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Abstract
Kirby and Paris (1982) proved in a celebrated paper that a theorem of Goodstein (1944) cannot
be established in Peano (1889) arithmetic. We present an encoding of Goodstein’s theorem
as a termination problem of a finite rewrite system. Using a novel implementation of ordinal
interpretations, we are able to automatically prove termination of this system, resulting in the
first automatic termination proof for a system whose derivational complexity is not multiple
recursive. Our method can also cope with the encoding by Touzet (1998) of the battle of Hercules
and Hydra, yet another system which has been out of reach for automated tools, until now.
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1 Introduction

Since the beginning of the millennium there has been much progress regarding automated
termination tools for rewrite systems.1 Despite the many different techniques that have
been developed, it seems that (terminating) TRSs which admit very long derivations are
out of reach even for the most powerful tools. This is not surprising since many base
methods induce rather small upper bounds on the derivational complexity. Hofbauer and
Lautemann [14] have shown that polynomial interpretations are limited to double expo-
nential derivational complexity. They further showed that the derivational complexity of a
rewrite system compatible with KBO cannot be bounded by a primitive recursive function.
Later, Lepper [19] established the Ackermann function as an upper bound for KBO, whereas
Weiermann [30] proved a multiple recursive upper bound for LPO. More recently, Moser and
Schnabl have studied upper bounds on the complexity when using these base methods in
the dependency pair framework [25, 26]. Although dependency pairs significantly increase
termination proving power, from the viewpoint of derivational complexity the limit is still
multiple recursive. This has led to the conjecture [26, Conjecture 6.99] that for any system
whose termination can be proved automatically by modern tools the length of its derivations
can be bounded by a multiple recursive function (in the size of the starting terms).

In this paper we encode the computation of the sequences in Goodstein’s theorem as a
rewrite system G such that termination of G implies Goodstein’s theorem. Since the latter
is not provable in Peano arithmetic (Kirby and Paris [17]), the derivational complexity of
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2 Beyond Peano Arithmetic

G is not multiple recursive. Despite the fact that ordinals have been used in termination
arguments since many decades [11, 29], until now a successful implementation for automatic
termination proofs is lacking. In this paper we discuss automation of a termination criterion
based on ordinal interpretations which is capable of proving G terminating, thereby disprov-
ing the above conjecture. Our implementation can also cope with Touzet’s encoding [28] of
the battle of Hercules and Hydra (also due to [17]), yet another system whose derivational
complexity is not multiple recursive. In preliminary work [31, 33] we already used ordinal
domains to increase automatic termination proving power. However, in [33] the focus in on
string rewriting and the interpretation functions have a very limited shape to avoid ordinal
arithmetic. As a consequence the method is limited to systems with at most multiple expo-
nential derivational complexity. Similarly, [31] uses ordinal domains for generalized KBO,
again for string rewriting only.

This paper is organized as follows. In the next section we recall ordinal arithmetic and
weakly monotone algebras for termination proofs. In Section 3 we present our encoding
of Goodstein’s theorem and prove its correctness. Section 4 discusses how ordinal inter-
pretations can be automated. Rewrite systems encoding the Hydra battle are the topic
of Section 5, in which also the limitations of our implementation of ordinal interpretations
become apparent. We conclude in Section 6.

2 Preliminaries

We recall some preliminaries about ordinal numbers. Ordinals are transitive sets well-
ordered with respect to ∈. Hence α < β if and only if α ∈ β. By identifying ∅, {∅},
{∅, {∅}}, . . . with 0, 1, 2, . . ., the natural numbers are embedded in the ordinals. If α is an
ordinal then the ordinal α∪{α} is its successor, denoted by α+ 1. An ordinal β constitutes
a successor ordinal if there is some α such that β = α + 1, otherwise β is called a limit
ordinal. For instance 1, 2, 3, . . . are successor ordinals, whereas 0 and the smallest infinite
ordinal ω are limit ordinals. The latter is equivalent to the set of all natural numbers. The
following ordinal arithmetic operations constitute extensions of the respective operations on
natural numbers (see [16] for details).

I Definition 1. For ordinals α and β their sum α+ β is defined by recursion over β as (a)
α+ 0 = α, (b) α+β = (α+γ) + 1 if β = γ+ 1, and (c) α+β =

⋃
γ<β α+γ if β is a positive

limit ordinal.

Addition satisfies associativity α + (β + γ) = (α + β) + γ but is not commutative, e.g.,
1 + ω = ω 6= ω + 1.

I Definition 2. For ordinals α and β their product α · β is defined by recursion over β as
(a) α · 0 = 0, (b) α · β = α · γ + α if β = γ + 1, and (c) α · β =

⋃
γ<β α · γ if β is a positive

limit ordinal.

Since 2 · ω = ω 6= ω · 2 multiplication is not commutative, and as (ω + 1) · 2 = (ω + 1) +
(ω + 1) = ω · 2 + 1 also not right-distributive, but associativity α · (β · γ) = (α · β) · γ and
left-distributivity α · (β + γ) = (α · β) + (α · γ) hold. We mostly write αa for α · a.

I Definition 3. For ordinals α and β, recursion over β allows to define exponentiation αβ

as follows: (a) α0 = 1, (b) αβ = αγ · α if β = γ + 1, and (c) αβ =
⋃
γ<β α

γ if β is a positive
limit ordinal.

Examples of infinite ordinals include ω1 = ω, ω 3 = ω+ω+ω, ω2 = ω ·ω, ωω+1, and ωωω .
The ordinal ε0 is the smallest ordinal α which satisfies αω = α. Let O denote the class of
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ordinal numbers smaller than ε0, N ordinal numbers smaller than ω (the natural numbers),
> the standard order on ordinals, and > its reflexive closure.

Recall that every ordinal α < ε0 can be represented in Cantor normal form (CNF), i.e.,

α = ωα1a1 + · · ·+ ωαnan (1)

such that α1 > · · · > αn are in CNF as well and a1, . . . , an ∈ N>0. The ordinal 0 is
represented as the empty sum.

