
Composing Proof Terms

Christina Kohl(B) and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{christina.kohl,aart.middeldorp}@uibk.ac.at

Abstract. Proof terms are a useful concept for comparing computations
in term rewriting. We analyze proof terms with composition, with an eye
towards automation. We revisit permutation equivalence and projection
equivalence, two key notions presented in the literature. We report on
the integration of proof terms with composition into ProTeM, a tool for
manipulating proof terms.

Keywords: Proof terms · Term rewriting · Automation

1 Introduction

Proof terms represent proofs in rewriting logic [4,5]. Because proof terms are
terms, they are subject to techniques common in automated reasoning, like ter-
mination orders and critical pair analysis. In term rewriting proof terms are
used to study equivalence of reductions [6,7] and for confluence analysis [2]. In
[7, Chapter 8] ([6] is a condensed version) van Oostrom and de Vrijer present
a thorough study of five different notions of equivalence and argue that these
are equivalent. Proof terms play a key role in three of these notions: permuta-
tion equivalence, parallel standardization equivalence and projection equivalence.
In this paper we take a fresh look at permutation equivalence and projection
equivalence, from the viewpoint of automation. This leads to a new understand-
ing of the rewrite properties of the important residual operation. In particular,
we show the analysis in [6,7] of the residual operation to be incorrect.

We implemented decision procedures for permutation equivalence and pro-
jection equivalence in ProTeM, a recent tool [3] for manipulating proof terms.
Automating permutation equivalence is non-trivial since the rewrite system for
parallel standardization is only complete modulo structural equivalence. The lat-
ter is a weaker notion of equivalence that is easily decidable by means of a
confluent and terminating rewrite system, but no rewrite system is known that
avoids rewriting modulo.

In the next section we recall proof terms and define structural equivalence.
Permutation equivalence is the topic of Sect. 3. In Sect. 4 we study the residual
operation on proof terms and the related notions of projection order and pro-
jection equivalence. We present a variant of the residual system defined in [7,

This research is supported by FWF (Austrian Science Fund) project P27528.

c© The Author(s) 2019
P. Fontaine (Ed.): CADE 2019, LNAI 11716, pp. 337–353, 2019.
https://doi.org/10.1007/978-3-030-29436-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-29436-6_20&domain=pdf
http://orcid.org/0000-0002-8470-2485
http://orcid.org/0000-0001-7366-8464
https://doi.org/10.1007/978-3-030-29436-6_20


338 C. Kohl and A. Middeldorp

Definition 8.7.54 and proof of Theorem 8.7.57] and [6, Definition 6.9 and proof
of Theorem 6.12]. By imposing an innermost evaluation strategy, we ensure that
our rewrite system has a well-defined rewrite semantics. We establish (inner-
most) confluence and termination, and use these properties to define projection
order and projection equivalence. The extensions to ProTeM are described in
Sect. 5 before we conclude in Sect. 6.

We assume familiarity with first-order term rewriting [1,7] but knowledge of
proof terms is not required. All definitions needed for this paper are given. Much
more information on proof terms and notions of equivalence can be found in [7,
Chapter 8]. Throughout the paper we deal with left-linear rewrite systems.

2 Proof Terms

Before formally defining proof terms, we give a motivating example that demon-
strates their use. This example will reappear many times throughout the paper
to illustrate the concepts we discuss.

Example 1. Consider the following TRS representing the necessary steps of com-
puting the disjunctive normal form of a propositional formula:

α ¬(x ∧ y) → ¬x ∨ ¬y γ x ∧ (y ∨ z) → (x ∧ y) ∨ (x ∧ z)
β ¬(x ∨ y) → ¬x ∧ ¬y δ (x ∨ y) ∧ z → (x ∧ z) ∨ (y ∧ z)
ε ¬¬x → x

As illustrated by the diagram below there are 13 different rewrite sequences from
s = ¬(x ∨ ¬(y ∨ z)) to t = (¬x ∧ y) ∨ (¬x ∧ z). If we want to compare them,
for example to determine if some of them are equivalent, we can translate them
into proof terms and do our analysis in the well-known realm of terms.

4 3

5

2

0

6

1

s

8

7

9

t

0 = ¬(x ∨ (¬y ∧ ¬z))
1 = ¬x ∧ ¬¬(y ∨ z)
2 = ¬x ∧ ¬(¬y ∧ ¬z)
3 = ¬x ∧ (¬¬y ∨ ¬¬z)
4 = (¬x ∧ ¬¬y) ∨ (¬x ∧ ¬¬z)
5 = ¬x ∧ (y ∨ ¬¬z)
6 = ¬x ∧ (¬¬y ∨ z)
7 = ¬x ∧ (y ∨ z)
8 = (¬x ∧ y) ∨ (¬x ∧ ¬¬z)
9 = (¬x ∧ ¬¬y) ∨ (¬x ∧ z)

We refer to a specific sequence from s to t by listing the numbers of the interme-
diate terms. For instance, the sequence s → ¬x ∧ ¬¬(y ∨ z) → ¬x ∧ (y ∨ z) → t
is named 17.



