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Abstract

We present a generalisation of a commutation criterion by Rosen (1973), the develop-
ment closedness theorem by van Oostrom (1994), and a confluence criterion by Hirokawa
and Middeldorp (2011).

1 Introduction

This note is about sufficient conditions for the commutation of two left-linear TRSs R and S.
Commutation means that the inclusion

∗←−
R
· ∗−→
S
⊆ ∗−→

S
· ∗←−
R

holds. When R = S, commutation amounts to confluence. Furthermore, commutation is a
sufficient condition for the confluence of the union of two confluent TRSs. It is well-known that
R and S commute when there are no critical pairs between the rules of R and the rules of S.
Toyama [6] generalized this result of Rosen [4] (and Raoult and Vuillemin [3, Proposition 10])
by admitting critical pairs between R and S but restricting the way in which they are joined.
More precisely, Toyama showed that R and S commute if the following two conditions are
satisfied:

←−
R
o−→
S
⊆ ‖−→

S
· ∗←−
R

and
>ε←−−
S
o−→
R
⊆ ‖−→

R

As observed in [7, Corollaries 24 and 28] and [1, Proposition 7], Toyama’s result is further
generalized by adopting multi-steps:

←−
R
o−→
S
⊆ ◦−−→

S
· ∗←−
R

and
>ε←−−
S
o−→
R
⊆ ◦−−→

R

We present a generalisation of these results by incorporating the confluence result based on
relative termination [2].

2 Preliminaries

We assume familiarity with the conversion version of the decreasing diagrams technique for
proving commutation, due to van Oostrom [8, Theorem 3]. Familiarity with proof terms wit-
nessing multi-steps ([5, Chapter 8], [2]) is also helpful. Below we recall some basic definitions
and recast a measure used in [7] as a measure on co-initial proof terms.

Let R be a TRS over a signature F . For each rule ` → r ∈ R we introduce a fresh rule
symbol `→ r whose arity is given by the number of variables in `. Proof terms are terms over
functions in F and rule symbols. We write v for the smallest rewrite preorder on proof terms
such that ` v `→ r(x1, . . . , xn) for all rules `→ r ∈ R with var(`) = (x1, . . . , xn). Here var(`)
denotes a sequence consisting of all variables in Var(`) in some fixed order. Given co-initial
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proof terms A and B, the (partial) residual operation is the proof term A \B defined by the
following clauses (here 〈A1, . . . , An〉` stands for the substitution {xi 7→ Ai | 1 6 i 6 n}):

x \x = x

f(A1, . . . , An) \ f(B1, . . . , Bn) = f(A1 \B1, . . . , An \Bn)

`→ r(A1, . . . , An) \ `→ r(B1, . . . , Bn) = r〈A1 \B1, . . . , An \Bn〉`
`→ r(A1, . . . , An) \ `〈B1, . . . , Bn〉` = `→ r(A1 \B1, . . . , An \Bn)

`〈A1, . . . , An〉` \ `→ r(B1, . . . , Bn) = r〈A1 \B1, . . . , An \Bn〉`
When we use A \B below, it is guaranteed to be defined. (If A v B then A \B is a proof term
without rule symbols.) A redex is a proof term that contains exactly one rule symbol. For a
redex ∆ we write ∆ ∈ A if ∆ v A. Given a proof term A and a redex ∆ ∈ A, we find it
convenient to write A−∆ for the proof term that is obtained from A by replacing the subterm
occurrence `→ r(A1, . . . , An) corresponding to ∆ by `〈A1, . . . , An〉`.

For redexes ∆1,∆2 ∈ A we write ∆1 > ∆2 if the rule symbol of ∆1 appears at or below
that of ∆2 in A. The set N(A) of positions is inductively defined on A as follows:

N(x) = ∅
N(f(A1, . . . , An)) = {iq | 1 6 i 6 n and q ∈ N(Ai)}
N(`→ r(A1, . . . , An)) = PosF (`) ∪ {pq | p ∈ Pos{xi}(`) and q ∈ N(Ai)}

where x ∈ V, f ∈ F , and var(`) = (x1, . . . , xn). So N(A) consists of all function positions of the
redex patterns contracted in the multi-step of A. We write N(A,B) for N(A) ∩ N(B). The set
N(A,B) is used below as a measure for the amount of overlap between the proof terms A and
B. A pair (∆1,∆2) of co-initial redexes is an overlap if N(∆1,∆2) 6= ∅.

Lemma 2.1. Let A and B be proof terms of left-linear TRSs R and S respectively. If N(A,B) 6=
∅ then there exist a trivial or critical peak t ∆1←−−R s ∆2−−→S u, a context C, and a substitution σ

such that C[∆1σ] ∈ A and C[∆2σ] ∈ B. If N(A,B) = ∅ then
A◦←−−
R
· B◦−−→
S
⊆ B \A◦−−−→

S
· A \B◦←−−−
R

.

