O)
g(x, y)→ G(x, c(x), y) g(x,O)→ B G(x, y,O)→ f(x, y) G(x, y, y)→ f(x,O)

We take S = {0, 1, 2} as sorts with 1 � 0 and the signature given by

f, g : 0× 1→ 2 A,B : 2 c : 0→ 1 F,G : 0× 1× 1→ 2 O, y : 1 x : 0

All rules except for c(x)→ x are many-sorted and sort-preserving, while sort(c(x)) = 1 �
0 = sort(x) for c(x)→ x. Hence R satisfies the aforementioned constraints from [1].

The rewrite relation defined by R is essentially finite: since c does not occur in any
left-hand side of any rewrite rule but c(x) → x, we can apply this rule to any term and
remove all occurrences of c, without interfering with any other future rewrite steps. The
remaining order-sorted terms are flat terms (i.e., of depth 1 or 0), and there are only finitely
many of those up to variable renaming. The interesting part of the rewrite relation looks as
follows:

A

f(x,O)

OO

��

G(x, x, x)oo G(x, c(x), x)oo

F(x, c(x),O) // F(x, x,O) // g(x, x)

OO
f(x, x)

��

G(x, x,O)oo G(x, c(x),O)oo

F(x, c(x), x) // F(x, x, x) // g(x,O)
��

OO

B

Note that x cannot be replaced by O anywhere, since this would make the terms ill-sorted.
Hence R is confluent on TS(F ,V). However, the corresponding unsorted TRS R is not
confluent, since A← f(O,O)→∗ g(O,O)→ B for normal forms A and B.

4 Layer Systems

The existing proofs of modularity and its generalizations work by dividing terms into a top
context (or native part) and principal subterms (aliens). This process can be characterized
by the set of terms that are allowed as top contexts. We call this set a layer system. Layers
are contexts, which can be represented by terms with holes. We use a fresh constant � to
denote such holes. Terms with holes can be merged.

I Definition 4.1. The partial function merge t : T (F ∪ {�},V)2 → T (F ∪ {�},V) satisfies:
� t t = t t� = t for t ∈ T (F ∪ {�},V),
x t x = x for x ∈ V,
f(s1, . . . , sn) t f(t1, . . . , tn) = f(u1, . . . , un) if f ∈ F and si t ti = ui for 1 6 i 6 n.

I Example 4.2. We have f(h(�),�)t f(�, g(y)) = f(h(�), g(y)) but f(h(�), g(x))t f(�, g(y))
and f(h(�),�) t f(g(�),�) are undefined (different non-hole symbols cannot be merged).

I Definition 4.3. A layer system is a set of terms L ⊆ T (F ∪ {�},V) satisfying:
1. � ∈ L, V ⊆ L, and f(�, . . . ,�) ∈ L for f ∈ F .
2. L allows replacing holes by variables and vice versa: If t[�]p ∈ L then {x ∈ V | t[x]p ∈ L}

is an infinite set. Furthermore, if t[x]p ∈ L and x ∈ V then t[�]p ∈ L.
3. L is closed under merging at function positions in F : If s, t ∈ L, p ∈ PosF (t), and

u := t|p t s is defined then t[u]p ∈ L.
4. LT := L ∩ T (F ,V) is closed under →R: If s ∈ LT and s→R t then t ∈ LT .

B. Felgenhauer, H. Zankl, and A. Middelorp 291

Requiring that L is closed under →R would imply Definition 4.3(4), but the weaker
condition helps applications. For example, in the case of order-sorted persistence we do not
have to worry about holes at positions with incompatible types, simplifying the proof that
order-sorted terms form a layer system under certain conditions on R (cf. Theorem 6.2).

For pretty much the same reason, we do not require that holes can be replaced by any
variable in Definition 4.3(2)—for example, in the order-sorted case, we would otherwise have
to treat variables as essentially untyped, complicating that application.

Definition 4.3(3) allows one to merge two layers into a larger one. This is essential to
obtain a least layered representation (cf. Theorem 5.2(4)) while Definition 4.3(1) ensures that
any term can be layered (cf. Lemma 4.10(1)), by starting a new layer at every symbol.

We fix some layer system L that we want to use for layering terms. A key element of our
proof is that this layering is made explicit using the notion of split terms.

I Definition 4.4. A split term t̂ is a pair t̂ = 〈t, P 〉 made of a term t ∈ T (F ,V) and a set of
so-called special positions P ⊆ Pos(t) of t̂. We write Pt̂ for the special positions of t̂. We
call t the underlying term of t̂ and often denote it by t. A special position is called principal
if it is a minimal special position with respect to <. A split term 〈t, P 〉 is simple if P = ∅,
special if ε ∈ P and normal if ε /∈ P . The set of split terms is denoted by T̂ (F ,V).