Composing Proof Terms 339

Proof terms are built from function symbols, variables, rule symbols as well as
the binary composition operator ; which is used in infix notation. Rule symbols
represent rewrite rules and have a fixed arity which is the number of different
variables in the represented rule. We use Greek letters (α, β, γ, . . . ) as rule sym-
bols, and uppercase letters (A,B,C, . . . ) for proof terms. We can represent any
rewrite sequence −→∗ by a suitable proof term. A proof term without composi-
tion represents a multi-step ( ◦−→), a proof term without composition and nested
rule symbols represents a parallel step ( ‖−→), and a proof term without compo-
sition and only one rule symbol represents a single step (−→). If a proof term
contains neither compositions nor rule symbols, it denotes an empty step (=).

If α is a rule symbol then lhsα (rhsα) denotes the left-hand (right-hand) side of
the rewrite rule represented by α. Furthermore varα denotes the list (x1, . . . , xn)
of variables appearing in α in some fixed order. The length of this list is the
arity of α. Given a rule symbol α with varα = (x1, . . . , xn) and proof terms
A1, . . . , An, we write 〈A1, . . . , An〉α for the substitution {xi 	→ Ai | 1 � i � n}.
A proof term A witnesses a rewrite sequence from its source src(A) to its target
tgt(A), which are computed as follows:

src(x) = tgt(x) = x src(A ; B) = src(A) tgt(A ; B) = tgt(B)
src(f(A1, . . . , An)) = f(src(A1), . . . , src(An))
src(α(A1, . . . , An)) = lhsα〈src(A1), . . . , src(An)〉α

tgt(f(A1, . . . , An)) = f(tgt(A1), . . . , tgt(An))
tgt(α(A1, . . . , An)) = rhsα〈tgt(A1), . . . , tgt(An)〉α

Here f is an n-ary function symbol. The expression lhsα〈src(A1), . . . , src(An)〉α

denotes the result of replacing every variable xi in the left-hand side of α with
the source of the corresponding argument Ai of α. We assume tgt(A) = src(B)
whenever the composition A ; B is used in a proof term. Proof terms A and
B are co-initial if they have the same source. We omit parentheses in nested
compositions in examples for better readability, assuming association to the
right of the composition operator.

Example 2. The sequence 17 in Example 1 is represented by the proof term
β(x,¬(y ∨ z)) ;¬x ∧ ε(y ∨ z) ; γ(¬x, y, z). For the proof term A = α(ε(x),¬ε(x))
we have src(A) = ¬(¬¬x ∧ ¬¬¬x) and tgt(A) = ¬(x ∨ ¬x). The proof term

β(x,β(y, z)) ; ¬x ∧ α(¬y,¬z) ; γ(¬x, ε(y), ε(z))

represents the sequence s ◦−→ 2 → 3 ◦−→ t, which can be viewed as a compact
version of 12348 and several other rewrite sequences from s to t. The expression
A ; β(x, x) is not a proof term since src(β(x, x)) = ¬(x ∨ x) 
= tgt(A).

Structural equivalence [7, Definition 8.3.1] equates proof terms that only differ
in the left-to-right order in which steps are executed.



340 C. Kohl and A. Middeldorp

Definition 1. The structural identities consist of the following four equation
schemas:

A ; t ≈ A (1)
t ; A ≈ A (2)

(A ; B) ; C ≈ A ; (B ; C) (3)
f(A1, . . . , An) ; f(B1, . . . , Bn) ≈ f(A1 ; B1, . . . , An ; Bn) (4)

Here t denotes a term without rule symbols and composition whereas f denotes an
arbitrary function symbol in the underlying TRS. The induced congruence rela-
tion ≡ on proof terms is called structural equivalence. The instances of scheme
(4) are known as functorial identities.

Structural equivalence is easily decidable by rewriting proof terms.

Definition 2. The canonicalization TRS consists of the following rule schemas:

A ; t → A (5)
t ; A → A (6)

(A ; B) ; C → A ; (B ; C) (7)
f(A1, . . . , An) ; f(B1, . . . , Bn) → f(A1 ; B1, . . . , An ; Bn) (8)

f(A1, . . . , An) ; (f(B1, . . . , Bn) ; C) → f(A1 ; B1, . . . , An ; Bn) ; C (9)

Normal forms of the canonicalization TRS are called canonical.

