
Conditional Confluence (System Description)?

Thomas Sternagel and Aart Middeldorp

University of Innsbruck, Innsbruck, Austria
{thomas.sternagel, aart.middeldorp}@uibk.ac.at

Abstract. This paper describes the Conditional Confluence tool, a fully
automatic confluence checker for first-order conditional term rewrite sys-
tems. The tool implements various confluence criteria that have been
proposed in the literature. A simple technique is presented to test condi-
tional critical pairs for infeasibility, which makes conditional confluence
criteria more useful. Detailed experimental data is presented.

Keywords: conditional term rewriting, confluence, automation.

1 Introduction

Confluence of term rewrite systems (TRSs) is an undecidable property. Never-
theless there are a number of tools [1, 10, 17] available to check for confluence
of TRSs. For conditional TRSs (CTRSs) checking confluence is even harder and
to date there was no automatic support. The Conditional Confluence tool—
ConCon—aims to change this picture. The tool implements three different con-
fluence criteria for oriented CTRSs that have been reported in the literature [2,
8, 16]. A simple technique for infeasibility of conditional critical pairs based on
the tcap function is presented to (mildly) enhance the applicability of two of the
confluence criteria.

The remainder of this paper is structured as follows. In Section 2 we sum
up some basic facts about (conditional) rewriting the reader should be familiar
with and we recall two transformations that are used to test for effective termi-
nation and confluence. The three implemented confluence criteria are described
in Section 3. Section 4 is about infeasibility and contains a larger example. The
tool is described in Section 5. A number of experiments have been conducted
with ConCon. They are presented in Section 6. The paper concludes with some
remarks on implementation issues, thoughts on extensions, and future work in
Section 7.

2 Preliminaries

We assume knowledge of the basic notions regarding CTRSs (cf. [3, 15]). Let R
be a CTRS. Let `1 → r1 ⇐ c1 and `2 → r2 ⇐ c2 be variants of rewrite rules

? The research described in this paper is supported by FWF (Austrian Science Fund)
projects P22467 and I963.



2

of R without common variables and let p ∈ PosF (`2) such that `1 and `2|p are
unifiable. Let σ be a most general unifier of `1 and `2|p. If `1 → r1 ⇐ c1 and
`2 → r2 ⇐ c2 are not variants or p 6= ε then the conditional equation `2σ[r1σ]p ≈
`2σ ⇐ c1σ, c2σ is called a conditional critical pair of R. A conditional critical
pair s ≈ t⇐ c of a CTRS R is joinable if sσ ↓R tσ for every substitution σ that
satisfies c. Since in this paper we are concerned with oriented CTRSs, the latter
means that uσ →∗R vσ for every equation u ≈ v in c. We say that s ≈ t ⇐ c
is infeasible if there exists no substitution σ that satisfies c. The TRS obtained
from a CTRS R by dropping the conditional parts of the rewrite rules is denoted
by Ru. We say that R is normal if every right-hand side of every condition in
every rule is a ground normal form with respect to Ru. Rewrite rules `→ r ⇐ c
of CTRSs are classified according to the distribution of variables among `, r,
and c, as follows:

type requirement

1 Var(r) ∪ Var(c) ⊆ Var(`)
2 Var(r) ⊆ Var(`)

type requirement

3 Var(r) ⊆ Var(`) ∪ Var(c)
4 no restrictions

An n-CTRS contains only rules of type n. So a 1-CTRS contains no extra vari-
ables, a 2-CTRS may only contain extra variables in the conditions, and a
3-CTRS may also have extra variables in the right-hand sides provided these
occur in the corresponding conditional part. The set of variables occurring
in a sequence of terms t1, . . . , tn is denoted by Var(t1, . . . , tn). Likewise the
function var(t1, . . . , tn) returns the elements of Var(t1, . . . , tn) in an arbitrary
but fixed order. An oriented CTRS R is called deterministic if for every rule
` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R we have Var(si) ⊆ Var(`, t1, . . . , ti−1) with
1 6 i 6 n.

An oriented CTRS R is quasi-decreasing if there exists a well-founded or-
der > with the subterm property that extends →R such that `σ > siσ for all
` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R, 1 6 i 6 n, and substitutions σ with
sjσ →∗R tjσ for 1 6 j < i. Quasi-decreasingness ensures termination and, for
finite CTRSs, computability of the rewrite relation. We recall two transforma-
tions from deterministic 3-CTRSs to TRSs that can be used to show quasi-
decreasingness.

