
A Formalization of the Development Closedness
Criterion for Left-Linear Term Rewrite Systems

Christina Kohl
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

christina.kohl@uibk.ac.at

Aart Middeldorp
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

aart.middeldorp@uibk.ac.at

Abstract

Several critical pair criteria are known that guarantee con�u-
ence of left-linear term rewrite systems. The correctness of
most of these have been formalized in a proof assistant. An
important exception has been the development closedness
criterion of van Oostrom. Its proof requires a high level of
understanding about overlapping redexes and descendants
as well as several intermediate results related to these con-
cepts. We present a formalization in the proof assistant Is-
abelle/HOL. The result has been integrated into the certi�er
CeTA.

CCS Concepts: • Theory of computation→ Equational

logic and rewriting; Logic and veri�cation.

Keywords: formalization, term rewriting, con�uence

ACM Reference Format:

Christina Kohl and Aart Middeldorp. 2023. A Formalization of the

Development Closedness Criterion for Left-Linear Term Rewrite

Systems. In Proceedings of the 12th ACM SIGPLAN International

Conference on Certi�ed Programs and Proofs (CPP ’23), January 16–

17, 2023, Boston, MA, USA. ACM, New York, NY, USA, 14 pages.

h�ps://doi.org/10.1145/3573105.3575667

1 Introduction

Rewriting is a pervasive concept in mathematics, computer
science, and other areas; simpli�cation of expressions con-
stitutes rewriting, the execution of a program can be seen as
a rewrite sequence on program states, and in fact probably
almost any development according to a set of �xed rules
can be considered rewriting. In term rewriting, we assume
that the objects which are rewritten are terms. This yields
a powerful formalism which is crucial for simpli�cation in
automated theorem proving, it provides tools to analyze se-
curity protocols, but it is also a versatile method in program

CPP ’23, January 16–17, 2023, Boston, MA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0026-2/23/01.

h�ps://doi.org/10.1145/3573105.3575667

veri�cation, to name only a few application areas. In fact,
term rewriting is a Turing-complete model of computation,
and provides methods to investigate important properties
of computation and simpli�cation processes on an abstract
level.

A term rewrite system R is a set of directed equations, so-
called rewrite rules, which induces a relation→R on terms.
Besides termination, which forbids in�nite computations,
con�uence has been conceived as one of the central properties
of rewriting. A rewrite system R is con�uent if for all terms
B , C and D such that B →∗

R
C and B →∗

R
D (here→∗

R
denotes

the transitive re�exive closure of→R) there exists a term
E such that C →∗

R
E and D →∗

R
E (see Figure 2). Con�uence

is equivalent to the Church–Rosser property, introduced in
1936 by Church and Rosser [6] to show the consistency of
the _I-calculus, and guarantees that normal forms (which
are terms C such that C →R D for no term D) are unique.

Although undecidable in general, several su�cient condi-
tions for con�uence are known. The best-known ones are
based on restricting the way in which critical pairs can be
joined. These apply to left-linear rewrite systems and are
covered in textbooks on term rewriting [5, 27]. The emer-
gence of tools that aim to prove con�uence automatically
and compete in the Con�uence Competition1 (CoCo) [15]
has led to many new techniques (e.g. [1, 3, 9, 11, 16]) also for
rewrite systems that are not left-linear. Software tools may
contain bugs and con�uence tools are no exception. Indeed,
YES/NO con�icts (i.e., instances where tools yield contra-
dictory answers) are occasionally observed in CoCo, partly
explaining the interest in certifying the output of con�uence
tools. An important �rst step is to formalize the techniques
used in con�uence tools in a proof assistant.
Starting from the fundamental result by Knuth and Ben-

dix [13], stating that a terminating rewrite system is con-
�uent if and only if all its critical pairs are joinable, several
con�uence results have been formalized in the recent past.
An overview can be found in Section 3.