I Definition 4. Let α = ωα1a1 + · · ·+ ωαnan and β = ωβ1b1 + · · ·+ ωβmbm be ordinals in
CNF, and {γ1, . . . , γk} = {α1, . . . , αn} ∪ {β1, . . . , βm} such that γ1 > · · · > γk. The natural
sum of α and β is defined as α⊕β = ωγ1(a′1 +b′1)+ · · ·+ωγk(a′k+b′k) where a′i = aj (b′i = bj)
if γi = αj (γi = βj) for some j, and a′i = 0 (b′i = 0) otherwise.

In contrast to standard addition, natural addition on ordinals enjoys all properties known
from addition on natural numbers, e.g., 2⊕ ω = ω ⊕ 2 = ω + 2. For ordinal interpretations
as considered later in this paper it is crucial that addition, natural addition, multiplication,
and exponentiation are weakly monotone in both arguments.

We assume familiarity with term rewriting and termination in particular [27]. By x

we abbreviate x1, . . . , xn. We consider well-founded algebras A where the interpretation
functions fA take the following very general shape. Ordinal interpretations over variables
x are the smallest set of expressions containing N and xi for all 1 6 i 6 n, they are
closed under (standard and natural) addition and multiplication, composition, and ω(·). An
interpretation function fA is weakly monotone if a > b implies fA(. . . , ai−1, a, ai+1, . . .) >
fA(. . . , ai−1, b, ai+1, . . .). It is simple if fA(a1, . . . , an) > ai for all 1 6 i 6 n. An algebra
is simple/weakly monotone if all its interpretation functions are. A TRS R is compatible
with an algebra A if [α]A(`) > [α]A(r) for every `→ r ∈ R and assignment α (also written
R ⊆ >A). Algebras may yield termination proofs.

I Theorem 5 ([28, 34]). A TRS is terminating if it is compatible with a well-founded weakly
monotone simple algebra. J

In order to prove termination of TRSs with non-multiple recursive derivation length,
ordinal interpretations can be lexicographically combined with linear polynomial interpre-
tations and matrix interpretations [9].

3 The Goodstein Sequence

In this section we present a TRS for the Goodstein sequence. Given n > 1, a natural number
α is in hereditary base n representation, which we indicate by writing (α)n, if

(α)n = n(αk)n · ak + n(αk−1)n · ak−1 + · · ·+ n(α0)n · a0 (2)

such that (αk)n > · · · > (α0)n are in hereditary base n representation and 0 < ai < n

for all 0 6 i 6 k. For m > n we denote by (α)mn the result of replacing n by m in (α)n,
so (α)mn = m(αk)mn · ak + m(αk−1)mn · ak−1 + · · · + m(α1)mn · a1 + a0 is in hereditary base m
representation.

I Definition 6. The Goodstein sequence gα with starting value α is defined by gα(0) = α

and gα(i+ 1) = (gα(i))i+3
i+2 − 1 for all i > 0.

I Theorem 7 (Goodstein [12]). For all α there exists a k such that gα(k) = 0. J

RTA’13



4 Beyond Peano Arithmetic

By G(α) we denote the smallest number k with this property. Totality of this function
is not provable in Peano arithmetic, as shown by Kirby and Paris [17]. Cichon [5] presented
a very short proof using results concerning recursion theoretic hierarchies of functions. In
particular, he showed that the growth rate of G is strongly related to Hε0 .2

I Definition 8. For all n > 1 we define a mapping [·]n to represent natural numbers in
base n as ground terms over {c, 0}, where c is a binary function symbol and 0 a constant.
Let (α)n be a natural number in hereditary base n representation as in (2). We denote the
term c(x, c(x, · · · c(x, y) · · · )) containing k > 0 occurrences of c by ck(x, y). In particular,
c0(x, y) = y. Then [·]n is recursively defined such that [0]n = 0 and

[α]n = ca0([α0]n , . . . c
ak−1([αk−1]n , c

ak([αk]n , 0)) . . . )

Intuitively, given base n, the term c([α]n , [β]n) represents the number nα+β, and terms
contributing to the base n representation of a number are combined in increasing order.

I Example 9. For (1)2 = 20 we have [1]2 = c(0, 0), for (2)2 = 220 we have [2]2 = c(c(0, 0), 0),
for (7)2 = 2220

+ 220 + 20 we have [7]2 = c(0, c(c(0, 0), c(c(c(0, 0), 0)))), and for (7)3 =
330 · 2 + 30 we have [7]3 = c(0, c(c(0, 0), c(c(0, 0), 0))).

The following definition is inspired by Touzet’s encoding of the Hydra battle [28] (see
Example 22).

I Definition 10. Consider the following TRS G over a signature consisting of unary function
symbols •, 8, ◦ and binary function symbols f, h, in addition to 0 and c:

8 ◦x→ ◦ 8x (A1)
• 8x→ 8 • •x (A2)
◦x→ • 8x (A3)

c(0, x)→ ◦x (B1)
• c(c(x, y), z)→ • f(c(x, y), z) (B2)

• f(0, x)→ ◦x (C1)
• f(c(x, y), z)→ h(• f(x, y), • • f(f(x, y), z)) (C2)

• h(x, y)→ h(•x, • • c(x, y)) (D1)
h(x, y)→ ◦ y (D2)
• f(x, y)→ f(•x, y) (E1)
• c(x, y)→ c(•x, • y) (E2)

•x→ x (E3)
◦x→ x (E4)

The idea is to encode the current base n as 8n, followed by a term [α]n. The marker symbols
◦ and • are used to trigger rewrite steps while f and h compute intermediate results.

According to the following theorem, G simulates for any starting value the computation
of the Goodstein sequence. Since the term • 8n [0]n = • 8n 0 is clearly terminating, it follows
that Theorem 7 is a consequence of the termination of G.

2 Here H is the Hardy function: H0(n) = n + 1, Hα+1(n) = Hα(n + 1), and Hλ(n) = Hλn(n).
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I Theorem 11. Let α, n ∈ N such that α > 0 and n > 1. Then • 8n [α]n →
+
G • 8n+1 [β]n+1

where β = (α)n+1
n − 1.

The proof of this result requires some auxiliary facts about G.

I Lemma 12.
(a) •n h(s, t)→+

G ◦ cn(•n s, •2n t) for all terms s and t.
(b) Let α, β ∈ N and n ∈ N such that n > 1, β + nα is positive, s = [α]n and t = [β]n. Then

•n f(s, t)→+
G ◦u where u = [β + nα − 1]n.