Example 3. Returning to Example 1, the proof terms

(¬x ∧ ε(y)) ∨ (¬x ∧ ¬¬z) ; (¬x ∧ y) ∨ (¬x ∧ ε(z)) ; (¬x ∧ y) ∨ (¬x ∧ z)
(¬x ∧ ¬¬y) ∨ (¬x ∧ ε(z)) ; (¬x ∧ ε(y)) ∨ (¬x ∧ z) ; (¬x ∧ y) ∨ (¬x ∧ z)

are structurally equivalent because both rewrite to the canonical proof term

(¬x ∧ ε(y)) ∨ (¬x ∧ ε(z))

Theorem 1. Canonical proof terms are unique representatives of structural
equivalence classes. �

A proof sketch is given in [7, Exercise 8.3.6]. We remark that automatic tools
for proving confluence and termination are not applicable here since the rules in
Definition 2 are rule schemas; for every function symbol f in the signature and
every term t of the underlying TRS, the rule schemas are suitably instantiated
to obtain a concrete (and infinite) rewrite system that operates on proof terms
of the underlying TRS. Nevertheless, standard confluence and termination tech-
niques are readily applicable. In particular, schema (9) is added to make the
critical pair between (7) and (8) convergent.



Composing Proof Terms 341

3 Permutation Equivalence

Adjacent steps in which the contracted redexes are at parallel positions can be
swapped, which is captured by structural equivalence. Permutation equivalence
[7, Definition 8.3.1] extends this by also allowing swapping adjacent steps in
which the contracted redexes are above each other. This is similar to the variable
overlap case in the well-known critical pair lemma.

Definition 3. The permutation identities consist of the structural identities of
Definition 1 together with the following two equation schemas:

α(A1, . . . , An) ≈ lhsα〈A1, . . . , An〉α ; α(t1, . . . , tn) (10)
α(A1, . . . , An) ≈ α(s1, . . . , sn) ; rhsα〈A1, . . . , An〉α (11)

Here src(Ai) = si and tgt(Ai) = ti and thus si and ti are terms without rule
symbols and compositions, for i = 1, . . . , n. Furthermore, α ranges over the rule
symbols of the underlying TRS. The induced congruence relation on proof terms
is denoted by ∼= and called permutation equivalence. The permutation order �
is defined as follows: A � B if there exists a proof term C such that A ; C ∼= B.

Example 4. We have ¬x ∧ (ε(y) ∨ ε(z)) ; γ(¬x, y, z) ∼= γ(¬x, ε(y), ε(z)) by an
application of (10) from right to left (with α = γ, A1 = ¬x, A2 = ε(y),
and A3 = ε(z)). Hence ¬x ∧ (ε(y) ∨ ε(z)) � γ(¬x, ε(y), ε(z)). Furthermore,
γ(¬x, ε(y), ε(z)) ∼= γ(¬x,¬¬y,¬¬z) ; (¬x ∧ ε(y)) ∨ (¬x ∧ ε(z)) by using (11).

The following lemma generalizes the defining Eqs. (10) and (11). In Pro-
TeM we use the second equation to move compositions inside arguments of
rule symbols outside, which is necessary for translating proof terms into rewrite
sequences.

Lemma 1. For arbitrary proof terms A1, . . . , An and B1, . . . , Bn:

α(A1 ; B1, . . . , An ; Bn) ∼= lhsα〈A1, . . . , An〉α ; α(B1, . . . , Bn)
α(A1 ; B1, . . . , An ; Bn) ∼= α(A1, . . . , An) ; rhsα〈B1, . . . , Bn〉α

Proof. To simplify the notation, we assume the arity n of α equals 1:

α(A1 ; B1) ∼= lhsα〈A1 ; B1〉α ; α(tgt(B1)) (10)
∼= (lhsα〈A1〉α ; lhsα〈B1〉α) ; α(tgt(B1)) (�)
∼= lhsα〈A1〉α ; (lhsα〈B1〉α ; α(tgt(B1))) (3)
∼= lhsα〈A1〉α ; α(B1) (10)

α(A1 ; B1) ∼= α(src(A1)) ; rhsα〈A1 ; B1〉α (11)
∼= α(src(A1)) ; (rhsα〈A1〉α ; rhsα〈B1〉α) (�)
∼= (α(src(A1)) ; rhsα〈A1〉α) ; rhsα〈B1〉α (3)
∼= α(A1) ; rhsα〈B1〉α (11)



342 C. Kohl and A. Middeldorp

In the steps labeled (�) we use equation (4) repeatedly, depending on the struc-
ture of lhsα and rhsα. �

The following lemma captures the connection between permutation equiv-
alence and permutation order, a result that is mentioned in passing after the
permutation order is introduced in [7, Definition 8.3.1].

Lemma 2. For proof terms A and B, A ∼= B if and only if both A � B and
B � A. �

Standard Reductions are unique representatives of permutation equivalence
classes, that are obtained by sorting rewrite steps in an outside-in and left-
to-right order. For transforming reductions to outside-in order, called parallel
standard form, the authors in [7, Section 8.5] propose two different approaches
based on selection sort and insertion sort respectively. Since the latter, discussed
in [7, Section 8.5.3], relies on proof terms it is of particular interest to us. Stan-
dard reductions are then obtained from parallel standard ones by imposing a
left-to-right order when evaluating parallel steps.