A well-known condition that has been considered as a
valuable addition to ongoing formalization e�orts [19, 23],
but has never been formalized so far, is the result by van
Oostrom [30] that a left-linear rewrite system is con�uent if
its critical pairs are development closed. In [10] it is suggested

1http://project-coco.uibk.ac.at/

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

197

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-8470-2485
https://orcid.org/0000-0001-7366-8464
https://doi.org/10.1145/3573105.3575667
https://doi.org/10.1145/3573105.3575667

CPP ’23, January 16–17, 2023, Boston, MA, USA Christina Kohl and Aart Middeldorp

to use proof terms [27, Chapter 8] to obtain a rigorous proof.
In [19] it is further suggested that a formalization of residual
theory might be helpful. Following these suggestions we
describe in this paper our formalization of the development
closedness criterion in the proof assistant Isabelle/HOL [22].

In the following we �rst recall basic notions and results on
term rewriting and provide some preliminary information
about the Isabelle formalization. Then we give an overview
of related work (Section 3). In Section 4we introduce develop-
ment closed critical pairs, state the corresponding con�uence
theorem and give an overview of the structure of its proof. In
the following sections we provide details about proof terms
(Section 5) and uni�cation of linear and variable disjoint
terms (Section 6). Both of these concepts play important
roles in the formalization. In Section 7 we �nally present the
full proof of the development closedness theorem and in Sec-
tion 8 we provide some details on the Isabelle formalization.
Integration of this result into the veri�er CeTA is described
in Section 9. In Section 10 we summarize our contributions
and provide an outlook on future work.

2 Preliminaries

Previous experience with Isabelle is not necessary for fol-
lowing our proof, but familiarity with the basics of term
rewriting [5, 27] will be helpful. Below we recall some de�-
nitions and notations.

2.1 Term Rewriting

Let F be a signature andV a set of variables disjoint from
F . By T (F ,V) we denote the set of terms over F andV .
A context is a term containing exactly one occurrence of
the special constant symbol □, which is called hole. If � is a
context then� [C] denotes the result of replacing the hole by
C . Positions are strings of positive natural numbers used to
address subterm occurrences. The set of positions of a term C

is de�ned as Pos(C) = {n } if C is a variable and as Pos(C) =
{n } ∪ {8@ | 1 ⩽ 8 ⩽ = and @ ∈ Pos(C8) } if C = 5 (C1, . . . , C=).
The subterm of C at position ? ∈ Pos(C) is de�ned as C |? = C

if ? = n and as C |? = C8 |@ if ? = 8@ and C = 5 (C1, . . . , C=). We
write B [C]? for the result of replacing the subterm at position
? of B with C . The symbol in C at position ? ∈ Pos(C) is
denoted by C (?). We write @ ⩽ ? if @@′ = ? for some position
@′, in which case ?\@ is de�ned to be @′. Furthermore @ < ?

if @ ⩽ ? and @ ≠ ? . Finally, positions @ and ? are parallel,
written as @ ∥ ? , if neither @ ⩽ ? nor ? < @. We denote the
subset of Pos(C) of non-variable positions (i.e., the positions
? ∈ Pos(C) such that C |? ∉ V) by PosF (C). We writeVar(C)

for the set of variables occurring in the term C . A term is linear
if every variable occurs at most once in it. Given a linear
term C , we write var(C) for the list (G1, . . . , G=) of variables
appearing in C in some �xed order. Moreover, vpos(C) denotes
the corresponding list (?1, . . . , ?=) of positions in C where
these variables occur. A substitution is a map f fromV to

T (F ,V) such that its domain {G ∈ V | f (G) ≠ G } is �nite.
We write Cf for the result of applying f to the term C .

A rewrite rule is a pair of terms (ℓ, A), written ℓ → A . A
rewrite rule ℓ → A is left-linear if ℓ is linear. A variant of a
rewrite rule is obtained by renaming its variables. A term
rewrite system (TRS) is a set of rewrite rules over a signature.
In the sequel, signatures are left implicit. A TRS is left-linear
if all its rules are left-linear. A TRSR induces the relation→R
de�ned on terms as follows: B →R C if there exists a position
? ∈ Pos(B), a rewrite rule ℓ → A ∈ R and a substitution f

such that B |? = ℓf and C = B [Af]? . The multi-step relation
◦−→R is inductively de�ned on terms as follows:

• G ◦−→R G for all variables G ,
• 5 (B1, . . . , B=) ◦−→R 5 (C1, . . . , C=) if B8 ◦−→R C8 for all 1 ⩽
8 ⩽ =, and
• ℓf ◦−→R Ag if ℓ → A ∈ R and f (G) ◦−→R g (G) for all
G ∈ Var(ℓ).