Proof.
(a) By induction on n. If n = 0 then h(s, t)→G ◦ t in a single step using (D2). If n > 0 then

•n+1 h(s, t) →G •n h(• s, • • c(s, t)) (D1)

→+
G ◦ cn(•n+1 s, •2(n+1) c(s, t)) (?)

→+
G ◦ cn(•n+1 s, c(•2(n+1) s, •2(n+1) t)) (E2)

→+
G ◦ cn(•n+1 s, c(•n+1 s, •2(n+1) t)) (E3)

= ◦ cn+1(•n+1 s, •2(n+1) t)

where (?) applies the induction hypothesis.
(b) By induction on α. If α = 0 then [α]n = 0 and •n f(0, t) →G •n−1 ◦ t →∗G ◦ t using rules

(C1) and (E3). Since β + n0 − 1 = β and t = [β]n the claim holds. If α > 0 then
[α]n = c(s′, t′) and s′ = [γ]n and t′ = [δ]n for some γ, δ ∈ N, so α = δ + nγ . We have

•n f(c(s′, t′), t) →G •n−1 h(•f(s′, t′), • • f(f(s′, t′), t)) (C2)
→+
G ◦ cn−1(•n f(s′, t′), •2n f(f(s′, t′), t)) (a)
→∗G ◦ cn−1(•n f(s′, t′), •n f(•n f(s′, t′), t)) (E1)
→+
G ◦ cn−1(◦w, •n f(◦w, t)) (?)

→+
G ◦ cn−1(w, •n f(w, t)) (E4)

→+
G ◦ cn−1(w, ◦w′) (??)
→G ◦ cn−1(w,w′) (E4)

where in (?) we apply the induction hypothesis since γ < α and so we obtain a term
w = [δ + nγ − 1]n. Since δ+nγ − 1 < α, we can apply the induction hypothesis again in
step (??), which yields a term w′ such that w′ =

[
β + nδ+nγ−1 − 1

]
n
. Let ν = δ+nγ−1.

For the term v = cn−1(w,w′) we thus have

v = [β + nν · (n− 1) + nν − 1]n =
[
β + nν+1 − 1

]
n

= [β + nα − 1]n J

Proof of Theorem 11. Since α > 0, we have [α]n = c(s, t) for some terms s and t. We
apply case analysis on s. If s = 0 then t = [α− 1]n and we have

• 8n c(0, t)→G 8n c(0, t) (E3)
→G 8n ◦ t (B1)
→+
G ◦ 8n t (A1)

→G • 8n+1
t (A3)

Otherwise, s = c(u, v) so let c(u, v) = [γ]n and t = [δ]n for some γ, δ ∈ N. There is the
following rewrite sequence:

• 8n c(c(u, v), t)→+
G 8n •2n c(c(u, v), t) (A2)

RTA’13



6 Beyond Peano Arithmetic

→∗G 8n •n+1 c(c(u, v), t) (E3)
→∗G 8n •n+1 f(c(u, v), t) (B2)
→+
G 8n ◦w (?)

→+
G ◦ 8n w (A1)

→G • 8n+1
w (A3)

where (?) applies Lemma 12(b), according to which w = [δ + (n+ 1)γ − 1]n+1. J

I Theorem 13. The TRS G is terminating.

Proof. We show termination of G according to Theorem 5. Consider the following interpre-
tation A over the well-founded domain O× N× N:

0A = (0, 0, 0) 8A(x,m, n) = (x, 2m+ 2, n)
cA((x,m, n), (y, k, l)) = (ωx ⊕ y + 1, 0, 0) ◦A(x,m, n) = (x, 2m+ 3, n)
fA((x,m, n), (y, k, l)) = (ωx ⊕ y, 0, 0) •A(x,m, n) = (x,m, n+m+ 1)
hA((x,m, n), (y, k, l)) = (y + ωx+1, 0, 0)

This interpretation is simple and weakly monotone. Because

(x, 4m+ 8, n) > (x, 4m+ 7, n) (A1)
(x, 2m+ 2, 2m+ n+ 3) > (x, 2m+ 2, 2m+ n+ 2) (A2)

(x, 2m+ 3, n) > (x, 2m+ 2, n+ 2m+ 3) (A3)
(x+ 2, 0, 0) > (x, 2m+ 3, n) (B1)

(ωω
x⊕y+1 ⊕ z + 1, 0, 1) > (ωω

x⊕y+1 ⊕ z, 0, 1) (B2)
(x+ 1, 0, 1) > (x, 2m+ 3, n) (C1)

(ωω
x⊕y+1 ⊕ z, 0, 1) > (z + ωω

x⊕y+1, 0, 0) (C2)
(y + ωx+1, 0, 1) > (y + ωx+1, 0, 0) (D1)
(y + ωx+1, 0, 0) > (y, 2k + 3, l) (D2)

(ωx ⊕ y, 0, 1) > (ωx ⊕ y, 0, 0) (E1)
(ωx ⊕ y + 1, 0, 1) > (ωx ⊕ y + 1, 0, 0) (E2)
(x,m, n+m+ 1) > (x,m, n) (E3)

(x, 2m+ 3, n) > (x,m, n) (E4)

it strictly orients all rules of G. Hence G is terminating. J

4 Automation

In order to automate the search for suitable ordinal interpretations, we restrict to inter-
pretations of a certain shape (see Definition 14). In Section 4.1 we show how for a given
(parametric) algebra of this shape one can derive over- and underapproximations for a
term’s interpretation, and encode the constraints on the (coefficients of the) interpretation
as a problem in non-linear integer arithmetic for which suitable SMT solvers exist (see [32]).
In contrast to other termination criteria, ordinal arithmetic (non-commutative, expressions
may be consumed) significantly complicates the encoding. Section 4.2 elaborates on imple-
mentation issues needed for a successful automation.



S. Winkler et al. 7

In the sequel we consider ordinal expressions of the following shape.

I Definition 14. A restricted ordinal expression (ROE) over variables x is either 0 or3∑
16i6n

xifi + ωf
′(x)fω ⊕

⊕
16i6n

xif̂i ⊕ f0 (3)

where f0, f1, . . . , fn, f̂1, . . . , f̂n, fω are (unknowns over the) naturals and f ′(x) is an ROE
over x. The depth of an ROE is the height of the tower of ω’s. An ROE algebra is an
algebra O in which for every n-ary function symbol f the interpretation function fO is an
ROE over x.