Definition 4. The parallel standardization TRS consists of the following
rewrite schemas:

lhsα〈A1, . . . , An〉α ; α(t1, . . . , tn) → α(A1, . . . , An) (12)
α(A1, . . . , An) → α(s1, . . . , sn) ; rhsα〈A1, . . . , An〉α (13)

These rules are applied modulo structural equivalence. The conditions on the
symbols are the same as in Definition 3, but additionally we demand that in (13)
at least one of A1, . . . , An is not structurally equivalent to a proof term without
rules symbols. A proof term is parallel standard if it is in normal form with
respect to parallel standardization.

Parallel standardness is invariant with respect to structural equivalence by
definition. As shown in the example below, structural equivalence is needed to
move intermediate parallel reductions out of the way such that steps in the
wrong order become adjacent. In particular, using canonical forms as represen-
tatives of structural equivalence classes, is not sufficient to compute parallel
standard forms. This considerably complicates the automation of permutation
equivalence.

Example 5. Consider A = ε(x) ∧ ¬(y ∧ z) ; x ∧ α(y, z) ; γ(x,¬y,¬z). The inner
step ε(x)∧¬(y ∧z) does not contribute to the outer step γ(x,¬y,¬z) and hence
these two steps need to be swapped to obtain a parallel standard normal form.
To be able to apply the rules of the parallel standardization TRS, we first make
the steps adjacent by moving the second step x∧α(y, z) out of the way with an
appeal to structural equivalence:



Composing Proof Terms 343

A ≡ ε(x) ∧ α(y, z) ; γ(x,¬y,¬z)
≡ ¬¬x ∧ α(y, z) ; ε(x) ∧ (¬y ∨ ¬z) ; γ(x,¬y,¬z)
→ ¬¬x ∧ α(y, z) ; γ(ε(x),¬y,¬z)
→ ¬¬x ∧ α(y, z) ; γ(¬¬x,¬y,¬z) ; (ε(x) ∧ ¬y) ∨ (ε(x) ∧ ¬z)

The resulting proof term is parallel standard. Note that the canonical form of
A is ε(x) ∧ α(y, z) ; γ(x,¬y,¬z), which is a normal form with respect to (12).

The conditions on A1, . . . , An in rule (13) are there to avoid trivial cases of
non-termination; e.g. γ(y) → γ(y) ; y ≡ γ(y) is excluded. In [7, Section 8.5] a
proof sketch of the following result is given.

Theorem 2. The parallel standardization TRS is complete modulo structural
equivalence. �

Instead of rule (12), in our implementation we use the more liberal rewrite
rule

lhsα〈A1, . . . , An〉α ; α(B1, . . . , Bn) → α(A1 ; B1, . . . , An ; Bn) (14)

which is based on Lemma 1. Since we rewrite modulo structural equivalence, (14)
simulates (12); simply substitute tgt(Ai) for Bi. So for the case that the Bi do not
contain rule symbols, the two rules behave exactly the same. If there is some rule
symbol contained in one of the Bi, the term lhsα〈A1, . . . , An〉α ; α(B1, . . . , Bn)
with tgt(Ai) = src(Bi) = ti for 1 � i � n always rewrites to a proof term that
is structurally equivalent to α(src(A1), . . . , src(An)) ; rhsα〈A1 ; B1, . . . , An ; Bn〉α

independent of which of the two rules we use:

lhsα〈A1, . . . , An〉α ; α(B1, . . . , Bn)
→ lhsα〈A1, . . . , An〉α ; α(t1, . . . , tn) ; rhsα〈B1, . . . , Bn〉α (13)
→ α(A1, . . . , An) ; rhsα〈B1, . . . , Bn〉α (12)
→ α(src(A1), . . . , src(An)) ; rhsα〈A1, . . . , An〉α ; rhsα〈B1, . . . , Bn〉α (13)

and

lhsα〈A1, . . . , An〉α ; α(B1, . . . , Bn)
→ α(A1 ; B1, . . . , An ; Bn) (14)
→ α(src(A1), . . . , src(An)) ; rhsα〈A1 ; B1, . . . , An ; Bn〉α (13)

Since it is not necessary to check whether the arguments of α are the targets
of the Ai, rule (14) is easier to implement than rule (13). More details about the
implementation can be found in Sect. 5.



344 C. Kohl and A. Middeldorp

4 Projection Equivalence

In the preceding section proof terms were declared to be equivalent if they can
be obtained from each other by reordering (permuting) steps. In this section we
give an account of projection equivalence, which is a completely different way
of equating proof terms. It is based on the residual operation which computes
which steps of A remain after performing B, for co-initial proof terms A and B.
The steps in B need not be contained in A in order to compute their residual
A / B. The diagram on the left shows a desirable result of residuals and the
diagram on the right provides the intuition behind Eqs. (17) and (18) below:

· ·

· ·

A

B

A/B

B/A

· · ·

· · ·

A B

C

A/C B/(C/A)

C/A (C/A)/B

In [7, Definition 8.7.54] the residual A/B is defined by means of the following
equations:

x / x = x (15)
f(A1, . . . , An) / f(B1, . . . , Bn) = f(A1 / B1, . . . , An / Bn)
α(A1, . . . , An) / α(B1, . . . , Bn) = rhsα〈A1 / B1, . . . , An / Bn〉α