Unravelings were first introduced in [13]. Unravelings split conditional rules
into several unconditional rules and the conditions are encoded using new func-
tion symbols. Originally they were used to study the correspondence between
properties of CTRSs and TRSs as well as modularity of CTRSs. The unraveling
defined below goes back to [12]. We use the formulation in [15, p. 212]. It simu-
lates the conditional rules from a CTRS R by a sequence of applications of rules
from the TRS U(R), in effect verifying the conditions from left to right until all
the conditions are satisfied and the last rule yielding the original right-hand side
may be applied.

Definition 1. Every deterministic 3-CTRS R is mapped to the TRS U(R) ob-
tained from R by replacing every conditional rule ρ : `→ r ⇐ s1 ≈ t1, . . . , sn ≈



3

tn with n > 1 in R with

`→ U1
ρ (s1, var(`))

U1
ρ (t1, var(`))→ U2

ρ (s2, var(`, t1))

· · ·
Unρ (tn, var(`, t1, . . . , tn−1))→ r

where U iρ are fresh function symbols.

In our implementation we use the variant of U sketched in [15, Exam-
ple 7.2.49] and formalized in [8, Definition 6]. In this variant certain U -symbols
originating from different rewrite rules are shared, in order to reduce the number
of critical pairs and thereby increasing the chances of obtaining a confluent TRS.

The second transformation, introduced in [2], from deterministic 3-CTRSs
to TRSs does not use any additional symbols and it does not aim to simulate
rewriting in the CTRS. Hence its use is limited to show quasi-decreasingness.

Definition 2. Every deterministic 3-CTRS R is mapped to the TRS V(R) ob-
tained from R by replacing every conditional rule `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn
with n > 1 in R with

`→ s1σ0 · · · `→ snσn−1 `→ rσn

for the substitutions σ0, . . . , σn inductively defined as follows:

σi =

{
ε if i = 0

σi−1 ∪ {x 7→ siσi−1 | x ∈ Var(ti) \ Var(`, t1, . . . , ti−1)} if 0 < i 6 n

The following lemma shows how the transformations are used to obtain quasi-
decreasingness. The first condition is from [15, p. 214] while the second one is
a combination of [15, Lemma 7.2.6] and [15, Proposition 7.2.68]. It is unknown
whether the first condition is implied by the second (cf. [15, p. 229]).

Lemma 3. A deterministic 3-CTRS R is quasi-decreasing if U(R) is terminat-
ing or V(R) is simply terminating. ut

3 Three Confluence Criteria

Our tool implements three known confluence criteria [2, 8, 16]. The first crite-
rion is from Avenhaus and Loŕıa-Sáenz [2, Theorem 4.1]. Its applicability is
restricted to quasi-decreasing and strongly irreducible deterministic 3-CTRSs. A
term t is called strongly irreducible if tσ is a normal form for every normalized1

substitution σ. We say that R is strongly irreducible if the right-hand side of
every condition in every conditional rewrite rule is strongly irreducible. Strong
irreducibility is undecidable. In our tool we use the following decidable approx-
imation [2]: no non-variable subterm of a right-hand side of a condition unifies
with the left-hand side of a rule (after renaming).

1 A normalized substitution maps variables to normal forms.



4

Theorem A A quasi-decreasing strongly irreducible deterministic 3-CTRS R
is confluent if and only if all critical pairs of R are joinable. ut

The second confluence criterion is from Suzuki et al. [16, Section 7]. It does
not impose any termination assumption, but forbids (feasible) critical pairs and
requires the properties defined below, which are obviously computable. A CTRS
R is right-stable if every rewrite rule `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R satisfies
Var(`, s1, . . . , si, t1, . . . , ti−1) ∩ Var(ti) = ∅ and ti is either a linear constructor
term or a groundRu-normal form, for all 1 6 i 6 n. An oriented CTRSR is prop-
erly oriented if for every rewrite rule ` → r ⇐ c with Var(r) 6⊆ Var(`) in R the
conditional part c can be written as s1 ≈ t1, . . . , sm ≈ tm, s

′
1 ≈ t′1, . . . , s

′
n ≈ t′n

such that the following two conditions are satisfied: Var(si) ⊆ Var(`, t1, . . . , ti−1)
for all 1 6 i 6 m and Var(r) ∩ Var(s′i, t′i) ⊆ Var(`, t1, . . . , tm) for all 1 6 i 6 n.

