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Abstract

Proof terms are a useful concept for comparing computations in term rewriting. The
residual operation is an important operation on proof terms, used to define projection
equivalence. We present a variant of the residual system (Definition 8.7.54 of TeReSe)
that is (innermost) confluent and terminating, and thus can be used to decide projection
equivalence.

1 Introduction

To reason about rewrite sequences in left-linear term rewrite systems, in [3, Chapter 8] and
[4] de Vrijer and van Oostrom define and compare different notions of equivalence. In this
paper we are concerned with one of these notions, projection equivalence, which is defined
using residuals. We present a schematic rewrite system for computing residuals that operates
on proof terms. The latter are used to represent rewrite sequences. Our rewrite system is a
variant of the residual system defined in [3, Definition 8.7.54 and proof of Theorem 8.7.57] and
[4, Definition 6.9 and proof of Theorem 6.12]. We identify several issues with the analysis in
[3, 4] and propose a solution by imposing an evaluation strategy on the residual system. We
establish (innermost) confluence and termination of the adapted system, and show how these
properties are used to decide projection equivalence. The decision procedure is incorporated
into ProTeM, a recent tool [1] for manipulating proof terms.

2 Proof Terms

Proof terms are built from function symbols, variables, and rule symbols as well as the binary
composition operator ; which is used in infix notation. Rule symbols represent rewrite rules
and have a fixed arity which is the number of different variables in the represented rule. We use
Greek letters (α, β, γ, . . . ) as rule symbols, and uppercase letters (A,B,C, . . . ) for proof terms.

If α is a rule symbol then lhsα (rhsα) denotes the left-hand (right-hand) side of the rewrite
rule represented by α. Furthermore varα denotes the list (x1, . . . , xn) of variables appearing in
α in some fixed order. The length of this list is the arity of α. Given a rule symbol α with
varα = (x1, . . . , xn) and proof terms A1, . . . , An, we write 〈A1, . . . , An〉α for the substitution
{xi 7→ Ai | 1 6 i 6 n}. A proof term A witnesses a rewrite sequence from its source src(A) to
its target tgt(A), which are computed as follows:

src(x) = tgt(x) = x src(f(A1, . . . , An)) = f(src(A1), . . . , src(An))

src(A ;B) = src(A) src(α(A1, . . . , An)) = lhsα〈src(A1), . . . , src(An)〉α
tgt(A ;B) = tgt(B) tgt(f(A1, . . . , An)) = f(tgt(A1), . . . , tgt(An))

tgt(α(A1, . . . , An)) = rhsα〈tgt(A1), . . . , tgt(An)〉α
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Here f is an n-ary function symbol. We assume tgt(A) = src(B) whenever the composition
A ;B is used in a proof term. Proof terms A and B are co-initial if they have the same source.

Example 1. Consider the TRS consisting of the rules α, β, γ and the proof terms A, B, C:

α : f(a, x)→ g(x, x) β : a→ b γ : b→ c

A = α(β ; γ) B = (α(a) ; g(β,β)) ; g(γ,γ) C = f(a,β ; γ) ; α(c)

We have src(A) = src(B) = src(C) = f(a, a) and tgt(A) = tgt(B) = tgt(C) = g(c, c). The proof
term B represents the sequence f(a, a)→ g(a, a) ‖−→ g(b, b) ‖−→ g(c, c).

We can represent any rewrite sequence −→∗ by a suitable proof term. A proof term without
composition represents a multi-step, a proof term without composition and nested rule symbols
represents a parallel step, and a proof term without composition and only one rule symbol
represents a single step. If a proof term contains neither compositions nor rule symbols, it
denotes an empty step.

3 Residuals

The residual operation computes, for co-initial proof terms A and B, which steps of A re-
main after performing B. The diagram on the left shows a desirable result of residuals
and the diagram on the right provides the intuition behind equations (6) and (7) below:

· ·

· ·

A

B

A/B

B/A

· · ·

· · ·

A B

C

A/C B/(C/A)

C/A (C/A)/B

In [3, Definition 8.7.54] and [4, Definition 6.9] the residual A / B is defined by means of the
following equations:

x / x = x (1)

f(A1, . . . , An) / f(B1, . . . , Bn) = f(A1 / B1, . . . , An / Bn) (2)

α(A1, . . . , An) / α(B1, . . . , Bn) = rhsα〈A1 / B1, . . . , An / Bn〉α (3)

α(A1, . . . , An) / lhsα〈B1, . . . , Bn〉α = α(A1 / B1, . . . , An / Bn) (4)

lhsα〈A1, . . . , An〉α / α(B1, . . . , Bn) = rhsα〈A1 / B1, . . . , An / Bn〉α (5)

C / (A ;B) = (C / A) / B (6)

(A ;B) / C = (A / C) ; (B / (C / A)) (7)

A / B = #(tgt(B))1 (otherwise)