α(A1, . . . , An) / lhsα〈B1, . . . , Bn〉α = α(A1 / B1, . . . , An / Bn) (16)
lhsα〈A1, . . . , An〉α / α(B1, . . . , Bn) = rhsα〈A1 / B1, . . . , An / Bn〉α

C / (A ; B) = (C / A) / B (17)
(A ; B) / C = (A / C) ; (B / (C / A)) (18)

A / B = #(tgt(B)) (otherwise)

Here A, B, C, A1, . . . , An, B1, . . . , Bn are proof term variables that can be
instantiated with arbitrary proof terms (so without /). The x in (15) denotes an
arbitrary variable (in the underlying TRS), which cannot be instantiated.1 In
the final defining equation, # is the rule symbol of the special error rule x → ⊥.
This rule is adopted to ensure that A / B is defined for arbitrary left-linear
TRSs.2 These defining equations are taken modulo (4) and

t ; t ≈ t (19)

The need for the functorial identities (4) is explained in the following example
(Vincent van Oostrom, personal communication).

1 In [7, Remark 8.2.21] variables are treated as constants and (15) is absent.
2 In both [6, Definition 6.9] and [7, Definition 8.7.54] the wrong definition A / B =
#(tgt(A)) is given.



Composing Proof Terms 345

Example 6. Consider A = f(g(β) ; g(γ)) and B = α(a) in the TRS

α : f(g(x)) → x β : a → b γ : b → c

When computing A/B without (4), the α-instance f(g(A1))/α(B1) = A1/B1 of
schema (16) does not apply to A/B since the g in f(g(A1)) needs to be extracted
from g(α) ; g(γ) when computing A / B. As a consequence, the (otherwise)
equation kicks in, producing the proof term #(b) that indicates an error. With
(4) in place, the result of evaluating A / B is the proof term β ; γ, representing
the desired sequence a → b → c.

It is not immediately clear that the defining equations on the preceding page
constitute a well-defined definition of the residual operation. In [7, proof of The-
orem 8.7.57] the defining equations together with (4) and (19) are oriented from
left to right, resulting in a rewrite system Res that is claimed to be terminating
and confluent. The residual of A over B is then defined as the unique normal
form of A / B in Res.

There are two problems with this approach. First of all, when is the (other-
wise) rule applied? In [7] this is not specified, resulting in an imprecise rewrite
semantics of Res. Keeping in mind that A/B is supposed to be a total operation
on proof terms (so no / in A and B), a natural solution is to adopt an inner-
most evaluation strategy. This ensures that C /A is evaluated before (C /A)/B
in the right-hand side of (17) and before B / (C / A) in the right-hand side of
(18). The (otherwise) condition is taken into account by imposing the additional
restriction that the (otherwise) rule is applied to A/B (with A and B in normal
form) only if the other rules are not applicable. The second, and more serious,
problem is that Res is not confluent.

Example 7. Consider the TRS consisting of the rules

α : f(x, y) → f(y, x) β : a → b γ : f(a, x) → x

and the proof terms A = f(β, a), B = α(b,β), C = α(a, a), and D = γ(a).
There are two ways to compute (A ; B) / (C ; D), starting with (17) or (18):

((A ; B) / C) / D → ((A / C) ; (B / (C / A))) / D

→∗ (f(a / a,β / a) ; (B / α(a / β, a / a))) / D

→∗ (f(a,β) ; (B / α(b, a))) / D

→ (f(a,β) ; f(β / a, b / b)) / D

→∗ (f(a,β) ; f(β, b)) / D → f(a ; β,β ; b) / D → #(a)
(A / (C ; D)) ; (B / ((C ; D) / A))

→∗ ((A / C) / D) ; (B / ((C / A) ; (D / (A / C))))
→∗ (f(a,β) / D) ; (B / (α(b, a) ; (D / f(a,β))))
→∗ β ; (B / (α(b, a) ; γ(b))) →∗ β ; (f(β, b) / γ(b))
→∗ β ; #(b)



346 C. Kohl and A. Middeldorp

The normal forms #(a) and β ; #(b) represent different failing computations:
a → ⊥ and a → b → ⊥.

To solve this problem we propose a drastic solution. When facing a term
A / B with A and B in normal form, the defining equations are evaluated from
top to bottom and the first equation that matches is applied. This essentially
means that the ambiguity between (17) and (18) is resolved by giving preference
to the former. Due to innermost evaluation, no other critical situations arise. So
we arrive at the following definition, where we turned Eq. (19) into rule (28),
which is possible due to the presence of (29).