3 Commutation by Relative Termination

Let R and S be TRSs. The set of critical peak steps of S for R is defined as follows:

CPSR(S) = {s→ u | t R← s→S u is a critical peak}
Lemma 3.1. Let R and S be left-linear TRSs. If t R ◦←−− s ◦−−→S u then t ◦−−→S · R ◦←−− u or
t R ◦←−− · CPSS(R)← s→CPSR(S) · ◦−−→S u.
Theorem 3.2. Left-linear locally commuting TRSs R and S commute if CPSS(R)∪CPSR(S)
is relatively terminating over R∪ S.
Proof. We use decreasing diagrams with the predecessor labeling. To this end we define t ◦−−→R,s
u if and only if s→∗R∪S t ◦−−→R u. The labeled relation ◦−−→S,s is defined similarly. We write >
to denote→+

(CPSR(S)∪CPSS(R))/(R∪S). By the relative termination condition, > is a well-founded

order. We show that ({ ◦−−→R,s}s∈T , { ◦−−→S,s}s∈T ) is decreasing with respect to >. Suppose
t R,s1 ◦←−− s ◦−−→S,s2 u. By Lemma 3.1 and local commutation there are terms v and w such that
(a) or (b) of Figure 1 holds. Note that si > v,w holds in case (b) because si →∗R∪S s > v,w.
Therefore, in both cases decreasingness is established. Hence R and S commute.

Theorem 3.2 subsumes Rosen’s commutativity criterion [4], as mutual orthogonality implies
CPSS(R) ∪ CPSR(S) = ∅ as well as local commutation.
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Figure 1: Decreasingness of ( ◦−−→R, ◦−−→S).

4 Incorporating Development Closedness

We extend the last theorem in order to subsume the development closedness theorem of van

Oostrom [7]. Let t R
p←− s

q−→S u be a critical peak. By definition p or q must be the root
position. We say that the peak is (R,S)-closed if t R ◦←−− u whenever p = ε and t ◦−−→S u
whenever q = ε. The set of all non-closed critical peak steps of S for R is defined as follows:

CPS′R(S) = {s→ u | t R← s→S u is a critical peak which is not (R,S)-closed}
Lemma 4.1. Let R and S be left-linear TRSs. If t R ◦←−− s ◦−−→S u then (a) t ◦−−→S · R ◦←−− u
or (b) t R ◦←−− · CPS′

S(R)← s′ →CPS′
R(S) · ◦−−→S u and s→∗R∪S s′ for some s′.

Lemma 4.1 is a proper generalization of [2, Lemma 4]. In order to prove the lemma we
introduce some more notions. Whenever N(A,B) is non-empty, there exists an innermost
overlap. An overlap (∆1,∆2) in A × B is called innermost if there are no other overlaps
(∆′1,∆

′
2) in A× B such that ∆′1 > ∆1 and ∆′2 > ∆2. We say that (∆1,∆2) is (R,S)-closed if

the corresponding critical peak is (R,S)-closed. The following is the key lemma. In order to
pave the way for formalisation of advanced confluence and commutation results, we formalise
the proof technique introduced in [7] using proof terms.

Lemma 4.2. Suppose (∆1,∆2) is an innermost overlap in A×B with ∆1 > ∆2. If (∆1,∆2) is
(R,S)-closed then N(A,B) ) N(A \∆1, C) for some proof term C that is co-initial with A \∆1.

Proof. Write t
A \∆1◦←−−−−
R

t1
∆1←−−
R

s
∆2−−→
S

u1

B \∆2◦−−−−→
S

u and let

t′1
∆′

1←−−
R

s′
∆′

2−−→
S

u′1

be the corresponding critical peak. Since s ·D s′, there exist a context C and a substitution σ
such that s = C[s′σ], t1 = C[t′1σ], u1 = C[u′1σ], ∆1 = C[∆′1σ], and ∆2 = C[∆′2σ]. We have
t′1 ◦−−→R u′1 because the critical peak is (R,S)-closed. Let D′ be the proof term witnessing this
multi-step and define D = C[D′σ]. Clearly, D is a witness of t1 ◦−−→R u1. We will compose
D and B \∆2 into a single proof term C : t1 ◦−−→R u. Let B′ = B −∆2. Since (∆1,∆2) is an
innermost overlap with ∆1 > ∆2, N(B′,∆1) = ∅. Hence B′ \∆1 is well-defined. If we show
that N(B′ \∆1, D) = ∅ then we can define C as (B′ \∆1)tD. We have N(D′) ⊆ PosF (t′1) and
thus N(D) ⊆ {qp | p ∈ PosF (t′1)} where q is the position of the hole in C. In words, D affects
only the t′1 part of C[t′1σ]. Let ∆ ∈ B′ be an arbitrary redex. We show that N(∆ \∆1, D) = ∅.
We split B′ into two parts: B′ = B1 tB2 with

B1 = B′ −B2 B2 =
⊔{

∆
∣∣ ∆ ∈ B′ and ∆ > ∆2

}

Depending on the position of ∆, we distinguish two cases:
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(a) If ∆ ∈ B1 then ∆ does not overlap ∆1. So N(∆ \∆1) consists entirely of positions in C
and thus N(∆ \∆1, D) = ∅.