We identify a term t with the unique corresponding simple split term 〈t,∅〉.

I Definition 4.5. We define split counterparts to standard operations on terms.
subterm t̂|p := 〈t|p, {q \ p | q ∈ Pt̂ with q > p}〉. Note that if p is special then t̂|p is special.
modifying special positions at the root t̂|− := 〈t, Pt̂ \ {ε}〉 and ε(t̂) := 〈t, Pt̂ ∪ {ε}〉. We let

t̂|p− := (t̂|p)|− and we will also use the notation t̂|p∗ to denote one of t̂|p or t̂|p−. If p is a
principal position of t̂, then t̂|p− is a principal subterm of t̂.

replacing subterms t̂[ŝ]p := 〈t[s]p, {q | q ∈ Pt̂ with q 6> p} ∪ {pq | q ∈ Pŝ}〉. For a set of
pairwise parallel positions Q ⊆ Pos(t) we also write t̂[ŝq]q∈Q for the split term obtained
from t̂ by replacing t|q by ŝq for each q ∈ Q.

substitution If σ : V → T̂ (F ,V) then σ(t̂) = t̂[σ(t|p)]p∈PosV (t).

Next we introduce two natural ways to represent split terms.

I Definition 4.6. A split context is a split term Ĉ = 〈C,P 〉 ∈ T̂ (F ∪ {�},V) such that
P = {p ∈ Pos(C) | C|p = �}. We define Ĉ as the unique split context with underlying
term C. For a split context Ĉ with n holes and normal terms t̂i we denote by ĈJt̂1, . . . , t̂nK
the split term obtained by replacing the holes in Ĉ by t̂1 to t̂n from left to right.

It is easy to see that any split term t̂ can be uniquely represented as t̂ = ĈJt̂1, . . . , t̂nK.
The corresponding split context is the top layer of t̂.

I Definition 4.7. Let t̂ be a split term. The top layer L̂(t̂) of t̂ is obtained by replacing all its
principal subterms by �. It is a split context as all remaining special positions are holes. We
write L(t̂) for the corresponding unsplit context. The rank of a split term t̂ = ĈJt̂1, . . . , t̂nK
is defined recursively by rank(t̂) = 1 + max {0, rank(t̂i) | 1 6 i 6 n}.

The rank is useful for inductive proofs since principal subterms have smaller rank than
the term itself. Next we use layer systems to restrict how terms can be split.

I Definition 4.8. A split term t̂ is layered according to L or just layered if L(t̂) ∈ L and
L(t̂|p−) ∈ L for all p ∈ Pt̂. The layers of t̂ are the unsplit contexts L(t̂) and L(t̂|p−) for p ∈ Pt̂.
For a layered term ŝ, a layer s′ ∈ LT and a substitution σ we say that σ(s′) designates ŝ if
σ(s′) = ŝ, σ(x) 6= x implies σ(x) is special, and σ(x) = x for x ∈ Var(s).

FSTTCS 2011

292 Layer Systems for Proving Confluence

f
g
h
b

h
a

(a) Pt̂ = ∅

f
g
h
b

h
a

(b) Pt̂ = {1, 11, 21}

f
g
h
b

h
a

(c) Pt̂ = {1, 11, 111, 21}

f
g
h
b

h
a

(d) Pt̂ = Pos(t)

Figure 1 Some split terms for t = f(g(h(b)), h(a)).

Designation is similar to the division of terms into a cap and an alien substitution in [6].

I Example 4.9. Figure 1 shows some split terms. Layers are colored alternately between
(dark) blue and (light) red with the top layer (if non-empty) marked blue. Figure 1(a) depicts
a simple term. The term in Figure 1(d) is special, the others are normal. In Figure 1(b) the
principal positions are 1 and 21 with 〈g(h(b)), {1}〉 and 〈a,∅〉 as the corresponding principal
subterms. The ranks of the terms in Figures 1(c) and 1(d) are 4 and 5 and the top layers
are 〈f(�, h(�)), {1, 21}〉 and 〈�, {ε}〉, respectively. For suitable L, the term in Figure 1(b) is
designated by σ(f(x, h(y))) with σ(x) = 〈g(h(b)), {ε, 1}〉 and σ(y) = 〈a, {ε}〉.