4.1 Encodings
Let f(x) and g(x) be ROEs of the form

f(x) =
∑

16i6n
xifi + ωf

′(x)fω ⊕
⊕

16i6n
xif̂i ⊕ f0 (4)

g(x) =
∑

16i6n
xigi + ωg

′(x)gω ⊕
⊕

16i6n
xiĝi ⊕ g0 (5)

We assume that these expressions depend on the same variables x (otherwise the respective
coefficients can be set to 0), and that variables appear in the same order (Section 4.2.2
explains how this is ensured). We first encode some auxiliary properties of (parametric)
interpretations.

Let zero(f(x)) be true if and only if f(x) = 0 or all of f0, fi, f̂i and fω are 0. Let
ci = max(fi, gi) for all i ∈ {0, . . . , n, ω}. An upper bound omax(f, g)(x) is then given by
omax(f, 0)(x) = omax(0, f)(x) = f(x) and

omax(f, g)(x) =
∑

16i6n
xici + ωomax(f ′,g′)(x)cω ⊕

⊕
16i6n

xi max(f̂i, ĝi)⊕ c0

otherwise. For instance, if f(x) = x1 + ωx2+1 ⊕ x3 and g(x) = ωx12 ⊕ x2 + 1 then
omax(f, g)(x) = x1 + ωx1+x2+12 ⊕ x2 ⊕ x3 + 1. Clearly, [α](f(x)) 6 [α](omax(f, g)(x))
and [α](g(x)) 6 [α](omax(f, g)(x)) for all assignments α. Consideration of a variable xi by
f(x) can be recursively encoded as follows:

con(xi, f(x)) =
{
⊥ if f(x) = 0
fi > 0 ∨ f̂i > 0 ∨ (con(xi, f ′(x)) ∧ fω > 0) otherwise

If f(x) and g(x) are defined as above then con(xi, f(x)) = > for all 1 6 i 6 3 and
con(xj , g(x)) = > for 1 6 j 6 2, but con(x3, g(x)) = ⊥.

Next, we derive formulas expressing comparisons. Consider ROEs f(x) and g(x) as in
(4), (5). As a criterion to check whether [α](f(x)) > [α](g(x)) for all assignments α, we use
the following underapproximation, which is a tradeoff between accuracy and efficiency.

3 To enhance readability we drop parentheses in expressions of the form x + y ⊕ z, which are to be read
as (x + y) ⊕ z rather than x + (y ⊕ z). Note that these expressions are in general not equivalent, e.g.
(1 + 0) ⊕ ω = ω + 1 but 1 + (0 ⊕ ω) = ω.

RTA’13



8 Beyond Peano Arithmetic

I Definition 15. Let f(x) and g(x) be ROEs as in (4), (5).

[f(x) > g(x)] = [f(x) >0 g(x)] ∧
∧

16i6n
[f(x) >i g(x)]

[f(x) >0 g(x)] = ([f ′(x) >0 g
′(x)] ∧ fω > 0) ∨ ([f ′(x) >0 g

′(x)] ∧ fω > gω ∧ f0 > g0) ∨
(gω = 0 ∧ f0 > g0)

[f(x) >i g(x)] = ¬con(xi, g(x)) ∨ (a)
([f ′(x) >i g′(x)] ∧ fω > gω ∧ gi = 0 ∧ ĝi = 0) ∨ (b)

(con(xi, ωf
′(x)fω) ∧ ¬con(xi, ωg

′(x)gω)) ∨ (c)

(con(xi, ωf
′(x)fω) ∧ [f ′(x) >i g′(x)] ∧ fω > gω) ∨ (d)

(con(xi, ωf
′(x)fω) ∧ [f ′(x) >i g′(x)] ∧ fω = gω ∧ f̂i > ĝi) ∨ (e)

(¬con(xi, ωg
′(x)gω) ∧ f̂i > ĝi ∧ fi + f̂i > gi + ĝi) ∨ (f)

((zero(g′(x)) ∨ gω = 0) ∧ fi + f̂i > gi + ĝi) (g)

[f(x) > g(x)] = [f(x) > g(x)] ∧ [f(x) >0 g(x)]

[f(x) >0 g(x)] = ([f ′(x) >0 g
′(x)] ∧ fω > gω ∧ f0 > g0) ∨ ([f ′(x) >0 g

′(x)] ∧ fω > 0)

Here [f(x) >0 g(x)] ([f(x) >0 g(x)]) encodes that the constant part in f(x) is greater (or
equal) than the constant part in g(x), whereas [f(x) >i g(x)] encodes that the coefficients
of the variable xi in f(x) are greater than or equal to the respective coefficients in g(x).
Our comparisons are more involved than the absolute positiveness approach [15] because of
ordinal arithmetic. We illustrate the different cases in the encoding of >i in the following
example.

I Example 16. Case (a) yields ωx1+x2 >1 ω
x2 while (b) admits ωx1 2 3 >1 ω

x1 3. From (c)
satisfiability of ωx1 2 >1 x1 3 is obtained while ωx1 2 >1 ω

x1 1 + x1 5 is due to (d). Case (e)
obviously allows ωx1 2 + x1 2 >1 ω

x1 2 + x1 1 but also ωx1 >1 x1 10 + ωx1 . Case (f) implies
x1 2 + ωx2 ⊕ x1 3 >1 x1 3 + ωx2 ⊕ x1 2. Note that if ωx2 consumes the preceding x1 2 (x1 3)
then f̂1 > ĝ1 must hold. In the other case the test f1 + f̂1 > g1 + ĝ1 is required. Finally, (g)
ensures x1 4 + ωx2 ⊕ x1 1 >1 x1 2 ⊕ x1 3. If ωx2 consumes x1 4 then it also dominates x1 2.
In the other case we need the test f1 + f̂1 > g1 + ĝ1.

Clearly, the encoding of > is only an approximation. E.g., [ωx1+1 >1 ωx1 2] is not
satisfiable, despite the fact that ωx1+1 > ωx1 2. However, it is straightforward to extend
Definition 15(b) accordingly.