Here A, B, C, A1, . . . , An, B1, . . . , Bn are proof term variables that can be instantiated with
arbitrary proof terms (so without /). The x in equation (1) denotes an arbitrary variable (in
the underlying TRS), which cannot be instantiated.2 For every rule α of the underlying TRS,
the equation schemes (3)–(5) are suitably instantiated. For instance, for rule α of Example 1

1In [3, 4] the wrong definition A / B = #(tgt(A)) is given.
2In [3, Remark 8.2.21] variables are treated as constants and (1) is absent.
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we obtain the equations α(A) / α(B) = g(A / B,A / B), α(A) / f(a, B) = α(A / B) and
f(a, A) / α(B) = g(A / B,A / B). In the final defining equation, # is the rule symbol of the
special error rule x → ⊥. This rule is adopted to ensure that A / B is defined for arbitrary
left-linear TRSs. The defining equations are taken modulo

t ; t ≈ t (8)

f(A1, . . . , An) ; f(B1, . . . , Bn) ≈ f(A1 ;B1, . . . , An ;Bn) (9)

The need for the so-called functorial identities (9) is explained in the following example (Vincent
van Oostrom, personal communication).

Example 2. Consider A = f(g(β) ; g(γ)) and B = α(a) in the TRS

α : f(g(x))→ x β : a→ b γ : b→ c

When computing A / B without (9), the α-instance f(g(A1)) /α(B1) = A1 / B1 of schema (4)
does not apply to A / B since the g in f(g(A1)) needs to be extracted from g(α) ; g(γ) when
computing A/B. As a consequence, the (otherwise) equation kicks in, producing the proof term
#(b) that indicates an error. With (9) in place, the result of evaluating A/B is the proof term
β ; γ, representing the desired sequence a→ b→ c.

It is not immediately clear that the defining equations on the preceding page constitute a
well-defined definition of the residual operation. In [3, proof of Theorem 8.7.57] and [4, proof of
Theorem 6.12] the defining equations together with (8) and (9) are oriented from left to right,
resulting in a rewrite system Res that is claimed to be terminating and confluent. The residual
of A over B is then defined as the unique normal form of A / B in Res.

There are two problems with this approach. First of all, when is the (otherwise) rule applied?
In [3] this is not specified, resulting in an imprecise rewrite semantics of Res. Keeping in mind
that A / B is supposed to be a total operation on proof terms (so no / in A and B), a natural
solution is to adopt an innermost evaluation strategy. This ensures that C / A is evaluated
before (C / A) / B in the right-hand side of (6) and before B / (C / A) in the right-hand side
of (7). The (otherwise) condition is taken into account by imposing the additional restriction
that the (otherwise) rule is applied to A / B (with A and B in normal form) only if the other
rules are not applicable. The second, and more serious, problem is that Res is not confluent.

Example 3. Consider the TRS consisting of the rules

α : f(x, y)→ f(y, x) β : a→ b γ : f(a, x)→ x

and the proof terms A = f(β, a), B = α(b,β), C = α(a, a), and D = γ(a). There are two ways
to compute (A ;B) / (C ;D), starting with (6) or (7):

((A ;B) / C) / D → ((A / C) ; (B / (C / A))) / D

→∗ (f(a / a,β / a) ; (B /α(a / β, a / a))) / D

→∗ (f(a,β) ; (B /α(b, a))) / D

→ (f(a,β) ; f(β / a, b / b)) / D

→∗ (f(a,β) ; f(β, b)) / D

→ f(a ; β,β ; b) / D → #(a)

(A / (C ;D)) ; (B / ((C ;D) / A))
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→∗ ((A / C) / D) ; (B / ((C / A) ; (D / (A / C))))

→∗ (f(a,β) / D) ; (B / (α(b, a) ; (D / f(a,β))))

→∗ β ; (B / (α(b, a) ; γ(b)))

→∗ β ; (f(β, b) / γ(b))

→∗ β ; #(b)

The normal forms #(a) and β ; #(b) represent different failing computations: a → ⊥ and
a→ b→ ⊥. The above computations are depicted in the diagrams below:

f(a, a) f(b, a) f(b, b)

f(a, a) f(b, b)

a ⊥

A B

C

D

(A ;B) /C

f(a ;β,β ; b)

((A ;B) /C) /D

#(a)

f(a, a) f(b, a) f(b, b)

f(a, a)

a b ⊥

A B

C

D

A/ (C ;D)

β

(C ;D) /Af(β, b)

B/((C;D)/A)

#(b)

To solve this problem we propose a drastic solution. When facing a term A / B with A
and B in normal form, the defining equations are evaluated from top to bottom and the first
equation that matches is applied. This essentially means that the ambiguity between (6) and
(7) is resolved by giving preference to the former. Due to innermost evaluation, no other critical
situations arise. So we arrive at the following definition, where we turned equation (8) into rule
(18), which is possible due to the presence of (19).