I Lemma 4.10. We state some fundamental properties of layered terms.
1. For any term s the split term 〈s,Pos(s)〉 is layered.
2. If t̂ is layered and p ∈ Pt̂ then t̂|p and t̂|p− are layered.
3. If t̂1 = 〈t, P1〉 and t̂2 = 〈t, P2〉 are layered then 〈t, P1 ∩ P2〉 is layered.

As a consequence of Lemma 4.10, every term t has a least layered representation t̂L, which
can be defined as t̂L := 〈t,

⋂
{P | 〈t, P 〉 is layered according to L}〉.

I Example 4.11. Consider the {0, 1}-sorted signature with f : 0×1→ 0, g : 0→ 1, h : 1→ 1,
a : 0, b : 1, and let L := TS(F ∪ {�},V) where holes can appear anywhere in terms, both
with sort 0 and 1. The term in Figure 1(a) is not layered according to L, the others are.
Figure 1(b) depicts t̂L, i.e., a new layer starts if and only if a subterm does not match the
sort of the context.

I Lemma 4.12. Any layered term ŝ is designated by some σ(s′) with s′ = L(ŝ)[~x] ∈ L,
xi ∈ V.

Designations will be used to simulate so-called outer rewrite steps (cf. Definition 5.1) by
rewrite steps inside LT . Lemma 4.12 is a first step towards this goal.

5 Layer Systems for Confluence

In this section we first turn to rewriting split terms and then impose conditions on layer
systems such that a TRS R is confluent if it is confluent on LT . The overall idea is to start
with rewrite sequences on terms, turn them to rewrite sequences on layered terms, which
enjoy confluence, and map the resulting joining sequences back to (unsplit) terms.

I Definition 5.1. Let ŝ and t̂ be split terms. A rule step ŝ →p,`→r t̂ satisfies ` → r ∈ R,
ŝ|p− = σ(`) and t̂ = ŝ[σ(r)]p for some substitution σ. We also write ŝ →R t̂. A rule step
ŝ→p,`→r t̂ is inner, ŝ→i t̂, if p > q for some q ∈ Pŝ, and outer, ŝ→o t̂, otherwise. A fusion
step ŝ t̂ satisfies s = t and Pŝ ⊇ Pt̂. It is proper, ŝ

6=
 t̂, if Pŝ) Pt̂. The union of →R and

 is denoted by R.

B. Felgenhauer, H. Zankl, and A. Middelorp 293

Rule steps correspond to normal rewrite steps. Since ` and r are (simple) terms, matching
is constrained to a single layer of a term, and the result of the rewrite step will only modify
that layer and possibly permute, erase or duplicate special subterms below the layer.

Fusion steps, on the other hand, allow adjacent layers to be merged into a single one. Note
that even when starting from a least layered representation, ŝL →R t̂ may result in a term t̂

that allows a proper fusion step. In the classical modularity setting this may happen after
applying a collapsing rule. In many previous proofs from the literature, fusion was implicit.
By making fusion explicit, we can capture the phenomena that destroy modularity more
precisely, and, perhaps more importantly, we can delay fusion in joining rewrite sequences
until we can comfortably deal with it.

I Lemma 5.2. Rewriting on split terms has the following properties.
1. If ŝ R t̂ then σ(ŝ) R σ(t̂) for any (split) substitution σ.
2. If ŝ→o t̂ then every principal subterm of t̂ is a principal subterm of ŝ.
3. If ŝ R t̂ then rank(ŝ) > rank(t̂).
4. If t̂ is layered then t̂ t̂L.

We extend fusion steps to substitutions: σ τ if σ(x) τ(x) for all x ∈ V.

I Lemma 5.3. Let ŝ and t̂ be split terms. If ŝ ŝ′ then t̂[ŝ]p t̂[ŝ′]p for any p ∈ Pos(t).
For split substitutions σ and σ′, if σ σ′ then σ(t̂) σ′(t̂).

We impose suitable additional constraints on the layer system L to prove that if →R is
confluent on LT then →R is confluent. The converse is trivial, cf. Definition 4.3(4).

I Definition 5.4. A layer system L is weakly consistent with a TRS R if for all `→ r ∈ R:
1. ` ∈ L,
2. t[t|pq′]pq ∈ L whenever t ∈ L, `|q = `|q′ ∈ V and t|p can be obtained from ` by replacing

variables by terms—where different instances of the same variable may be replaced by
different terms. (For left-linear TRSs this means that ` matches t|p.)