Definition 5. The residual TRS for proof terms consists of the following rules:

x / x → x (20)
f(A1, . . . , An) / f(B1, . . . , Bn) → f(A1 / B1, . . . , An / Bn) (21)
α(A1, . . . , An) / α(B1, . . . , Bn) → rhsα〈A1 / B1, . . . , An / Bn〉α (22)

α(A1, . . . , An) / lhsα〈B1, . . . , Bn〉α → α(A1 / B1, . . . , An / Bn) (23)
lhsα〈A1, . . . , An〉α / α(B1, . . . , Bn) → rhsα〈A1 / B1, . . . , An / Bn〉α (24)

C / (A ; B) → (C / A) / B (25)
(A ; B) / C → (A / C) ; (B / (C / A)) (26)

A / B → #(tgt(B)) (27)
x ; x → x (28)

f(A1, . . . , An) ; f(B1, . . . , Bn) → f(A1 ; B1, . . . , An ; Bn) (29)

We adopt innermost evaluation with the condition that the rules (20)–(27) are
evaluated from top to bottom.

The residual TRS operates on closed proof terms, which are proof terms
without proof term variables, to ensure that tgt(B) in the right-hand side of
(27) can be evaluated. (Variables of the underlying TRS are allowed in proof
terms.)

Lemma 3. The residual TRS is terminating and confluent on closed proof
terms.

Proof. Confluence of the residual TRS is obvious because of the innermost eval-
uation strategy and the fact that there is no root overlap between its rules (due
to the imposed evaluation order). Showing termination is non-trivial because of
the nested occurrences of / in the right-hand sides of (25) and (26). As suggested
in [7, Exercise 8.7.58] one can use semantic labeling [8]. We take the well-founded
algebra A with carrier N equipped with the standard order > and the following
weakly monotone interpretation and labeling functions:



Composing Proof Terms 347

αA(x1, . . . , xn) = fA(x1, . . . , xn) = max{x1, . . . , xn}
;A(x, y) = x + y + 1 /A(x, y) = x #A(x) = ⊥A = 0

L; = Lf = Lα = L# = L⊥ = ∅ L/ = N lab/(x, y) = x + y

The algebra A is a quasi-model of the residual TRS. Hence termination is a
consequence of termination of its labeled version. The latter follows from LPO
with well-founded precedence /i > /j for all i > j and /0 > ; > f > α > # > ⊥
for all function symbols f and rule symbols α. For instance, (26) gives rise to
the labeled versions (A ; B) /a+b+c+1 C → (A /a+c C) ; (B /b+c (C /c+a A)) for
all natural numbers a, b, and c, and each of them is compatible with the given
LPO. �

The termination argument in the above proof does not depend on the imposed
evaluation strategy. In the following we write A ! B for the unique normal form
of A / B.

Definition 6. The projection order � and projection equivalence � are defined
on co-initial proof terms as follows: A � B if A ! B = tgt(B) and A � B if both
A � B and B � A.

Lemma 3 provides us with an easy decision procedure for projection equiv-
alence: A � B if and only A ! B and B ! A coincide and contain neither rule
symbols nor compositions.

Example 8. We can use this decision procedure to check which of the 13
sequences of Example 1 are projection equivalent. The (proof terms represent-
ing the) sequences 02357 and 12349 in Example 1 are projection equivalent since
02357/12349 and 12349/02357 rewrite to the same normal form (¬x∧y)∨(¬x∧z)
in the residual TRS. As a matter of fact, all sequences from s to t are projection
equivalent, except for 17. For instance, both 02357/17 and 17/02357 rewrite to
#((¬x∧y)∨ (¬x∧z)) ;#(⊥), but this normal form of the residual TRS contains
the rule symbol # associated to the error rule.

Even though the residual TRS is designed to compute A/B for co-initial proof
terms, there is no restriction on term formation. So in principle it is conceivable
that A ! B is not a well-formed proof term, which can only happen if A ! B
contains a subterm A1 ; A2 with tgt(A1) 
= src(A2). The key properties that
exclude this are src(A ! B) = tgt(B) and tgt(A ! B) = tgt(B ! A), because then
the right-hand sides of rules (25) and (26) are well-defined, meaning that one
obtains proof terms as normal forms if A, B, C are instantiated by proof terms.
The first property (src(A!B) = tgt(B)) can be proved by induction on the length
of a normalizing sequence in the residual TRS starting from A / B. The second
property (tgt(A ! B) = tgt(B ! A), see also the diagrams at the beginning of this
section) we have not yet been able to establish; the case where both A and B
are headed by composition causes complications due to the imposed evaluation
strategy.



348 C. Kohl and A. Middeldorp

5 Automation

In this section we describe the extensions to ProTeM3 that we implemented
as part of this work. ProTeM is a tool for manipulating proof terms and has
been previously described in [3], with the focus on proof terms that represent
multisteps, so without composition, and methods for measuring overlap between
multisteps.

Apart from the decision procedure for projection equivalence based on the
residual TRS described in the previous section, we implemented procedures
dealing with parallel standardization as well as algorithms to translate between
rewrite sequences and proof terms.