Definition 4. The residual TRS for proof terms consists of the following rules:

x / x → x (10)

f(A1, . . . , An) / f(B1, . . . , Bn) → f(A1 / B1, . . . , An / Bn) (11)

α(A1, . . . , An) / α(B1, . . . , Bn) → rhsα〈A1 / B1, . . . , An / Bn〉α (12)

α(A1, . . . , An) / lhsα〈B1, . . . , Bn〉α → α(A1 / B1, . . . , An / Bn) (13)

lhsα〈A1, . . . , An〉α / α(B1, . . . , Bn) → rhsα〈A1 / B1, . . . , An / Bn〉α (14)

C / (A ;B) → (C / A) / B (15)

(A ;B) / C → (A / C) ; (B / (C / A)) (16)

A / B → #(tgt(B)) (17)

x ; x → x (18)

f(A1, . . . , An) ; f(B1, . . . , Bn) → f(A1 ;B1, . . . , An ;Bn) (19)

We adopt innermost evaluation with the condition that the rules (10)–(17) are evaluated from
top to bottom.

The residual TRS operates on closed proof terms, which are proof terms without proof term
variables, to ensure that tgt(B) in the right-hand side of (17) can be evaluated. (Variables of
the underlying TRS are allowed in proof terms.)

Example 5. Consider the TRS of Example 1. For D = α(β) and E = α(a) ; g(β,β) we have

D / E = α(β) / (α(a) ; g(β,β))→ (α(β) /α(a)) / g(β,β)→ g(β / a,β / a) / g(β,β)

4



Residuals Revisited C. Kohl and A. Middeldorp

→∗ g(β,β) / g(β,β)→ g(β / β,β / β)→∗ g(b, b)

E / D = (α(a) ; g(β,β)) /α(β)→ (α(a) /α(β)) ; (g(β,β) / (α(β) /α(a)))

→∗ g(a / β, a / β) ; (g(β,β) / g(β / a,β / a))→∗ g(b, b) ; (g(β,β) / g(β,β))

→ g(b, b) ; g(β / β,β / β)→∗ g(b, b) ; g(b, b)→ g(b ; b, b ; b)→∗ g(b, b)

Lemma 6. The residual TRS is terminating and confluent on closed proof terms.

Proof. Confluence of the residual TRS is obvious because of the innermost evaluation strategy
and the fact that there is no root overlap between its rules (due to the imposed evaluation order).
Showing termination is non-trivial because of the nested occurrences of / in the right-hand sides
of (15) and (16). As suggested in [3, Exercise 8.7.58] one can use semantic labeling [5]. We
take the well-founded algebra A with carrier N equipped with the standard order > and the
following weakly monotone interpretation and labeling functions:

αA(x1, . . . , xn) = fA(x1, . . . , xn) = max{x1, . . . , xn}
;A(x, y) = x+ y + 1 /A(x, y) = x #A(x) = ⊥A = 0

L; = Lf = Lα = L# = L⊥ = ∅ L/ = N lab/(x, y) = x+ y

The algebra A is a quasi-model of the residual TRS. Hence termination is a consequence of
termination of its labeled version. The latter follows from LPO with well-founded precedence
/i > /j for all i > j and /0 > ; > f > α > # > ⊥ for all function symbols f and rule symbols
α.

The residual TRS is used to define projection equivalence.

Definition 7. The projection order . and projection equivalence ' are defined on co-initial
proof terms as follows: A . B if A / B →∗ tgt(B) and A ' B if both A . B and B . A.

Example 8. The proof terms A, B, and C of Example 1 are projection equivalent since the
residuals A / B, B / A, A / C, and C / A all rewrite to the same normal form g(c, c).

Lemma 6 provides us with an easy decision procedure for projection equivalence: A ' B
if and only the (unique) normal forms of A / B and B / A with respect to the residual TRS
coincide and contain neither rule symbols nor compositions. This procedure is implemented in
ProTeM3 [1], a tool for manipulating proof terms. We refer to [2] for further details.

References

[1] Christina Kohl and Aart Middeldorp. ProTeM: A proof term manipulator (system description). In
Proc. 3rd FSCD, volume 108 of LIPIcs, pages 31:1–31:8, 2018. doi: 10.4230/LIPIcs.FSCD.2018.31.

[2] Christina Kohl and Aart Middeldorp. Composing proof terms. In Proc. 27th CADE, LNAI, 2019.
Accepted for publication.

[3] Terese, editor. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

[4] Vincent van Oostrom and Roel de Vrijer. Four equivalent equivalences of reductions. In Proc. 2nd
WRS, volume 70(6) of ENTCS, pages 21–61, 2002. doi: 10.1016/S1571-0661(04)80599-1.

[5] Hans Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae,
24:89–105, 1995. doi: 10.3233/FI-1995-24124.

3http://informatik-protem.uibk.ac.at/

5

http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.31
http://dx.doi.org/10.1016/S1571-0661(04)80599-1
http://dx.doi.org/10.3233/FI-1995-24124
http://informatik-protem.uibk.ac.at/

	Introduction
	Proof Terms
	Residuals