Definition 5.4(2) always holds for left-linear systems, but both conditions are essential for
general systems. The next example shows how Definition 5.4(1,2) may fail for non-confluent
systems.

I Example 5.5. Consider the non-confluent R = {f(f(x)) → a, f(f(x)) → b}. Then L =
V ∪ {�, a, b, f(�)} ∪ {f(x) | x ∈ V} is a layer system such that →R is confluent on LT . We
have f(f(x)) /∈ L, so it violates Definition 5.4(1).

Next consider R = {f(x, x) → a, f(a, x) → b} with L = {f(x, y), f(a, x), x, a, b | x, y ∈
V ∪ {�}}. This is a layer system satisfying Definition 5.4(1) and →R is confluent on LT .
However, since t = `′ = f(a, x) can be obtained from ` = f(x, x) by replacing the first x by a,
by Definition 5.4(2), we should have t[`′|1]2 = f(a, a) ∈ L.

As a final example, considerR = {f(x, x, y)→ g(x, y), f(x, y, z)→ a}, and L = {f(x, y, z) |
x ∈ V1∪{�}, y ∈ V2∪{�}, z ∈ V∪{a,�}}∪{a, x, g(x, y) | x, y ∈ V∪{�}}, where V1,V2 ⊆ V
are disjoint and infinite. Again, →R is confluent on LT but not on T (F ,V). In this case,
s = f(a, a, a) has ŝL = 〈s, {1, 2}〉 and ŝL →R t̂ = 〈g(a, a), {1}〉, but t̂ is not layered. In
this case, L violates Definition 5.4(2); taking t = f(x1, x2, a) ∈ L and ` = f(x, x, y) implies
t[t|1]2 = f(x1, x1, a) ∈ L, i.e., x1 ∈ V1 ∩ V2 = ∅.

In the remainder of this section we assume that L is a layer system.

I Lemma 5.6. Let L be weakly consistent with R. If ŝ→p,`→r t̂ is an outer rule step then
we can designate ŝ by σ(s′) so as to find t′ ∈ LT such that s′ →p,`→r t

′ and t̂ = σ(t′).

FSTTCS 2011

294 Layer Systems for Proving Confluence

Lemma 5.6 extends Lemma 4.12 to cover outer rewrite steps. It is a key ingredient for
Lemma 5.7, which shows that we can map arbitrary rewrite steps on terms to layered terms.

I Lemma 5.7. Let L be weakly consistent with R.
1. If ŝ is layered and ŝ→R t̂ then t̂ is layered.
2. If s→p,`→r t then ŝL →p,`→r · t̂L.

In order to prove the key Lemma 5.10, we introduce the relation ∝→∗i . Note that because
∝ and →∗i are both reflexive and transitive, so is ∝→∗i .

I Definition 5.8. Let ~t = (ti)i∈I and ~u = (ui)i∈I be vectors. We write ~t ∝ ~u if ti = tj
implies ui = uj for all i, j ∈ I. If ŝ = ĈJ~s K, ŝ →∗i t̂ (hence t̂ = ĈJ~t K for a suitable ~t) and
~s ∝ ~t, we write ŝ ∝→∗i t̂.

I Lemma 5.9. If →R is confluent on layered terms of rank less than n then for layered
terms of rank at most n (1) ∗i← · →∗i ⊆

∝→∗i ·∗i
∝←, and (2) ∗o← ·

∝→∗i ⊆
∝→∗i · ∗o←.

I Lemma 5.10. Let L be weakly consistent with R. If →R is confluent on LT and →o is
confluent on layered terms then →R is confluent on layered terms.

Lemma 5.10 is proved by induction on the rank using Lemma 5.9. It is used to conclude
confluence of →R for both our main results, Theorems 5.13 and 5.27, which we develop in
Sections 5.1 and 5.2 below.

5.1 Left-Linear Systems
In this section we deal with a left-linear TRS R and a layer system L weakly consistent
with R. We want to show that R is confluent if R is confluent on LT .

I Lemma 5.11. If →R is confluent on LT then →o is confluent on layered terms.

Consequently, →R is confluent on layered terms by Lemma 5.10. The next lemma deals
with the interaction of rewriting and fusion steps.

I Lemma 5.12. On layered terms · ⊆ · and · →∗R ⊆ →∗R · .

Combining Lemmata 5.7 (to map rewrite sequences to layered terms), 5.10, 5.11 and 5.12
(for confluence of rewriting layered terms), we obtain our main result for left-linear TRSs.

I Theorem 5.13. Let R be a left-linear TRS and L a layer system that is weakly consistent
with R. If R is confluent on LT then R is confluent.