5.1 Rewrite Sequences and Proof Terms

We implemented an algorithm that takes as input two terms t and u, and com-
putes a proof term A without compositions such that src(A) = t and tgt(A) = u.
If there is no multi-step t ◦−→ u, A does not exist. Otherwise, there may be
different proof terms A that satisfy the requirements. ProTeM returns the first
solution it encounters by trying to match the rules of the current TRS in top-
down order and recursively in the arguments. This algorithm is extended to
generate a proof term for a sequence of multisteps. We do this by applying it to
each consecutive pair of terms, resulting in proof terms A1, . . . , Ak for a sequence
consisting of k + 1 terms, which are then combined into A = A1 ; · · · ; Ak.

Fig. 1. Expansion algorithm (expand).

Conversely, for a given proof term A, ProTeM computes terms t1, . . . , tn
such that A represents the sequence t1 ◦−→ . . . ◦−→ tn. To achieve this, first A is

3 http://informatik-protem.uibk.ac.at/.

http://informatik-protem.uibk.ac.at/


Composing Proof Terms 349

transformed into a permutation equivalent proof term A1 ; . . . ; An such that the
Ai themselves do not contain compositions. To move inner compositions outside
we repeatedly apply the functorial identities (4) and a generalized form of (11)
(similar to the extension of (12) to (14)). We call this procedure expansion.
Detailed steps are displayed in Fig. 1. The terms t1, . . . , tn are then obtained by
computing the sources and targets of A1, . . . , An. Expansion is also needed for
the marking algorithm, presented in the next subsection. Here we give a simple
example.

Example 9. Consider the TRS of Example 1. Expanding the proof term A =
α(β(¬x,¬z) ; (ε(x)∧ε(y)), ε(z)) yields the proof terms A1 = α(β(¬x,¬z), ε(z))
and A2 = ¬((ε(x) ∧ ε(y))) ∨ ¬z.

5.2 Standardization

In this subsection we report on ProTeM’s implementations in connection with
Sect. 3. When automating parallel standardization it is very useful to have some
way of determining whether a given proof term is already parallel standard,
other than going through all proof terms in its (theoretically infinite) structural
equivalence class and trying to apply the parallel standardization rules. For this
we use a modified version of the marking procedure [7, p. 366] that operates on
proof terms instead of steps of a reduction. Our implementation is described in
Fig. 2. We first transform the input A into its canonical form to get rid of trivial
steps, then we use expansion to remove nested compositions and check if every
proof term of the sequence A1, . . . , An represents a parallel step (i.e., there are
no nested rule symbols). Only then do we start with the actual marking. The
basic idea is to go through the sequence A1, . . . , An from left to right and mark
the positions of the redexes. While moving right we check whether the next
step contains markings below its redex pattern (i.e., in the arguments of its rule
symbols). If it does we know that the next step takes place above the one that
produced the marking and hence the given sequence of proof terms is not parallel
standard.

Automating parallel standardization is a non-trivial task, since the rules of
parallel standardization are applied modulo structural equivalence. Figure 3 dis-
plays our full algorithm to transform any proof term into a permutation equiva-
lent parallel standard one. We start by computing the canonical form of our input
A. Then we check if it is already parallel standard using the marking procedure.
If not, we first apply the parallel standardization rules (13) and (14) as much as
possible. If that does not result in a parallel standard proof term, a structurally
equivalent proof term has to be computed to which we can again apply the par-
allel standardization rules. Structural equivalence classes are infinite, but only
due to harmless compositions with trivial terms. Nevertheless, we do not search
blindly through them. First we simplify our problem by determining which part
of the proof term is not parallel standard and recursively call the parallel stan-
dardization algorithm on that subterm. When a composition A1 ; A2 is encoun-
tered where A1 and A2 are parallel standard but A1 ;A2 is not, neither A1 nor A2



350 C. Kohl and A. Middeldorp

Fig. 2. Marking algorithm (mark).

can contain nested rules symbols since these would have been expanded by (13).
Because we always compute canonical forms of proof terms before trying the
parallel standardization rules, A1 and A2 cannot have the same function symbol
as root. The fact that A1 ; A2 is not parallel standard further implies that A1

is of the form A1 = f(T1, . . . , Tn) and A2 contains an outer step that must be
performed before one of the inner steps in A1. We try to find a structurally
equivalent proof term A = C1 ; (C2 ;A2) with C1 = f(T1, . . . , src(Ti), . . . , Tn) and
C2 = f(tgt(T1), . . . , Ti, . . . , tgt(Tn)) such that rule (13) is applicable to C2 ; A2.
For each argument position i we first check if C2 ;A2 is already parallel standard
to make sure not to perform useless steps which may cause non-termination of
the procedure. If C2 ; A2 is parallel standard, we split A1 at the next argument
position. After we have identified C1 and C2 such that C2 ; A2 is not parallel
standard, there is still the possibility that (13) is blocked, because C2 contains
composition. In that case C2 is serialized into C3 and C4 such that C2 = C3 ; C4

and C4 contains exactly one rule symbol and no composition.
Since the parallel standardization TRS is terminating modulo structural

equivalence (Theorem 2), its rules cannot be applied infinitely often to a proof
term A and since we always perform at least one application of its rules in each
iteration, our algorithm is bound to terminate after a finite number of steps.

