
Confluence Properties on Open Terms

in the First-Order Theory of Rewriting∗

Franziska Rapp and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
{franziska.rapp|aart.middeldorp}@uibk.ac.at

Abstract

FORT is a decision and synthesis tool for the first-order theory of rewriting for finite left-linear

right-ground rewrite systems. We report on an extension that distinguishes between ground and open

terms for properties related to confluence.

1 Introduction

In a recent paper [5] we introduced FORT, a decision and synthesis tool for the first-order theory of
rewriting induced by finite left-linear right-ground rewrite systems. In this theory one can express
well-known properties like termination (SN), normalization (WN), and confluence (CR), but also
properties like strong confluence (SCR : ∀ s ∀ t ∀u (s→ t ∧ s→ u =⇒ ∃ v (t→= v ∧ u→∗ v)))
and the normal form property (NFP : ∀ s ∀ t ∀u (s→ t ∧ s→! u =⇒ t→! u)). The decision
procedure is based on tree automata techniques (Dauchet and Tison [3]). Tree automata operate
on ground terms. Consequently, variables in formulas range over ground terms and hence the
properties that FORT is able to decide are restricted to ground terms. Whereas for termination
and normalization this makes no difference, for other properties it does, even for left-linear
right-ground rewrite systems as will be shown below. This raises the question how one can use
FORT to decide properties on open terms. We show that for properties related to confluence
it suffices to add one or two fresh constants. We furthermore provide sufficient conditions
which obviate the need for additional constants. The proofs of these results are presented
in the next section. The results are incorporated in version 0.2 of FORT, which we briefly
describe in Section 3. We also provide a few rewrite systems that were synthesized by FORT.
Section 4 contains a comparison with AGCP (Aoto and Toyama [1]), a new tool for checking
ground-confluence of many-sorted rewrite systems.

We assume familiarity with first-order term rewriting [2]. In this paper we consider the
following properties, besides SCR and NFP:

CR : ∀ s ∀ t ∀u (s→∗ t ∧ s→ u =⇒ t ↓ u)

WCR : ∀ s ∀ t ∀u (s→ t ∧ s→ u =⇒ t ↓ u)

UN : ∀ s ∀ t ∀u (s→! t ∧ s→! u =⇒ t = u)

UNC : ∀ t ∀u (t↔∗ u ∧ NF(t) ∧ NF(u) =⇒ t = u)

Let P = {CR,SCR,WCR,NFP,UNC,UN}. In FORT 0.2 these properties are considered over all
terms. Let R consist of all (F ,R) where R is a finite left-linear right-ground TRSs over the
finite signature F which contains at least one constant.

∗This work is supported by FWF (Austrian Science Fund) project P27528.



FORT 0.2 F. Rapp and A. Middeldorp

2 Ground versus Non-Ground Properties

The properties supported in FORT 0.1 are restricted to ground terms. So CR in FORT 0.1 stands
for ground-confluence, which is different from confluence, even for left-linear right-ground TRSs.
The TRS

a→ b f(x, a)→ b f(b, b)→ b

is ground-confluent since all ground terms rewrite to b, but not confluent: b← f(x, a)→ f(x, b)
with normal forms b and f(x, b). The same example shows that for no property P ∈ P, GP
implies P , where GP denotes the property P restricted to ground terms. So how can we check a
property P ∈ P using tree automata techniques? The following result provides the answer.

Lemma 1. If (F ,R) ∈ R then

1. (F ,R) � P ⇐⇒ (F ∪ {c},R) � GP for all P ∈ P \ {UNC}
2. (F ,R) � UNC ⇐⇒ (F ∪ {c, c′},R) � GUNC

with fresh constants c and c′.

Proof. For the only-if directions we observe that all properties P ∈ P are preserved under
signature extension [4]. Moreover, (G,R) � P implies (G,R) � GP for all TRSs (G,R) and
properties P ∈ P. For the if-direction, we first consider P ∈ P\{UNC}. Suppose (F ∪{c},R) �
GP and let σ be the substitution that maps all variables to the constant c. Because R is
left-linear and c does not appear in the rules of R, the following property holds for all terms
t ∈ T (F ,V):

(a) if tσ →R u then t→R u′ with u′σ = u.