Theorem B Almost orthogonal properly oriented right-stable 3-CTRSs are con-
fluent. ut

The third criterion is a recent result by Gmeiner et al. [8, Theorem 9]. It
employs the notion of weak left-linearity, which is satisfied for a deterministic
CTRS R if x /∈ Var(r, s1, . . . , sn) for every rule `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn in
R and variable x that appears more than once in `, t1, . . . , tn.

Theorem C A weakly left-linear deterministic CTRS R is confluent if U(R)
is confluent. ut

Here the modified version of the unraveling U described after Definition 1
is used. The three criteria are pairwise incompatible, as shown in the following
examples.

Example 4. The oriented 1-CTRS R consisting of the following four rules

a→ b b→ a f(x, x)→ a g(x)→ a ⇐ g(x) ≈ b

is weakly left-linear and deterministic and its unraveling U(R)

a→ b b→ a f(x, x)→ a g(x)→ U(g(x), x) U(b)→ a

is confluent, hence R is confluent by Theorem C. Since R is neither left-linear
nor strongly irreducible, Theorems A and B are not applicable.

Example 5. The normal 2-CTRS consisting of the rule

h(x)→ g(x) ⇐ f(x, y) ≈ b

is orthogonal, properly oriented, and right-stable and therefore confluent by The-
orem B but not deterministic so Theorems A and C do not apply. Hence this
example contradicts the claim in [8] that Theorem B is a corollary of Theorem C.

Example 6. The normal 1-CTRS consisting of the rule

f(x, x)→ a ⇐ g(x) ≈ b

is quasi-decreasing, strongly irreducible, and non-overlapping, and thus confluent
by Theorem A. Since the system is not (weakly) left-linear, Theorems B and C
do not apply.



5

4 Infeasibility

The applicability of Theorems A and B strongly depends on the presence of
critical pairs. Many natural examples employ rules which only yield a couple of
critical pairs which are in fact all infeasible.

Infeasibility is undecidable in general. Two sufficient conditions are described
in the literature: [9, Appendix A] and [2, Definition 4.4]. The former method can
only be used in very special cases (left-linear constructor-based join systems
without extra variables and using “strict” semantics). The use of the latter
method is restricted to quasi-decreasing strongly irreducible deterministic 3-
CTRSs (like in Theorem A) and is described below.

Given a critical pair s ≈ t ⇐ c, the conditions in c are transformed into a
TRS C = {u→ v | u ≈ v ∈ c} where t is the result of replacing every x ∈ Var(c)
occurring in t by a fresh constant cx. If there is a left-hand side u in c such that
u2

∗
R∪C← u→∗R∪C u1 and u1, u2 are strongly irreducible and not unifiable then

s ≈ t⇐ c is infeasible. The same method can also be used as sufficient condition
for joinability [2]: s ≈ t⇐ c is joinable if s→∗R∪C · ∗

R∪C← t.
Our new technique for infeasibility is based on the tcap function, which was

introduced to obtain a better approximation of dependency graphs [7] and later
used as a sufficient check for non-confluence for TRSs [17]. It is defined as follows.
If t is a variable then tcap(t) is a fresh variable and if t = f(t1, . . . , tn) then we
let u = f(tcap(t1), . . . , tcap(tn)) and define tcap(t) to be u if u does not unify
with the left-hand side of a rule in R, and a fresh variable otherwise.

Lemma 7. Let R be an oriented CTRS. A conditional critical pair s ≈ t ⇐ c
of R is infeasible if there exists an equation u ≈ v ∈ c such that tcap(u) does not
unify with v. ut

We conclude this section with an example illustrating that Theorem A ben-
efits from the new infeasibility criterion of Lemma 7.