In contrast to e.g. polynomial and matrix interpretations, ROEs are not closed under
composition and (standard/natural) addition. Hence we cannot compute an expression
corresponding to the interpretation of a term t with respect to an algebra O either. Instead,
we define ROEs µ(t) and ν(t) to under- and overapproximate tO. To this end we present in
Definition 17 bounds for the results of ordinal arithmetic operations (based on the algorithms
given in [23]) and demonstrate them in Example 18 before Lemma 19 shows their soundness.

I Definition 17. Let f(x) and g(x) be ROEs as in (4), (5).
(a) For a ∈ N, let (f ·µ a)(x) = (f ·ν a)(x) = 0 if a = 0 or f(x) = 0, and otherwise

(f ·µ a)(x) =
∑

16i6n
xifi + ωf

′(x)(fω · a)⊕
⊕

16i6n
xi(f̂i · a)⊕ (f0 · a)

(f ·ν a)(x) =
∑

16i6n
xi(fi · a) + ωf

′(x)(fω · a)⊕
⊕

16i6n
xi(f̂i · a)⊕ (f0 · a)
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(b) Let (f ⊕µ g)(x) = (f ⊕ν g)(x) = g(x) if f(x) = 0 and (f ⊕µ g)(x) = (f ⊕ν g)(x) = f(x) if
g(x) = 0. Otherwise, let si and ti abbreviate ¬con(xi, ωf

′(x)fω) and ¬con(xi, ωg
′(x)gω)

and let

(h, hω) =


(f ′, fω + 1) if [ωf ′(x)fω > ωg

′(x)gω]
(g′, gω + 1) if [ωg′(x)gω > ωf

′(x)fω]
(omax(f ′, g′), fω + gω) otherwise

and (k, kω) = [ωf ′(x)fω > ωg
′(x)gω] ? (f ′, fω) : (g′, gω). Here b ? t : e encodes “if b then t

else e”. Then

(f ⊕µ g)(x) =
∑

16i6n
xi max(fisi, giti) + ωk(x)kω ⊕

⊕
16i6n

xi(f̂i + ĝi)⊕ (f0 + g0)

(f ⊕ν g)(x) =
∑

16i6n
xi(fisi + giti) + ωh(x)hω ⊕

⊕
16i6n

xi(f̂i + ĝi)⊕ (f0 + g0)

(c) Let (f +µ g)(x) = (f +ν g)(x) = g(x) if f(x) = 0 and (f +µ g)(x) = (f +ν g)(x) = f(x)
if g(x) = 0. Otherwise, we define lower and upper bounds for f + g by distinguishing
different cases using if-then-else expressions:

(f +µ g)(x) = [ωg
′(x)gω > ωf

′(x)fω] ? g(x) : f(x)

(f +ν g)(x) = ([g′(x) > f ′(x)] ∧ gω > 0) ? φ1 :
(
[ωf

′(x)fω > ωg
′(x)gω] ? φ2 : (f ⊕ν g)(x)

)
where c0 = ([g′(x) > 0] ∧ gω > 0) ? g0 : f0 + g0 and

φ1 =
∑

16i6n
xi(fisiti + f̂iti + giti) + ωg

′(x)gω ⊕
⊕

16i6n
xiĝi ⊕ c0

φ2 =
∑

16i6n
xifisi + ωf

′(x)(fω + 1)⊕
⊕

16i6n
xi(f̂iti + giti + ĝi)⊕ c0

(d) Definitions (a)–(c) can be used to inductively set lower and upper bounds for the com-
position f(g) = f(g1(x), . . . , gn(x)). We write

∑µ
16i6n hi to abbreviate h1 +µ . . .+µ hn,

and use similar shorthands for ⊕ and ν. We set

f(g)µ(x) =
µ∑

16i6n
gi(x) ·µ fi +µ ω

f ′(g)µ(x)fω ⊕µ
µ⊕

16i6n
gi(x) ·µ f̂i ⊕µ f0

f(g)ν(x) =
ν∑

16i6n
gi(x) ·ν fi +ν ω

f ′(g)ν(x)fω ⊕ν
ν⊕

16i6n
gi(x) ·ν f̂i ⊕ν f0

(e) Let t be a term, and O be an ROE algebra. By induction on the term structure we
define ROEs µO(t) and νO(t) such that µO(t) = νO(t) = t if t ∈ V, whereas µO(t) =
fO(µO(t1), . . . , µO(tn))µ and νO(t) = fO(νO(t1), . . . , νO(tn))ν if t = f(t1, . . . , tn).

The following example illustrates these definitions of upper and lower bounds for ROE
arithmetic.

I Example 18.
(a) Consider the ROE f(x) = x1 +x2. Then (f ·µ2)(x) = x1 +x2 and (f ·ν 2)(x) = x12+x22.

We clearly have x1 + x2 6 (x1 + x2)2 6 x12 + x22 for all values of x1, x2. Note that
(x1+x2)2 6= x12+x22 since · does not right-distribute over +, as shown after Definition 2.

RTA’13
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(b) Consider the ROEs f(x) = ωx1+x2+1⊕x3 +1 and g(x) = x2 +ωx12⊕x3. As ωx1+x2+1 >

ωx12 we have (k, kω) = (x1 +x2 +1, 1) and (h, hω) = (x1 +x2 +1, 2). Thus (f⊕µ g)(x) =
ωx1+x2+1⊕ x32 + 1 and (f ⊕ν g)(x) = ωx1+x2+12⊕ x32 + 1. It is not difficult to see that

ωx1+x2+1 ⊕ x32 + 1 6 (ωx1+x2+1 ⊕ x3 + 1)⊕ (x2 + ωx12⊕ x3) 6 ωx1+x2+12⊕ x32 + 1

for all values of x1, x2, and x3.
(c) Consider the ROEs f(x) = x3 +ωx2⊕x1 and g(x) = ωx1+x2+1 +1. We have (f+µg)(x) =

g(x) = ωx1+x2+1 + 1 and (f +ν g)(x) = x3 + ωx1+x2+1 + 1. Note that the term ⊕ x1 in
f(x) disappears as x1 is considered in the exponent of g(x). We have