(b) Otherwise, ∆ ∈ B2. Since (∆1,∆2) is an innermost overlap, N(∆,∆1) = ∅. Because
∆ 6= ∆2 we also have N(∆,∆2) = ∅. The crucial observation is that no redex in ∆ \∆1

overlaps with D. This follows because for the originating term s′ of the critical peak we
have PosF (s′) = N(∆′1) ∪ N(∆′2), due to the fact that the involved rules are left-linear.
Hence all redexes in ∆ \∆1 appear in the substitution part σ of C[t′1σ].

We conclude that N(B′ \∆1, D) = ∅. It remains to show that N(A,B) ) N(A \∆1, C). We
have N(B1 \∆1) = N(B1) and hence N(C) = N(B1) ∪ N(B2 \∆1) ∪ N(D). Because (∆1,∆2) is
an innermost overlap, N(A,B2) = ∅ and therefore

N(A,B) = N(A,∆2) ∪ N(A,B1)

and N(A \∆1, B2 \∆1) = ∅. Because all redexes in B1 occur above ∆2, they do not overlap
with ∆1 and thus N(A \∆1, B \∆1) = N(A \∆1, B1 \∆1) = N(A,B1). We obtain

N(A \∆1, C) = N(A \∆1, B
′ \∆1) ∪ N(A \∆1, D)

= N(A,B1) ∪ N(A \∆1, D)

and so it remains to show that N(A,∆2) ) N(A \∆1, D). We split A into three parts: A =
A1 t ∆1 t A2 with A1 = A − ∆1 − A2 and A2 =

⊔{
∆
∣∣ ∆ ∈ A and ∆ > ∆1

}
. We have

N(A,∆2) = N(A1,∆2) ∪ N(∆1,∆2) and

N(A \∆1, D) = N(A1 \∆1, D) ∪ N(∆1 \∆1, D) ∪ N(A2 \∆1, D)

The second component is clearly empty but also the third component reduces to the empty
set, by repeating the reasoning in case (b) above. The first component equals N(A1, D) since
redexes in A1 occur above ∆1. So N(A \∆1, D) = N(A1, D). Since N(∆1,∆2) 6= ∅, it suffices
to show the inclusion N(A1, D) ⊆ N(A1,∆2), which follows from the observation that overlaps
between A1 and D are restricted to positions in N(∆2)− N(∆1).

We are ready to show the aforementioned lemma.

Proof of Lemma 4.1. By induction on the finite set N(A,B) with respect to the well-founded
order ). Let

t
A◦←−−
R

s
B◦−−→
S

u

If N(A,B) is empty then (a) holds by the second part of Lemma 2.1. Otherwise, there is an
overlap in A×B. We distinguish two cases.

• If a non-closed overlap (∆1,∆2) exists in A×B, (b) holds because

t
A \∆1◦←−−−−
R

· ∆1←−−
R

s
∆2−−→
S
· B \∆2◦−−−−→

S
u

and the two inner steps correspond to applications of rules from CPS′S(R) and CPS′R(S).

• In the other case all overlaps are closed. Let (∆1,∆2) be an innermost overlap. Without
loss of generality we assume ∆1 > ∆2. According to Lemma 4.2 there exists some proof
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term C such that N(A,B) ) N(A \∆1, C). Let s′ be the term such that s ∆1−−→ s′. (In the
proof of Lemma 4.2 s′ was called t1.) Because

t
A \∆1◦←−−−−
R

s′
C◦−→
S
u

the induction hypothesis applies.

Theorem 4.3. Left-linear locally commuting TRSs R and S commute if CPS′S(R)∪CPS′R(S)
is relatively terminating over R∪ S.
Proof. Use Lemma 4.1 to replace Figure 1(b) by the following diagram:

s

s′

t v · w u

R
,s
1

S
,s

2

C
P
S ′R

(S
)C

P
S

′ S
(R

)

R,v S,w

R
∪S

S,v R,w

Due to lack of space, we omit the extension that weakens the joinability requirement for
overlays, but note that the result of Theorem 4.3 remains true if we strengthen the notion of
(R,S)-closedness by allowing t ◦−−→∗S · R ◦←−− u when p = ε. Future work includes the extension
to critical valleys [9] as well as automation. Experimental data on the confluence problem
database Cops1 for the presented theorems will be reported at the workshop.
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