From the de�nition it easily follows that→R⊆ ◦−→R for any
TRS R. Whenever the underlying TRS R is clear from the
context, we omit the index in ◦−→R and simply write ◦−→.
The TRS of the following example will reappear several

times throughout the paper to illustrate important concepts.

Example 2.1. Consider the left-linear TRS R1 consisting of
the rules:

" h(f (G, g(~))) → h(f (G, g(G))) $ g(a) → g(b)

f (g(G), ~) → f (g(G), g(G)) % b→ a

There exists a rewrite step

h(f (g(a), g(a))) → h(f (g(a), g(a)))

using # at position 1. There exists a multi-step

h(f (g(a), g(a))) ◦−→ h(f (g(b), g(g(b))))

This can be seen by applying the third case of the de�ni-
tion and using rule " . Then the substitution f must contain
G ↦→ g(a) while the substition g contains G ↦→ g(b). The
de�nition of multi-step requires that g(a) ◦−→ g(b) which
can be achieved by applying rule $.2

A critical overlap (ℓ1 → A1, ?, ℓ2 → A2)f of a TRSR consists
of variants ℓ1 → A1 and ℓ2 → A2 of rewrite rules in R1

without common variables, a position ? ∈ PosF (ℓ2), and a
most general uni�er f of ℓ1 and ℓ2 |? . From a critical overlap
(ℓ1 → A1, ?, ℓ2 → A2)f we obtain a critical peak

ℓ2f [A1f] R← ℓ2f [ℓ1f]? = ℓ2f →R A2f

and the corresponding critical pair ℓ2f [A1f] ≈ A2f . A critical
pair B ≈ C is joinable if B →∗

R
D and C →∗

R
D for some term D.

A left-linear TRS without critical pairs is called orthogonal.

2The substitution for the variable ~ does not matter since ~ does not appear

in the right-hand side of "

198

A Formalization of the Development Closedness Criterion for Le�-Linear Term Rewrite Systems CPP ’23, January 16–17, 2023, Boston, MA, USA

Example 2.2. The TRS R1 of Example 2.1 has one critical
overlap between " and # and one between " and $ as well
as # and $. Hence we obtain the critical peaks displayed in
Figure 1. There the arrows are labeled by the corresponding
rewrite rules and positions. Note that on the right only steps
at the root position n are allowed.

A relation→ has the diamond property if← · → ⊆ → · ←
(Figure 2). The following well-known result [5, Chapter 2]
connects the diamond property with con�uence.

Lemma 2.3. Let→,→1 and→2 be binary relations.

1. If→ has the diamond property then→ is con�uent.

2. If →1 ⊆ →2 ⊆ →
∗
1
and →2 is con�uent then →1 is

con�uent.

When applying this lemma to prove that development
closed critical pairs imply con�uence for left-linear TRSs, we
will �rst instantiate→ in the �rst item with ◦−→ to obtain
con�uence of ◦−→. Then we can use the second item with the
property→ ⊆ ◦−→ ⊆ →∗ to establish con�uence of→.

2.2 Isabelle/HOL

Our formalization is developed in the proof assistant Is-
abelle/HOL [22] and is based on the Isabelle Formalization
of Rewriting (IsaFoR),3 a library of formalized results related
to term rewriting. Our contribution relies on the existing
formalizations of uni�cation and critical pairs described in
[25]. The Isabelle theory �les as well as HTML versions of
the theories can be found at

h�p://informatik-protem.uibk.ac.at/cpp2023/

The HTML versions provide a nice way to view Isabelle code
without having to install Isabelle. In addition we annotated
important results in this paper by a✓-symbol which directly
links to the HTML presentation of the corresponding result.