ωx1+x2+1 + 1 6 (x3 + ωx2 ⊕ x1) + (ωx1+x2+1 + 1) 6 x3 + ωx1+x2+1 + 1

for all values of x1, x2, and x3.
(d) For the ROEs f(x) = x2 +ωx1+1, g1(x) = ωx1 ⊕x2, and g2(x) = ωω

x1⊕x2 ⊕x3 we obtain

f(g)µ(x) = (ωω
x1⊕x2 ⊕ x3) +µ ω

ωx1⊕x2+1 = ωω
x1⊕x2+1

f(g)ν(x) = (ωω
x1⊕x2 ⊕ x3) +ν ω

ωx1⊕x2+1 = x3 + ωω
x1⊕x2+1

(e) Consider the terms ` = • f(c(x1, x2), x3) and r = h(• f(x1, x2), • • f(f(x1, x2), x3)) from
rule (C2) of G. Let O be the ordinal part of the ROE algebra defined in the proof of
Theorem 13 such that hO(x1, x2) = x2 +ωx1+1, cO(x1, x2) = ωx1 ⊕ x2 + 1, •O(x1) = x1,
and fO(x1, x2) = ωx1 ⊕ x2. We have µO(`) = νO(`) = ωω

x1⊕x2+1 ⊕ x3. It is easy to
see that for r′ = f(f(x1, x2), x3) we have µO(r′) = νO(r′) = ωω

x1⊕x2 ⊕ x3. From the
computation in (d) we thus obtain νO(r) = x3 + ωω

x1⊕x2+1. Note that µO(`) > νO(r)
holds: We obviously have µO(`) >0 νO(r), µO(`) >1 νO(r), and µO(`) >2 νO(r) as the
two expressions are equal in the relevant parts, and µO(`) >3 νO(r).

We now show that Definition 17 yields valid over- and underapproximations.

I Lemma 19. Let O be an ROE algebra and t be a term. Then [α](µO(t)) 6 [α]O(t) 6
[α](νO(t)) for all assignments α.

Proof. We argue that all approximations in Definition 17 constitute valid lower and upper
bounds. Let α be an arbitrary assignment.
(a) It is easy to see that [α](f(x) · a) 6 [α](f ·ν a)(x). For any α in CNF as in (1) and

a ∈ N>0, αa = ωα1a1a + ωα2a2 + · · · + ωαnan [23]. Since for any 1 6 i 6 n we have
ωα1a1a+ · · ·+ωαnan > ωα1a1 + · · ·+ωαiaia+ · · ·+ωαnan, (f ·µ a)(x) constitutes a safe
(though modest) lower bound for f(x)a.

(b) We have

f(x)⊕ g(x) =

 ∑
16i6n

xifi + ωf
′(x)fω

⊕
 ∑

16i6n
xigi + ωg

′(x)gω


⊕
⊕

16i6n
xi(f̂i + ĝi)⊕ (f0 + g0)

Note that the term xifi disappears in f(x)⊕g(x) if xi is considered in ωf ′(x) and fω > 0,
and the term xigi disappears in f(x)⊕g(x) if xi is considered in ωg′(x) and gω > 0. Hence
we may multiply all occurrences of fi by si, and occurrences of gi by ti.
We then have [α](f ⊕µ g)(x) 6 [α](f(x) ⊕ g(x)) as (f ⊕µ g)(x) underapproximates(∑

16i6n xifi + ωf
′(x)fω

)
⊕
(∑

16i6n xigi + ωg
′(x)gω

)
by a coefficient-wise maximum
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of the respective components in f(x) and g(x).
Concerning the upper bound, it is easy to see that ωf ′(x)fω⊕ωg

′(x)gω 6 ωh(x)hω. As the
sum of xifi and xigi can be overapproximated by (fisi+giti)xi we have [α](f(x)⊕g(x)) 6
[α](f ⊕ν g)(x).

(c) We clearly have [α](f +µ g)(x) 6 [α](f(x) + g(x)).
Concerning the upper bound, assume for a first case g′ > f ′ and gω > 0, so ωf ′(x)fω +
ωg
′(x)gω = ωg

′(x)gω. Note that the term xif̂i disappears in f(x) + g(x) if xi is contained
in ωg

′(x) and gω > 0, the term gixi disappears as well if xi is contained in ωg
′(x) and

gω > 0, and fixi disappears if xi occurs in ωf
′(x) and fω > 0, or if xi occurs in ωg

′(x) and
gω > 0. Hence for any variable xi the sum of xifi, xif̂i, and xigi can be overapproximated
by xi(fisiti + f̂iti + giti). Therefore [α](f(x) + g(x)) 6 [α](f +ν g)(x).
Now suppose [ωf ′(x)fω > ωg

′(x)gω], so ωf ′(x)fω + ωg
′(x)gω 6 ωf

′(x)(fω + 1). The term
f̂ixi disappears in f(x) + g(x) if xi is contained in ωg

′(x) and gω > 0, the term gixi
disappears as well if xi is contained in ωg′(x) and gω > 0. Hence for any variable xi the
sum of xif̂i, xigi, and xiĝi can be overapproximated by xi(f̂iti + giti + ĝi) such that
[α](f(x) + g(x)) 6 [α](f +ν g)(x).
Finally, f(x) + g(x) 6 f(x)⊕ g(x) 6 (f ⊕ν g)(x) holds in any case.

(d) By (a)–(c) and weak monotonicity of the ordinal operations ·, +, and ⊕.
(e) By induction on the term structure of t, using (d). J

All (approximations of) interpretations are weakly monotone. It is easy to encode a
criterion for an interpretation to be simple:

simple(f(x)) =
∧

16i6n
con(xi, f(x))

Thus, given a TRS R over a signature F , we assign every f ∈ F an abstract ROE fO of
some depth d. Compatibility of R with a simple algebra O is then expressed by∧

`→r∈R

[µ(`) > ν(r)] ∧
∧
f∈F

simple(fO(x))

4.2 Implementation
We implemented ordinal interpretations in the termination tool TTT2 [18]. In version 1.09,
which is available from the tool’s website,4 ordinal interpretations can be used by executing
./ttt2 -s HYDRA <file>. Furthermore, the web interface has been updated accordingly.
In this section we discuss crucial issues for a successful implementation. Section 4.2.1 shows
how to ensure that the lexicographic combination of partial proofs preserves weak mono-
tonicity. Section 4.2.2 deals with the problem of a compatible variable order and Section 4.2.3
is dedicated to efficiency considerations.