The above result also holds for non-duplicating TRSs, but the proof is considerably more
involved. It can be found in our technical report [5].

5.2 General Systems
In this section we consider the case of general TRSs that may be non-left-linear. When this
happens, we can conclude confluence of R if L is consistent with R.

I Definition 5.14. A layer system L is called consistent with a TRS R if it is weakly
consistent with R and conditions 3 and 4 hold.
3. Let s, t ∈ L \ (V ∪ {�}) with s →p,`→r t and q ∈ PosV(`), q′ ∈ PosV(r) such that

`|q = r|q′ . Furthermore let t′ ∈ L be obtained from t by replacing some holes by terms
from T (F ∪ {�},V). Then s[t′|pq′]pq ∈ L.

B. Felgenhauer, H. Zankl, and A. Middelorp 295

4. Let s, t ∈ L with s→p,`→r t and q ‖ p. If t|q ∈ V ∪ {�} and t[t′]q ∈ L then s[t′]q ∈ L.

Let us examine the effect of conditions 3 and 4 of Definition 5.14. In order to deal with
non-left-linear systems we have to restrict layer systems further. One key step in our proof
(and the original proof in [9]) is the construction of witnesses. It is interesting to see how
this fails in the counterexample from Section 3, if we define layers to be order-sorted terms,
which results in a weakly consistent layer system:

F
O c

O
O

→R F
O O O

6=
 F

O O O

Here we have a fusion step that is enabled by a rewrite step above the layer being fused.
This phenomenon, fusion from above, defeats any attempt to build a witness in a bottom up
fashion as the proof does.

The additional constraints for consistency prevent fusion from above. They demand that
any subterm that can be fused with a layer after a rewrite step inside that layer could already
have been fused before the rewrite step.

I Example 5.15. In the counterexample from Section 3, if we let L be the set of order-sorted
terms closed under replacing variables by holes, we have L 3 s = F(�, c(�),O) →2,c(x)→x
F(�,�,O) = t ∈ L and t′ = F(�,O,O) ∈ L. With q = 1, q′ = ε we conclude from
Definition 5.14(3) that s[t′|2]21 = F(�, c(O),O) ∈ L. Since this term is not order-sorted, we
see that L is not consistent with the given TRS.

As the example shows, condition 3 of Definition 5.14 needs careful consideration when
the TRS R has collapsing rules: If s→p,`→r t, then the subterm s|pq replaces s|p completely
in the reduct. That is, any subterm u that can occur in place of the left-hand side of the rule
application, σ(`) = s|p (meaning that s[u]p ∈ L) must also be allowed at s|pq, i.e., s[u]pq ∈ L.

From now on we assume that L is consistent with R.

I Lemma 5.16. For layered terms ŝ and t̂, if ŝ→o t̂ then ŝL →o t̂L or both ŝL →o ε(t̂L) and
rank(ŝL) > rank(t̂L).

I Lemma 5.17. If →R is confluent on LT then →o is confluent on layered terms.

Lemma 5.17 enables us to use Lemma 5.10 again, but we still have to deal with fusion
steps. The remainder of this section is based on the simplified proof by Klop et al. [9].

I Definition 5.18. A term t̂ is called inner preserved if û|− = û′|− whenever t̂→∗R û û′.
The term t̂ is preserved if û = û′ under the same condition.

Note that the principal subterms of an inner preserved term are inner preserved as well.
On inner preserved terms, fusion steps can only affect the root special position, so do not
interact with rewrite steps in any essential way. Hence from Lemmata 5.17 and 5.10 we have:

I Lemma 5.19. The relation R is confluent on inner preserved terms.

I Definition 5.20. A proper fusion step â 6= b̂ is inner, denoted by â→c b̂, if min(Pâ) =
min(Pb̂), i.e., only non-principal positions are removed. Let →i,c = →i ∪→c. We define
ŝ
∝→∗i,c t̂ if ĈJ~s K = ŝ→∗i,c t̂ = ĈJ~t K (the top context is not affected by →i,c) and ~s ∝ ~t.

The relation ∝→∗i,c is different from ∝→∗i introduced earlier in that it includes inner fusion
steps. The overall intention is the same: ∝→∗i,c only affects principal subterms of a term and
rewrites equal principal subterms in the same way.

FSTTCS 2011

296 Layer Systems for Proving Confluence

I Lemma 5.21. Let the relation R be confluent on terms of rank less than n. If ŝ has
rank n and t̂ ∗

b,i← ŝ→∗i,c û then t̂ ∝→∗i,c · ∗
b,i

∝← û.