Example 8. Consider the following CTRS Rmin from [11]:

0 < s(x)→ true min(x : nil)→ x (1)

x < 0→ false min(x : xs)→ x ⇐ x < min(xs) ≈ true (2)

s(x) < s(y)→ x < y min(x : xs)→ min(xs) ⇐ x < min(xs) ≈ false (3)

min(x : xs)→ min(xs) ⇐ min(xs) ≈ x (4)

To check whether Theorem C is able to show confluence of Rmin we look at the
result of the optimized version of the unraveling U from Definition 1 on rules
(2) to (4):

min(x : xs)→ U1(x < min(xs), x, xs) min(x : xs)→ U2(min(xs), x, xs)

U1(true, x, xs)→ x U2(x, x, xs)→ min(xs)

U1(false, x, xs)→ min(xs)



6

There is a peak U1(x < min(xs), x, xs) ← min(x : xs) → U2(min(xs), x, xs)
between different normal forms of U(Rmin) and hence U(Rmin) is non-confluent.
So Theorem C cannot show confluence of Rmin. Theorem B does not apply here
becauseRmin is not right-stable. For Theorem A we compute critical pairs. There
are twelve but for symmetry reasons we only have to consider six of them:

x ≈ x ⇐ x < min(nil) ≈ true (1,2)

min(nil) ≈ x ⇐ x < min(nil) ≈ false (1,3)

min(nil) ≈ x ⇐ min(nil) ≈ x (1,4)

min(xs) ≈ x ⇐ x < min(xs) ≈ true, x < min(xs) ≈ false (2,3)

min(xs) ≈ x ⇐ x < min(xs) ≈ true, min(xs) ≈ x (2,4)

min(xs) ≈ min(xs) ⇐ x < min(xs) ≈ false, min(xs) ≈ x (3,4)

The pairs (1,2) and (3,4) are trivial. The terms tcap(x < min(nil)) = x′ < min(nil)
and false are not unifiable, hence (1,3) is infeasible by Lemma 7. The critical pair
(2,3) can be shown to be infeasible by the method described at the top of page 5
(as well as by Lemma 7) and (1,4) and (2,4) can be shown to be joinable by the
same method. So Theorem A applies and we conclude that Rmin is confluent.

5 Design and Implementation

ConCon is written in Scala 2.10, an object-functional programming language.
Scala compiles to Java byte code and therefore is easily portable to different
platforms. ConCon is available under the LGPL license and may be downloaded
from:

http://cl-informatik.uibk.ac.at/software/concon/

In order to use the full power of ConCon one needs to have some termination
checker understanding the TPDB2 format and some confluence checker under-
standing the same format installed on one’s system. One may have to adjust the
paths and flags of these programs in the file concon.ini, which should reside in
the same directory as the concon executable. For input we support the XML3

format as well as a modified version of the TRS format of the TPDB.4

The modification concerns a new declaration CONDITIONTYPE, which may be
set to SEMI-EQUATIONAL, JOIN, or ORIENTED. Although for now ConCon works
on oriented CTRSs we designed the CONDITIONTYPE to anticipate future devel-
opments. In the conditional part of the rules we only allow == as relation, since
the exact interpretation is inferred from the CONDITIONTYPE declaration:

(CONDITIONTYPE ORIENTED)

(VAR x)

2 http://www.lri.fr/~marche/tpdb/format.html
3 http://www.termination-portal.org/wiki/XTC_Format_Specification
4 http://termination-portal.org/wiki/TPDB

http://cl-informatik.uibk.ac.at/software/concon/
http://www.lri.fr/~marche/tpdb/format.html
http://www.termination-portal.org/wiki/XTC_Format_Specification
http://termination-portal.org/wiki/TPDB


7

(RULES

not(x) -> false | x == true

not(x) -> true | x == false

)

This modified TRS format is closer to the newer XML version and makes it
very easy to interpret, say, a given join CTRS as an oriented CTRS (by just
modifying the CONDITIONTYPE).

ConCon is operated through a command line interface described below. In
addition to the command line version there is also an easy to use web interface
available on the ConCon website.

Usage Just starting the tool without any options or input file as follows

java -jar concon 2.10-1.1.0.0.min.jar

will output a short usage description. We will abbreviate this command by
./concon in the following. The flag --conf may be used to configure the em-
ployed confluence criteria. The flag takes a list of criteria which are tried in the
given order. If a method is successful the rest of the list is skipped. By default
ConCon uses all the available confluence criteria in the following order:5

U Check whether the input system is unconditional, if so give it to an external
unconditional confluence checker.

B Try Theorem B.
C Try Theorem C using an external unconditional confluence checker.
A Try Theorem A using an external termination checker.