4.2.1 Lexicographic Combination of Interpretations
The termination proof of the TRS G (Theorem 7) performs a lexicographic combination of
algebras into a simple and weakly monotone algebra. The proof can be seen as the lexico-
graphic product of (1) an ordinal interpretation and (2) a linear (polynomial) interpretation
and (3) a matrix interpretation of dimension 2. Regarding automation one can either encode

4 http://cl-informatik.uibk.ac.at/software/ttt2/
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the search for the lexicographic combination or search for (partial) proofs and combine them
lexicographically. We adopted the latter, although the lexicographic combination of weakly
monotone algebras need not be weakly monotone, as shown by the following example.

I Example 20. Consider the nonterminating TRSR = {f(a)→ f(b), b→ a}. For the weakly
monotone simple interpretation fO(x) = x + ω, bO = 1, aO = 0 we have [f(a)]O = ω > ω =
[f(b)]O and [b]O = 1 > 0 = [a]O. If we removed the second rule, then the weakly monotone
simple interpretation fN (x) = x + 1, aN = 1, bN = 0 shows termination of the remaining
rule f(a) → f(b). Note that the lexicographic combination is no longer weakly monotone,
i.e., [b]O×N = (1, 0) >lex (0, 1) = [a]O×N but [f(b)]O×N = (ω, 1) 6>lex (ω, 2) = [f(a)]O×N .

However, we can recover weak monotonicity by interpreting the second component by
a constant whenever the first component is only weakly—but not strictly—monotone, i.e.,
fO(x, y) = (x+ω, c) for some c ∈ N. To achieve this goal in the implementation we consider
relative rewriting and add a rule f ′ → f(x1, . . . , xn) in the relative part whenever fO is not
strictly monotone. Here f ′ is a fresh constant. In the presence of a rule f ′ → f(x1, . . . , xn),
compatible interpretations satisfy fA(x1, . . . , xn) = c for some c in the domain of A. The
idea is demonstrated by the following example.

I Example 21 (Example 20 revisited). Consider the TRS R from Example 20. After
applying the first interpretation we obtain the relative TRS {f(a) → f(b)}/{f ′ → f(x)}.
Although this system is terminating there is no compatible interpretation since f may not
depend on its arguments due to the second rule.

However, adding rules f ′ → f(x1, . . . , xn) is likely to disable the orientation of rules
whose left-hand sides are rooted by f (to satisfy [α]A(f ′) > [α]A(f(x1, . . . , xn)) the inter-
pretation of f may not depend on its arguments) and consequently the termination proof
might not be successful. To avoid this situation in the implementation we add constraints
demanding to orient such rules only if the interpretation of f is not strictly monotone. Then
rules rooted with f must be oriented before a rule f ′ → f(x1, . . . , xn) is added.

Another necessary requirement is that the (lexicographic) algebra is simple. Again we
avoid an explicit lexicographic encoding. Rather, in a preprocessing step for every f ∈ F
we add the embedding rules f(x1, . . . , xn)→ xi (for 1 6 i 6 n) into the relative component
of the TRS. This then ensures [α]A(f(x1, . . . , xn)) > [α]A(xi) for each 1 6 i 6 n.

Hence for a TRS R over a signature F the procedure amounts to the following three
steps:

1. S := {f(x1, . . . , xn)→ xi | 1 6 i 6 n, f ∈ F}.

2. Find an algebra A satisfying R∪ S ⊆ >A and R∩>A 6= ∅.
NmonA(R) := {f ′ → f(x1, . . . , xn) | 1 6 i 6 n, f ∈ F , fA is not strictly monotone}.
R := R \>A and S := (S \>A) ∪ NmonA(R).

3. If R = ∅ then output terminating else go to step (2).
Instead of proving termination of R we try to establish termination of R relative to S
(cf. step (1)). This pre-processing step ensures that the algebras in step (2) are simple.
Step (2) employs SMT to find appropriate ROEs and matrix interpretations (of different
dimensions), respectively. Note that this step may fail and cause the procedure to abort.
Adding NmonA(R) in the relative part ensures that the lexicographic combination of the
used algebras is weakly monotone.
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4.2.2 Compatible Variable Orders
When interpreting or comparing terms we might get ROEs not having the same variable
order. E.g., the rule s(g(x, y)) → g(y, x) results in the constraint x + y + 1 > y + x, if
gO(x, y) = x + y and sO(x) = x + 1. The assignment α(x) = 1 and α(y) = ω yields
1 +ω+ 1 = ω+ 1 6> ω+ 1 but the encoding [x+ y+ 1 > y+x] is satisfiable. The same effect
also happens in arithmetic operations, e.g. the overapproximation of + in Lemma 19(d).
Taking fO(x, y) = gO(x, y) = x + y, and α(x) = 1, α(y) = ω, the term f(g(x, y), g(y, x))
evaluates to (1+ω)+(ω+1) = ω2+1 but the overapproximation based on the variable order
[x, y] yields 2+ω2 = ω2. Clearly ω2+1 66 ω2. Hence we have to add a constraint expressing
that two ordinal expressions have compatible variable orders (in the standard addition part).
Let

∑
16i6n xifi and

∑
16i6n yigi be ordinal expressions over the same variables (so y is a

permutation of x). Let i < j. Two variables xi and xj are not compatible if there exist i′, j′
with 1 6 i′ < j′ 6 n such that xi = y′j and xj = y′i. In such a case we constrain one of
the coefficients to be zero, i.e., fi = 0 ∨ fj = 0 ∨ gi′ = 0 ∨ gj′ = 0. For example consider
e1 = x1 · 1 + x2 · 1, e2 = x2 · 1 + x1 · 1, and e3 = x2 · 1 + x1 · 0. Then e1 and e2 do not have
compatible variable orders while e1 and e3 do have.

4.2.3 Efficiency
While the implementation fixes some initial depth d for the interpretation of function sym-
bols, this depth increases when evaluating terms (when composing f(g1(x), . . . , gn(x))). It
turned out that for efficiency it is necessary to bound the depth of expressions occurring in
evaluations of terms. Dropping parts of an interpretation is sound as an underapproximation
while for the overapproximation we add constraints (to the SMT solver) that the dropped
part must evaluate to zero.

For the automatic termination proof of the TRS G in TTT2 we (lexicographically) com-
bine ordinal interpretations with matrix interpretations [9]. Then, TTT2 manages G within
six seconds when using depth 1 for interpreting function symbols and limiting the depth
of evaluations to 2. The CNF of the underlying SAT problem has approximately 86.000
variables and 217.000 clauses.