I Definition 5.22. A witness of a term ŝ is an inner preserved term t̂ such that ŝ ∗i t̂,
where i = ∪→i.

We can apply Lemma 5.19 to witnesses. Lemma 5.24 states that witnesses always do
exist. An important step in its proof is Lemma 5.23, which allows us to replace principal
subterms of a term by preserved reducts.

I Lemma 5.23. For every inner preserved term t̂ there exists a preserved term û with
t̂ ∗R û.

I Lemma 5.24. If R is confluent on terms of rank less than n then every term t̂ with
rank(t̂) 6 n has a witness ṫ.

I Lemma 5.25. Let R be confluent on terms t̂ with rank(t̂) < n. If ŝ R t̂ and rank(ŝ) = n

then ṡ ∗R · ∗R ̇t.

Therefore we can construct witnesses for all terms in a conversion between two layered
terms by Lemma 5.24, then join consecutive witnesses using Lemma 5.25, and finally use
Lemma 5.19 to join the witnesses of the outermost terms, proving Lemma 5.26.

I Lemma 5.26. The relation R is confluent if R is confluent on LT .

Since by Lemma 5.7 we can map rewrite sequences to layered terms, Lemma 5.26 implies
our main result for arbitrary TRSs.

I Theorem 5.27. Let R be a TRS and L a layer system that is consistent with R. If R is
confluent on LT then R is confluent.

6 Applications

In this section we present three applications of layer systems.

Layer-Preservation: Let TX(F ,V) denote the set of terms with root symbol from X. Let
C := F1 ∩ F2, D1 := F1 \ F2 and D2 := F2 \ F1.

I Theorem 6.1 (Ohlebusch [11]). Let R1 and R2 be TRSs such that R1 ⊆ T (C,V)2 ∪
TD1(F1,V)2, R2 ⊆ T (C,V)2 ∪ TD2(F2,V)2 and R1 ∩ T (C,V)2 = R2 ∩ T (C,V)2. The union
R1 ∪R2 is confluent if and only if R1 and R2 are confluent.

Proof Sketch. Let L := T (C ∪{�},V)∪TD1(F1 ∪{�},V)∪TD2(F2 ∪{�},V). It is straight-
forward (but somewhat tedious) to verify that with the given constraints, this is a layer
system that is consistent with R1 ∪R2. Confluence follows by Theorem 5.27. J

Order-Sorted Persistence: Note that many-sorted persistence [1] arises as a special case
of Theorem 6.2 by making sorts mutually incomparable, which in turn entails Toyama’s
classical modularity result [13]. The conditions are easy to implement, as outlined in [15].

I Theorem 6.2. Let R be an (S,�)-order-sorted TRS. Assume the following conditions:
1. R is compatible with S, i.e., for ` → r ∈ R the terms ` and r are order-sorted with

variable occurrences strictly bound in ` and sort(`) � sort(r).

B. Felgenhauer, H. Zankl, and A. Middelorp 297

2. If R is non-left-linear then for `→ r ∈ R, variable occurrences in r are strictly bound as
well. Furthermore, for collapsing rules (r ∈ V) the sort of r must be maximal.

If R is confluent on order-sorted terms then R is confluent on all terms.

Proof Sketch. The proof idea is to use L = TS(F ,V) as a layer system, after closing it under
replacing variables by holes. Conditions (1) and (2) of Theorem 6.2 ensure weak consistency
and consistency of L with R, respectively. Condition (1) also makes L closed under (unsorted)
rewriting, by only allowing variables x to be assigned terms t having sort(t) � sort(x) when
matching rules. Theorems 5.13 and 5.27 conclude the proof. J

Actually, condition (2) in the above theorem can be weakened to non-left-linear and
duplicating TRSs, see [5].

There are a couple of notable differences between Theorem 6.2 and [1, Theorem 4.12].
First, the maximality constraint on the sorts of collapsing rules in the general case is new,
and indeed rules out the counterexample from Section 3. Second, we have weaker constraints
on left-linear systems. Finally, we do not require the order on sorts to be well-founded. (This
is needed in [1] because every step that weakens the sort of a special subterm is treated as
destructive, while in our approach only actual fusion steps must be considered.)

Theorem 6.2 is strictly stronger than many-sorted persistence, as the next example shows.