Moreover,

(b) if t→R u and p ∈ PosV(u) then u(p) = t(p).

This property relies on the right-groundness of R, which entails that the redex contracted in
t →R u cannot be above position p. The above properties allow us to prove (F ,R) � P for
P ∈ {CR,SCR,WCR}. Here we consider P = SCR and let s→R t and s→R u. Closure under
substitutions yields sσ →R tσ and sσ →R uσ. Because (F ∪ {c},R) satisfies GSCR, we obtain
a ground term v ∈ T (F ∪ {c}) such that sσ →=

R v and tσ →∗R v. Property (a) yields terms
v1, v2 ∈ T (F ,V) such that t →=

R v1 and u →∗R v2 with v1σ = v = v2σ. If v1 6= v2 then there
must be a position p ∈ PosV(v1) ∩ PosV(v2) such that v1(p) 6= v2(p). Repeated application of
(b) yields v1(p) = t(p) = s(p) and v2(p) = u(p) = s(p), which is impossible. Hence v1 = v2 and
thus (F ,R) � SCR. The proofs for P = CR and P = WCR are very similar. For P ∈ {UN,NFP}
we need the following additional observation:

(c) if t is a normal form then tσ is a normal form.

Consider P = UN and let s →!
R t and s →!

R u with s ∈ T (F ,V). We obtain sσ →!
R tσ and

sσ →!
R uσ from (c), and thus tσ = uσ because (F ∪ {c},R) satisfies GUN. We need to show

t = u. If this does not hold then there must be a position p ∈ PosV(t) ∩ PosV(u) such that
t(p) 6= u(p). This contradicts t(p) = s(p) and u(p) = s(p), which we obtain from (b). Next
consider P = NFP. So let s→R t and s→!

R u. We obtain sσ →R tσ and sσ →!
R uσ as before.

Hence tσ →∗ uσ because GNFP holds. From property (a) we obtain a term u′ such that t→∗R u′

and u′σ = uσ. Let p be any position in PosV(u′) ∩ PosV(u). Repeated application of property
(b) yields u′(p) = t(p) = s(p) = u(p). Hence u′ = u and thus t→∗R u as desired.

27



FORT 0.2 F. Rapp and A. Middeldorp

Finally we consider P = UNC. So suppose (F ∪ {c, c′},R) � GUNC and let t ↔∗R u with
normal forms t, u ∈ T (F ,V). If t and u are ground then t = u by GUNC. If one of the two
terms is ground, say t, and t 6= u then t 6= uσ and t ↔∗R uσ for the same substitution σ as
before, contradicting GUNC. If both t and u are non-ground and t 6= u then, because tσ = uσ
by GUNC and (c), there has to be a position p ∈ PosV(t) ∩ PosV(u) such that t(p) 6= u(p). In
this case a contradiction is obtained by considering the substitution σ′ that maps t(p) to c and
all other variables to c′.

The following example shows that adding a single fresh constant is insufficient for UNC.

Example 1. The left-linear right-ground TRS R consisting of the rules

a→ b f(x, a)→ f(b, b) f(b, x)→ f(b, b) f(f(x, y), z)→ f(b, b)

does not satisfy UNC since f(x, b)← f(x, a)→ f(b, b)← f(y, a)→ f(y, b) is a conversion between
distinct normal forms. Adding a single fresh constant c is not enough to violate GUNC as the last
two rewrite rules ensure that f(c, b) is the only ground instance of f(x, b) that is a normal form.
Adding another fresh constant c′, GUNC is lost: f(c, b)← f(c, a)→ f(b, b)← f(c′, a)→ f(c′, b).

For termination (SN) and normalizion (WN) there is no need to add fresh constants, since
these properties hold if and only if they hold for all ground terms. For other properties that can
be expressed in the first-order theory of rewriting, one or two fresh constants may be insufficient.
Consider e.g. the formula ϕ:

¬∃ s ∃ t ∃u ∀ v (v ↔∗ s ∨ v ↔∗ t ∨ v ↔∗ u)

which is satisfied on open terms (with respect to any (F ,R) ∈ R). For the TRS consisting of the
rule f(x)→ a and two additional constants c and c′, ϕ does not hold for ground terms because
every ground term is convertible to a, c or c′. It is tempting to believe that adding a fresh unary
symbol g in addition to a fresh constant c, in order to create infinitely many ground normal
forms which can replace variables that appear in open terms, is sufficient for any property P .
The formula ∀ s ∀ t (s→ t =⇒ s

ε−→ t) and the TRS consisting of the rule a→ b show that this
is incorrect.