5 Hydra Battles

In their influential paper [17], Kirby and Paris also presented the battle of Hercules and
Hydra as a combinatorial game on trees. Generalizations of the Hydra battle are found in
many papers (Fleischer [10] contains a nice survey) and several different encodings of the
battle into a termination problem of a specific TRS can be found in the literature [4, 6–
8, 20, 28]. Not all of these TRSs faithfully model the battle, and termination of some of
them are not independent of Peano arithmetic.

I Example 22. Touzet [28] presents the following TRS H to describe the battle between
Hercules and Hydra for starting terms corresponding to ordinals α < ωω

ω and using a
so-called standard strategy:

◦x→ • 8x H(0, x)→ ◦x • c1(x, y)→ c1(x,H(x, y))
• 8x→ 8 • •x •H(H(0, y), z)→ c1(y, z) • c2(x, y, z)→ c2(x,H(x, y), z)
8 ◦x→ ◦ 8x •H(H(H(0, x), y), z)→ c2(x, y, z) c1(y, z)→ ◦ z
•x→ x c2(x, y, z)→ ◦H(y, z)

RTA’13
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So far all termination tools failed on this example whose derivational complexity cannot be
bounded by a multiple recursive function. Its termination can be shown by the following
simple and weakly monotone interpretation A over the domain O×N×N, where f(x, y) =
y + ωx+1 [28]:

0A = (0, 0, 0) 8A(x,m, n) = (x, 2m+ 2, n)
HA((x,m, n), (y, k, l)) = (ωx ⊕ y, 0, 0) ◦A(x,m, n) = (x, 2m+ 3, n)
c1
A((x,m, n), (y, k, l)) = (f(x, y), 0, 0) •A(x,m, n) = (x,m, n+m+ 1)

c2
A((x,m, n), (y, k, l), (z, i, j)) = (ωf(x,y) ⊕ z, 0, 0)

Compared to G, TTT2 requires more resources (initial depth 2, intermediate depth 3, 12
seconds, 117.000 variables, 300.000 clauses) to automatically prove termination of H. This
is surprising as the derivational complexity of G far exceeds that of the Hydra system H,
which is bounded by the Hardy function Hωωω .

In [2], Beklemishev presents two infinite and one finite TRSW describing the Worm bat-
tle (corresponding to a one-dimensional version of Buchholz’ Hydra game [3], first introduced
by Hamano and Okada [13]). The finite system W consists of the following rules:

(x · y) · z → x · (y · z) a(f(x))→ f(a(x)) a(x · y)→ a(x) · y
a(b1(x))→ b1(a(x)) f(b(x))→ b(f(x)) b(x) · y → b(x · y)

a(f(0 · x))→ b1((f(0 · x)) · (0 · f(x))) a(f(0))→ b1(f(0) · 0) b1(b(x))→ b(b(x))
f(0 · x)→ b(0 · f(x)) f(0)→ b(0) c(b(x))→ c(a(x))
a(b(x))→ b(a(x))

Termination of W is proved in [2] by relating it to another, infinite TRS. We have not been
able to prove termination using ordinal interpretations, a goal we mention as a future aim.

Needless to say, there will always be TRSs whose termination is out of reach of automatic
tools. With our implementation of ordinal interpretations, one cannot prove termination
of TRSs whose derivational complexity goes beyond ε0. Lepper [20] presented an infinite
sequence (Rk)k>1 of TRSs that simulate Hydra battles. The derivational complexity ∆k of
Rk approaches the small Veblen ordinal ϑ(Ωω) when k tends to infinity.

Furthermore, as our implementation is based on Theorem 5 it cannot cope with TRSs
that are non-simply terminating. Hence the very first encoding of the Hydra battle in [7]
defeats TTT2. A (difficult) termination proof of this TRS can be found in Moser [24]. While
dependency pairs [1] go beyond simple termination they do not solve the intrinsic problems
of this work (exceeding multiple recursion, establishing weak monotonicity) and have hence
been discarded for ease of presentation.

6 Conclusion

6.1 Summary
We have encoded Goodstein’s sequence as a TRS and discussed automation of a termination
criterion which can cope with this system. Furthermore our implementation is also success-
ful on an encoding of the battle of Hercules and Hydra, for which a (sound) automatic
termination proof has been lacking so far. While preliminary experiments on the termina-
tion problems database TPDB (see footnote 1 on page 1) did not yield proofs for previously
unknown problems, we regard the main attraction of our method that it allows to go beyond
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multiple recursive derivation length. As shown in the paper, automation of lexicographic
combinations of termination proofs with respect to Theorem 5 is more challenging than in
the standard setting where strictly monotone algebras are employed.

6.2 Future Work
Concerning future work we want to improve the approximations of our term interpretation
encodings. Here we discuss scalar multiplication. Since the approximations must be correct
for all values of x, the overapproximation (f ·ν a)(x) is already optimal. To see this consider
(x + y) ·ν 2 for natural values of x and y. Inspecting the proof of Lemma 19(a), instead of
the current underapproximation (f ·µ a)(x) we could also use (if a > 0):

(f ·µ′ a)(x) =
∑

16i6n
xi(fi · ei) + ωf

′(x)(fω · a)⊕
⊕

16i6n
xi(̂fi · a)⊕ (f0 · a)

where exactly one of ei is a and all others are one. The underlying SMT solver can then
choose an appropriate summand to be multiplied with a such that subsequent operations
(addition, comparison, etc.) benefit. Refining the approximations for other operations
(addition/comparison) is more involved and it is unclear if the additional precision is in a
suitable ratio with the increasing difficulty of the resulting SMT problems.

Furthermore we stress that (efficient) approximations (similar to the ones presented) will
also be necessary for a successful implementation of e.g. elementary functions as proposed by
Lescanne [21]. Despite the recent efforts of Lucas [22], to our knowledge an implementation
of such interpretations is still lacking. We anticipate that automation of elementary functions
might give new automatic termination proofs for problems from TPDB.

Acknowledgments: We thank Georg Moser for his comments on Hydra battles and or-
dinals, René Thiemann for communicating Example 20, and the anonymous reviewers for
many helpful remarks.
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