I Example 6.3 (adapted from [1]). Consider the TRS R consisting of the rewrite rules

1 : f(x,A)→ G(x) 2 : f(x, f(x,B))→ B 3: G(C)→ C 4: F(x)→ F(G(x))

and the sorts S = {0, 1, 2} with 1 � 0 and the signature given by A,B : 1, C : 0, F : 0→ 2,
G : 0 → 0, f : 0 × 1 → 1 and x : 0. It is straightforward to check that the requirements
of Theorem 6.2 are fulfilled. In the order-sorted TRS, only rules (1), (2) and (3) can be
applied to terms of sort 1 and their derivatives, rules (3) and (4) can be applied to terms
derived from terms of sort 2 and only rule (3) can be applied to terms of sort 0. Hence,
since R1 = {(1), (2), (3)} (which is terminating and has no critical pairs), R2 = {(3), (4)}
(which is orthogonal), and R3 = {(3)} (orthogonal) are confluent, R is confluent. No such
decomposition can be obtained with many-sorted persistence. Consider a most general
signature making all rules many-sorted: A,B,C, x : 0, F : 0→ 1, G : 0→ 0, and f : 0× 0→ 0.
Since terms of sort 1 can have subterms of sort 0, no decomposition is possible.

The weaker conditions in Theorem 6.2 for left-linear TRSs are beneficial.

I Example 6.4. Consider the TRS R consisting of the rewrite rules

c(x)→ x f(A)→ f(f(c(0))) g(B)→ g(g(c(0)))

the sorts S = {0, 1, 2} with 1, 2 � 0 and the signature given by 0, x : 0, c : 0 → 0,
A : 1, f : 1 → 1, B : 2 and g : 2 → 2. This satisfies the conditions of Theorem 6.2
for left-linear systems, and we can decompose the system into the component induced
by sort 1: {c(x) → x, f(A) → f(f(c(0)))} and sort 2: {c(x) → x, g(B) → g(g(c(0)))}. If
we add the restrictions for non-left-linear systems, the collapsing rule c(x) → x enforces
c : α → α for a maximal sort α. Hence also the argument of f and g has sort α, and
α � sort(A), sort(B), sort(f(x)), sort(g(x)), sort(0). So the component induced by α contains
all rules.

FSTTCS 2011

298 Layer Systems for Proving Confluence

Currying: Currying is a transformation of TRSs that introduces partial applications. It is
useful in the construction of polynomial-time procedures for deciding properties of TRSs as,
for example, in [4]. Kahrs [7] proved that confluence is preserved by this transformation.

I Definition 6.5. Let R be a TRS over a signature 〈F ,V〉. Let F ′ = F ∪ {Ap} where
Ap is a binary function symbol and all function symbols in F become constants. The
curried version of R operates on T (F ′,V) and is defined as Cu(R) = {Cu(`) → Cu(r) |
` → r ∈ R}. Here Cu(t) = t if t is a variable or a constant and Cu(f(t1, . . . , tn)) =
Ap(· · ·Ap(f,Cu(t1)) · · ·,Cu(tn)) (with n occurrences of Ap). Let F ′′ = F ′ ∪ {fi | f ∈ F , 0 6
i < arity(f)}, where fi has arity i. The partial parametrization PP(R) of R is defined as the
union of R and U , where U consists of all uncurrying rules:

Ap(fi(x1, . . . , xi), xi+1)→ fi+1(x1, . . . , xi+1)

for all f ∈ F and 0 6 i < arity(f), with the convention that fn = f if n = arity(f).

Note that →U is terminating and confluent (because U is orthogonal). Partial paramet-
rization is closely related to currying: by [7, Proposition 3.1] and [8, Theorem 2.2], PP(R) is
confluent if and only if Cu(R) is confluent.

I Theorem 6.6. If R is confluent then PP(R) is confluent.

Proof Sketch. Consider the term t = Ap(· · ·Ap(fi(t1, . . . , ti), ti+1) · · ·, tm) where f ∈ F ,
which is a curried function application of f with m arguments. Let t′i be the →U normal
form of ti and n = arity(f). If m < n, the →U normal form of t will be fm(t′1, . . . , t′m),
and we call the function application partial. Otherwise, m ≥ n, and the →U normal form
of t is Ap(· · ·Ap(f(t′1, . . . , t′n), t′n+1) · · ·, t′m). We call Ap(· · ·Ap(fi(t1, . . . , ti), ti+1) · · ·, tn) a
saturated function application, and tn+1 to tm extra arguments of f . We define L = L1∪L2∪L3
where

L1 = {t | t→∗U u with u ∈ T (F ∪ {�},V)},
L2 = {t | t→∗U fn(x1, . . . , xn), f ∈ F , xi ∈ V ∪ {�}, n < arity(f)},
L3 = {Ap(x1, x2) | xi ∈ V ∪ {�}}.