It is interesting to note that the two properties in the preceding paragraph are not component-
closed [6], unlike the properties in P. This observation can be used to generalize Lemma 1 to
confluence-related properties outside P. The following result shows that for the properties in P
it is not always necessary to add fresh constants. Here a monadic signature consists of constants
and unary function symbols.

Lemma 2. Let (F ,R) ∈ R such that R is ground or F is monadic. For all P ∈ P

(F ,R) � P ⇐⇒ (F ,R) � GP

Proof. First assume that R is ground. In this case only ground subterms can be rewritten.
Given a term t ∈ T (F ,V), we write t = C[[t1, . . . , tn]] if t = C[t1, . . . , tn] and t1, . . . , tn are the
maximal ground subterms of t. So all variables appearing in t occur in C. The following property
is obvious:

1. if t = C[[t1, . . . , tn]]→∗R u then u = C[[u1, . . . , un]] and ti →∗R ui for all 1 6 i 6 n.

Suppose (F ,R) � GCR and consider s →∗R t and s →∗R u with s ∈ T (F ,V). Writing s =
C[[s1, . . . , sn]], we obtain t = C[[t1, . . . , tn]] and u = C[[u1, . . . , un]] with si →∗R ti and si →∗R ui
for all 1 6 i 6 n. GCR yields ti ↓ ui for all 1 6 i 6 n. Hence t ↓ u as desired. The proofs for the

28



FORT 0.2 F. Rapp and A. Middeldorp

other properties in P are equally easy. For UNC note that ↔∗R coincides with →∗R∪R−1 for the
ground TRS R∪R−1, where R−1 is obtained from R by reversing the rewrite rules.

Next suppose that F is monadic. Let (F ,R) � GP and let σ be the substitution that maps
all variables to some arbitrary but fixed ground term. In this case the following property holds:

2. if t ∈ T (F ,V) and t→ u then u ∈ T (F) and tσ → u.

We consider P = NFP and P = UNC and leave the proof for the other properties to the reader.
Let s→R t and s→!

R u. We obtain sσ →R t and sσ →!
R u from property 2. (Note that s 6= u.)

Hence t→∗R u follows from GNFP. Let t↔∗R u with normal forms t and u. If t and u are ground
terms then we obtain t = u from GUNC (after applying the substitution σ to all intermediate
terms in the conversion between t and u). Otherwise, the conversion between t and u must be
empty due to property 2 and the fact that t and u are normal forms. Hence also in this case
t = u.

FORT indeed benefits from this optimization. Checking for GCR of the TRS

f(f(f(x)))→ a f(f(a))→ a f(a)→ a f(f(g(g(x))))→ f(a) g(f(a))→ a g(a)→ a

whose signature is monadic takes 1.73 seconds if a fresh constant is added, compared to 0.85
seconds if Lemma 2 is used.

3 Synthesis Experiments with FORT 0.2

The results of the previous section are incorporated in version 0.2 of FORT. Compared to version
0.1, the properties in P now refer to open terms and we reserve GP with P ∈ P for properties
on ground terms. The property SCR, which is new in version 0.2, can also be used for parallel
rewriting (SCR(−→‖ )) and the same holds for the diamond property (3(−→‖ )), which is another
addition in FORT 0.2. Further additions can be found in the online documentation of FORT.
Precompiled binaries to run FORT 0.2 from the command line are available from

http://cl-informatik.uibk.ac.at/software/FORT

We report on some synthesis experiments that we performed in FORT 0.2, based on the following
diagram which summarizes the relationships between properties P and GP for P ∈ P:

WCR

SCR

CR NFP UNC UN

GSCR

GWCR GCR GNFP GUNC GUN

The following TRSs were produced by FORT 0.2 on the given formulas when restricting the
signature (using the option -f "f:2 a:0 b:0") to a binary function symbol f and two constants
a and b:

GWCR & ∼WCR & ∼GCR a→ b f(x, a)→ a a→ f(a, a)

GCR & ∼CR & ∼GSCR a→ b f(x, a)→ b b→ f(a, a)

GNFP & ∼NFP & ∼GCR a→ b f(x, a)→ f(a, a) f(b, b)→ f(a, a)

GUNC & ∼UNC & ∼GNFP a→ a f(x, a)→ a f(b, x)→ b

29

http://cl-informatik.uibk.ac.at/software/FORT


FORT 0.2 F. Rapp and A. Middeldorp

tool yes (∅ time) no (∅ time) maybe (∅ time) timeout total time

AGCP 8 (0.02 s) – 56 (0.19 s) 1 71 s

FORT 42 (0.37 s) 14 (3.31 s) – 9 602 s

Table 1: Comparison of AGCP and FORT 0.2 on 65 left-linear right-ground TRSs.

The reader is encouraged to verify that the synthesized TRSs indeed satisfy the indicated
properties. We do not know whether there exist TRSs over the restricted signature that satisfy
GUN & ∼UN & ∼GUNC. Human expertise was used to produce a witness over a larger signature,
which was subsequently simplified using the decision mode of FORT 0.2:

b→ a c→ c d→ c f(x, a)→ A f(x,A)→ A

b→ c d→ e f(x, e)→ A f(c, x)→ A

4 Comparison

The tool AGCP1 uses rewriting induction to automatically prove ground-confluence of many-
sorted TRSs (Aoto & Toyama [1]). In Table 1 we compare FORT 0.2 and AGCP on the
65 left-linear right-ground TRSs from the combined confluence2 and termination3 problem
databases. These TRSs were presented to AGCP as many-sorted TRSs having exactly one sort.
It is interesting to note that there is no difference between confluence and ground-confluence
on this database. We used a 60 seconds time limit. Unlike FORT, AGCP is not restricted to
left-linear right-ground TRSs. Moreover, AGCP is much faster than FORT. In the near future,
we plan to extend FORT to many-sorted TRSs in order to allow a fairer comparison to AGCP.

Acknowledgments Discussions with Bertram Felgenhauer and Vincent van Oostrom helped
to improve the paper. The same holds for the remarks by the anonymous reviewers.

References

[1] T. Aoto and Y. Toyama. Ground confluence prover based on rewriting induction. In Proc. 1st
International Conference on Formal Structures for Computation and Deduction, volume 52 of Leibniz
International Proceedings in Informatics, pages 33:1–33:12, 2016. doi: 10.4230/LIPIcs.FSCD.2016.33.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[3] M. Dauchet and S. Tison. The theory of ground rewrite systems is decidable. In Proc. 5th IEEE
Symposium on Logic in Computer Science, pages 242–248, 1990. doi: 10.1109/LICS.1990.113750.

[4] A. Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit,
Amsterdam, 1990.

[5] F. Rapp and A. Middeldorp. Automating the first-order theory of left-linear right-ground term
rewrite systems. In Proc. 1st International Conference on Formal Structures for Computation and
Deduction, volume 52 of Leibniz International Proceedings in Informatics, pages 36:1–36:12, 2016.
doi: 10.4230/LIPIcs.FSCD.2016.36.

[6] H. Zantema. Termination of term rewriting: Interpretation and type elimination. JSC, 17(1):23–50,
1994. doi: 10.1006/jsco.1994.1003.

1http://www.nue.ie.niigata-u.ac.jp/tools/agcp/
2http://cops.uibk.ac.at/
3http://termination-portal.org/wiki/TPDB

30

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.33
http://dx.doi.org/10.1109/LICS.1990.113750
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.36
http://dx.doi.org/10.1006/jsco.1994.1003
http://www.nue.ie.niigata-u.ac.jp/tools/agcp/
http://cops.uibk.ac.at/
http://termination-portal.org/wiki/TPDB

	Introduction
	Ground versus Non-Ground Properties
	Synthesis Experiments with 
	Comparison