One may always add a timeout at the end of ConCon’s parameter list. The default
timeout is 60 seconds. When calling ConCon with an input file like

./concon 292.trs

it will just try to apply all confluence criteria in sequence with the default timeout
as explained above. The first line of the output will be one of YES, NO, or MAYBE,
followed by the input system, and finally a textual description of how ConCon
did conclude the given answer. One may use -a, -s, and -p to prevent output
of the answer, the input system, and the textual description, respectively.

If one is only interested in the critical pairs of the system and which of them
can be shown to be infeasible, one may use the following call

./concon -c 292.trs

the -c causes ConCon to print all overlaps and the associated (conditional) crit-
ical pairs of the system, and indicates whether they could be shown infeasible.

5 Theorem B does not need calls to external programs and in our experiments Theo-
rem C produced an answer faster than Theorem A on average.



8

In order to check the input system for quasi-decreasingness the flag -q may be
used. In addition one may use the option --ter together with one of the strings u
or v to restrict the transformation to use for the termination check. This method
gives the transformed unconditional system to an external termination checker.

The flag -t may be used to tell ConCon to just apply a transformation and
output the result. The flag takes a string parameter specifying which transfor-
mation to use. The available options are u, uopt and v standing for the trans-
formations of Definition 1, its modified version, and Definition 2, respectively.

Many syntactic criteria for CTRSs, like proper-orientedness or weak left-
linearity, are tedious to check by hand. Other properties of interest, like quasi-
decreasingness, are undecidable. Executing the call

./concon -l 292.trs

results in a list of properties of the input CTRS.

6 Experiments

We have collected a number of examples from the literature. Our collection cur-
rently consists of 129 CTRSs, including the 3 new examples in Section 3, which
we extracted from 32 different sources. Of these 129 CTRSs, 101 are presented
as oriented CTRSs in the literature. The corresponding files in the modified
TPDB format can be downloaded from the ConCon website. Additionally they
have been added to the confluence problems database.6 This collection should
also be of interest for the termination competition7 since the CTRS category of
TPDB contains a mere 7 examples.

The experiments we describe here were carried out on a 64bit GNU/Linux
machine with an Intel R© CoreTM i7-3520M processor clocked at 2.90GHz and
8GB of RAM using the tool parallel.8 The kernel version is 3.14.1-1-ARCH.
The version of Java on this machine is 1.7.0 55. We had to increase the stack
size to 20MB using the JVM flag -Xss20M to prevent stack overflows caused by
parsing deep terms like in the file 313.trs. The following external tools were
used in the experiments:

– CSI, version 0.4 (call: csi - trs 30)9

– TTT2, version 1.16 (call: ttt2 - trs 30)10

First we checked confluence of the given systems. The timeout was set to one
minute.

Figure 1a gives an overview of how many systems could be shown to be con-
fluent by which of the three theorems. More details for 6 of the CTRSs are listed

6 http://coco.nue.riec.tohoku.ac.jp/problems/
7 http://termcomp.uibk.ac.at/
8 http://www.gnu.org/s/parallel
9 http://cl-informatik.uibk.ac.at/software/csi/

10 http://cl-informatik.uibk.ac.at/software/ttt2/

http://coco.nue.riec.tohoku.ac.jp/problems/
http://termcomp.uibk.ac.at/
http://www.gnu.org/s/parallel
http://cl-informatik.uibk.ac.at/software/csi/
http://cl-informatik.uibk.ac.at/software/ttt2/


9

16

83

7

5
62

82

A

B

C

(a) 129 CTRSs

theorem CCPs

CTRS source A B C # = ./ ↓
264.trs 6 0.5 − − 0 − − −
286.trs 4 − − 2.2 0 − − −
287.trs 5 − 0.4 − 0 − − −
292.trs 8 0.6 − × 12 4 6 2

324.trs [14] − − × 4 0 0 0

336.trs [16] − 0.5 − 2 0 2 0

(b) 6 selected CTRSs

Fig. 1: Confluence results.

in Figure 1b. The columns ‘A’ to ‘C’ list the time in seconds in case of success,
‘−’ if the theorem was not applicable because of the syntactic preconditions, and
‘×’ if the method will never be able to show confluence for the system. The first
3 CTRSs can only be shown to be confluent by one of the theorems. The next
one (292.trs) is Example 8. Example 324.trs cannot be shown confluent by
any of the implemented methods. As can be seen in Figure 1a, this actually holds
for the majority of the 129 CTRSs. Example 336.trs requires the method of
Lemma 7 to show its conditional critical pairs infeasible, afterwards Theorem B
is applicable. In the last four columns we list for each of the 6 CTRSs the number
of conditional critical pairs, and whether they are trivial (column ‘=’), or could
be shown to be infeasible (column ‘./’) or joinable (column ‘↓’).