The idea is to start a new layer for any partial function application (L2), any Ap that binds
extra arguments and thus remains in the →U normal form of t (L3), and for each extra
argument, but not for any saturated function applications that appear as arguments of other
saturated function applications (L1). It can be shown that L is indeed a layer system that is
consistent with R. J

7 Conclusion

In this paper we have presented an abstract layer framework that covers several known
results about the modularity and persistence of confluence. The framework enabled us to
correct the result claimed in [1] on order-sorted persistence, and, by weaker conditions for
left-linear systems, to increase its applicability. We also showed how Kahrs’ confluence result
for curried systems is obtained as an instance of our layer framework. Furthermore, we have
incorporated a decomposition technique due to Theorem 6.2 into CSI [15], our confluence
prover.

As future work, we plan to investigate how to apply layer systems to other properties
of TRSs, like termination or having unique normal forms. Since the applications in this
paper use regular languages for the layer system L, we also plan to investigate how the
consistency conditions translate into restrictions on tree automata. Another interesting

B. Felgenhauer, H. Zankl, and A. Middelorp 299

question is whether van Oostrom’s constructive modularity proof [14] can be adapted for
layer systems. Finally, we worked out the technical details of our main results to prepare for
future certification efforts in a theorem prover like Isabelle.

Acknowledgments
We thank the anonymous reviewers for their helpful and detailed comments.

References
1 T. Aoto and Y. Toyama. Extending persistency of confluence with ordered sorts. Technical

Report IS-RR-96-0025F, School of Information Science, JAIST, 1996.
2 T. Aoto and Y. Toyama. Persistency of confluence. Journal of Universal Computer Science,

3(11):1134–1147, 1997.
3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
4 H. Comon, G. Godoy, and R. Nieuwenhuis. The confluence of ground term rewrite systems

is decidable in polynomial time. In Proc. 42nd Annual Symposium on Foundations of
Computer Science, pages 298–307, 2001.

5 B. Felgenhauer, H. Zankl, and A. Middeldorp. Layer systems for proving confluence. Tech-
nical report, University of Innsbruck, 2011. Available at http://cl-informatik.uibk.ac.
at/software/csi/layerframework_report.pdf.

6 J.-P. Jouannaud and Y. Toyama. Modular Church-Rosser modulo: The complete picture.
International Journal of Software and Informatics, 2(1):61–75, 2008.

7 S. Kahrs. Confluence of curried term-rewriting systems. Journal of Symbolic Computation,
19(6):601–623, 1995.

8 R. Kennaway, J.W. Klop, M. Ronan Sleep, and F.-J. de Vries. Comparing curried and
uncurried rewriting. Journal of Symbolic Computation, 21(1):15–39, 1996.

9 J.W. Klop, A. Middeldorp, Y. Toyama, and R. de Vrijer. Modularity of confluence: A
simplified proof. Information Processing Letters, 49:101–109, 1994.

10 C. Lüth. Compositional term rewriting: An algebraic proof of Toyama’s theorem. In Proc.
7th International Conference on Rewriting Techniques and Applications, volume 1103 of
Lecture Notes in Computer Science, pages 261–275, 1996.

11 E. Ohlebusch. Modular Properties of Composable Term Rewriting Systems. PhD thesis,
Universität Bielefeld, 1994.

12 B.K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM,
20(1):160–187, 1973.

13 Y. Toyama. On the Church-Rosser property for the direct sum of term rewriting systems.
Journal of the ACM, 34(1):128–143, 1987.

14 V. van Oostrom. Modularity of confluence constructed. In Proc. 4th International Joint
Conference on Automated Reasoning, volume 5195 of Lecture Notes in Computer Science,
pages 348–363, 2008.

15 H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc. 23rd In-
ternational Conference on Automated Deduction, volume 6803 of Lecture Notes in Artificial
Intelligence, pages 499–505, 2011.

16 H. Zantema. Termination of term rewriting: Interpretation and type elimination. Journal
of Symbolic Computation, 17(1):23–50, 1994.

FSTTCS 2011

http://cl-informatik.uibk.ac.at/software/csi/layerframework_report.pdf
http://cl-informatik.uibk.ac.at/software/csi/layerframework_report.pdf

	Introduction
	Preliminaries
	A Counterexample
	Layer Systems
	Layer Systems for Confluence
	Left-Linear Systems
	General Systems

	Applications
	Conclusion