Example 10. We apply the parallel standardization algorithm to the proof term
A of Example 5. The canonical form of A is A′ = ε(x)∧α(y, z) ;γ(x,¬y,¬z) and
A′ is not parallel standard according to the marking algorithm. Neither (12) nor
(13) is applicable, though. Since both ε(x)∧α(y, z) and γ(x,¬y,¬z) are parallel
standard, we start splitting up ε(x) ∧ α(y, z) into C1 ; C2. For i = 1 we obtain
C1 = ¬¬x ∧ α(y, z) and C2 = ε(x) ∧ (¬y ∨ ¬z), and so we try to apply (12) and
(13) to the proof term C1 ; (C2 ; A2):



Composing Proof Terms 351

Fig. 3. Parallel standardization algorithm (ps).

C1 ; (C2 ; A2)
→ ¬¬x ∧ α(y, z) ; γ(ε(x),¬y,¬z) (12)
→ ¬¬x ∧ α(y, z) ; (γ(¬¬x,¬y,¬z) ; (ε(x) ∧ ¬y) ∨ (ε(x) ∧ ¬z)) (13)

At this point we are done since the final term is parallel standard.

We also implemented full standardization of proof terms by serializing the
parallel steps of parallel standard proof terms such that steps are performed in
a left-to-right order.

6 Conclusion

In this paper we described the extensions to ProTeM that deal with the per-
mutation and projection equivalences as well as the projection order, important
notions to compare rewrite sequences. Along the way, we corrected a mistake in
[6,7] concerning the well-definedness of the residual operation, which is used to
decide projection equivalence.



352 C. Kohl and A. Middeldorp

This does not complete our investigations. We already remarked the difficulty
of establishing tgt(A ! B) = tgt(B ! A) which is needed to guarantee that A / B
is a proper proof term. It is conceivable that the evaluation order we impose
on the residual TRS needs to be relaxed to obtain this result. Then the error
propagating rules A ; #(B) → #(A) and #(A) ; B → #(A) would be added to
the residual TRS to resolve the non-confluence in Example 7. In addition the
error rule #: x → ⊥ would be promoted to the underlying TRS, in order to
make A ; #(B), #(A) ; B and #(A) also permutation equivalent.

Another desirable result is a proof of equivalence of permutation and projec-
tion equivalence which is based on properties of the residual TRS. The question
whether there exists a characterisation of permutation equivalence that avoids
rewriting modulo structural equivalence is also worth investigating. Further, the
complexity of computing (parallel) standard reductions and residuals needs to
be investigated.

Acknowledgments. We thank Vincent van Oostrom and members of the master sem-
inar of the Computational Logic research group for insightful discussions. Comments
by the reviewers helped to improve the presentation.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). https://doi.org/10.1017/CBO9781139172752

2. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination.
J. Autom. Reasoning 47(4), 481–501 (2011). https://doi.org/10.1007/s10817-011-
9238-x

3. Kohl, C.,Middeldorp, A.: ProTeM: a proof termmanipulator (systemdescription). In:
Kirchner, H. (ed.) Proceedings of 3rd International Conference on Formal Structures
for Computation and Deduction. Leibniz International Proceedings in Informatics,
vol. 108, pp. 31:1–31:8 (2018). https://doi.org/10.4230/LIPIcs.FSCD.2018.31

4. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography.
Theoret. Comput. Sci. 285(2), 121–154 (2002). https://doi.org/10.1016/S0304-
3975(01)00357-7

5. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. Theoret.
Comput. Sci. 96(1), 73–155 (1992). https://doi.org/10.1016/0304-3975(92)90182-F

6. van Oostrom, V., de Vrijer, R.: Four equivalent equivalences of reductions. In: Pro-
ceedings of 2nd International Workshop on Reduction Strategies in Rewriting and
Programming. Electronic Notes in Theoretical Computer Science, vol. 70(6), pp.
21–61 (2002). https://doi.org/10.1016/S1571-0661(04)80599-1

7. Terese (ed.): Term Rewriting Systems, Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

8. Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta
Informaticae 24, 89–105 (1995). https://doi.org/10.3233/FI-1995-24124

https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/s10817-011-9238-x
https://doi.org/10.1007/s10817-011-9238-x
https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.1016/S0304-3975(01)00357-7
https://doi.org/10.1016/S0304-3975(01)00357-7
https://doi.org/10.1016/0304-3975(92)90182-F
https://doi.org/10.1016/S1571-0661(04)80599-1
https://doi.org/10.3233/FI-1995-24124


Composing Proof Terms 353

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Composing Proof Terms
	1 Introduction
	2 Proof Terms
	3 Permutation Equivalence
	4 Projection Equivalence
	5 Automation
	5.1 Rewrite Sequences and Proof Terms
	5.2 Standardization

	6 Conclusion
	References