The ConCon website contains more detailed experimental results, including a
comparison of the two sufficient conditions in Lemma 3 for quasi-decreasingness.

7 Concluding Remarks

We presented a tool which implements three different methods to show conflu-
ence of oriented CTRSs. A simple sufficient criterion for infeasibility increased
the applicability of two of the methods. This is clearly a first step and our ex-
periments show that there is lots of room for improvements:

– Several of the systems in our test bed are in fact non-confluent, so methods
to prove non-confluence of CTRSs are in demand.

– Many of the systems have infeasible critical pairs but our current criterion
for infeasibility is not powerful enough to show this. Our own investigations
show that progress here is hard to achieve. For oriented CTRSs, infeasibility
is a reachability problem and techniques based on tree automata completion
are a natural candidate for investigation.

– Furthermore, so far we have no good support for conditional rewriting, which
is needed to check joinability of (feasible) critical pairs. From early inves-
tigations by Ganzinger [6], Zhang and Rémy [18, 19], Avenhaus and Loŕıa-



10

Sáenz [2], and others in we know that implementing conditional rewriting is
a highly complex problem.

Finally, confluence methods for semi-equational [4] and in particular join
CTRSs [5, 16] are well-investigated and should be implemented.

References

1. T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems
automatically. In Proc. 20th RTA, volume 5595 of LNCS, pages 93–102, 2009.

2. J. Avenhaus and C. Loŕıa-Sáenz. On conditional rewrite systems with extra vari-
ables and deterministic logic programs. In Proc. 5th LPAR, volume 822 of LNAI,
pages 215–229, 1994.

3. F. Baader and T. Nipkow. Term Rewriting and All That. CUP, 1998.
4. J.A. Bergstra and J.W. Klop. Conditional rewrite rules: Confluence and termina-

tion. Journal of Computer and System Sciences, 32(3):323–362, 1986.
5. N. Dershowitz, M. Okada, and G. Sivakumar. Confluence of conditional rewrite

systems. In Proc. 1st CTRS, volume 308 of LNCS, pages 31–44, 1988.
6. H. Ganzinger. A completion procedure for conditional equations. Journal of Sym-

bolic Computation, 11(1/2):51–81, 1991.
7. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-

tion of higher-order functions. In Proc. 5th FRoCoS, volume 3717 of LNAI, pages
216–231, 2005.

8. K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term
rewriting systems via unravelings. In Proc. 2nd IWC, pages 35–39, 2013.

9. J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-Artalejo. De-
notational versus declarative semantics for functional programming. In Proc. 5th
CSL, volume 626 of LNCS, pages 134–148, 1992.

10. N. Hirokawa and D. Klein. Saigawa: A confluence tool. In Proc. 1st IWC, page 49,
2012.

11. E. Kounalis and M. Rusinowitch. A proof system for conditional algebraic speci-
fications. In Proc. 2nd CTRS, volume 516 of LNCS, pages 51–63, 1991.

12. M. Marchiori. On deterministic conditional rewriting. Computation Structures
Group Memo 405, MIT Laboratory for Computer Science, 1987.

13. M. Marchiori. Unravelings and ultra-properties. In Proc. 5th ALP, volume 1139
of LNCS, pages 107–121, 1996.

14. N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional
term rewriting systems via ultra-properties related to linearity. Logical Methods in
Computer Science, 8:1–49, 2012.

15. E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002.
16. T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite

systems with extra variables in right-hand sides. In Proc. 6th RTA, volume 914 of
LNCS, pages 179–193, 1995.

17. H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – A confluence tool. In Proc.
23rd CADE, volume 6803 of LNAI, pages 499–505, 2011.

18. H. Zhang. Implementing contextual rewriting. In Proc. 3nd CTRS, volume 656 of
LNCS, pages 363–377, 1993.

19. H. Zhang and J.-L. Remy. Contextual rewriting. In Proc. 1st RTA, volume 202 of
LNCS, pages 46–62, 1985.


	Conditional Confluence (System Description)