3 Related Work

For terminating rewrite systems, as mentioned in the in-
troduction, con�uence amounts to checking the joinability
of critical pairs. This landmark result by Knuth and Ben-
dix [13] has been formalized in ACL2 [24], in PVS [8] and in
Isabelle/HOL [25]. For non-terminating rewrite systems, or-
thogonality is the simplest su�cient criterion for con�uence.
It has been formalized in Isabelle/HOL [20] and in PVS [23].
The former contains the extension to weak orthogonality in
which trivial critical pairs are allowed. It also describes the
formalization of su�cient conditions for non-joinability of
critical pairs based on uni�cation, discrimination pairs [2],
interpretations, and tree automata [7]. Powerful transfor-
mation techniques for (non-)con�uence based on redundant
rules [16] and rule labeling [21] have also been formalized in
Isabelle/HOL. The direct predecessor of our work is [19], in

3h�p://cl-informatik.uibk.ac.at/isafor

which the classical critical pair criteria based on strong con-
�uence and parallel rewriting of Huet [12] and Toyama [28]
have been formalized.

4 Development Closed Critical Pairs

Here we restate the con�uence criterion by van Oostrom [29]
and provide a high-level overview of the proof. Shortened
versions of the same proof can be found in [30] and [27,
Chapter 11].

De�nition 4.1. A TRS R is development closed if for every
critical pair B ≈ C of R we have B ◦−→R C .

The development closedness criterion �rst appeared in [29],
where it was introduced forthe larger class of higher-order
pattern rewrite systems. The earlier results of Huet [12] and
Toyama [28] are restricted to �rst-order rewrite systems due
to the use of parallel rewriting. We formalized the develop-
ment closedness criterion for (�rst-order) TRSs.

Theorem 4.2. If a TRSR is left-linear and development closed

then ◦−→R has the diamond property. ✓

As mentioned before, the diamond property of ◦−→R im-
mediately yields con�uence of the TRS R by Lemma 2.3.

Corollary 4.3. If a TRS R is left-linear and development

closed then it is con�uent.

The TRS of the following example will reappear several
times throughout the paper to illustrate important concepts.

Example 4.4. Consider again the left-linear TRS R1 of Ex-
ample 2.1. One easily veri�es that all three critical pairs of
R1 computed in Example 2.2 are development closed. Hence
the TRS R1 is con�uent.

When formalizing Theorem 4.2 we could essentially follow
the proof steps described by van Oostrom in [29, 30]. The
main di�erences lie in the representation of rewrite steps as
proof terms and the explicit construction of the intermediate
contexts, substitutions, and rewrite steps used in the proof. In
the following we outline the proof steps. We start by looking
at two arbitrary multi-steps C ◦←− B ◦−→ D and need to show
that there exist multi-steps C ◦−→ E ◦←− D for some term
E . To facilitate formalization we model these multi-steps as
proof terms, i.e., �rst-order terms over an extended signature,
and then use operations on these proof terms, like residuals
and joins [27], to show how the required multi-steps can be
constructed. Let � denote the proof term witnessing B ◦−→ C

and � denote the proof term witnessing B ◦−→ D. The goal is
to construct proof terms witnessing C ◦−→ E and D ◦−→ E for
some term E . We proceed by well-founded induction on the
amount of overlap between the proof terms� and �. The case
where� and � do not overlap is straightforward since taking
the residuals � / � and � /� immediately yields the desired
result. A proof sketch of the overlapping case is depicted
in Figure 3, which goes back to van Oostrom [29, 30]. Here

199

http://informatik-protem.uibk.ac.at/cpp2023/
http://cl-informatik.uibk.ac.at/isafor
http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.mstep_diamond%7Cthm

CPP ’23, January 16–17, 2023, Boston, MA, USA Christina Kohl and Aart Middeldorp

h(f (g(G), g(~)))

h(f (g(G), g(G))) h(f (g(G), g(g(G))))

#

1

"
n

h(f (G, g(a)))

h(f (G, g(b))) h(f (G, g(G)))

$

12

"
n

f (g(a), ~)

f (g(b), ~) f (g(a), g(a))

$

1

#

n

Figure 1. The critical peaks of R1.

·

· ·

·

∗ ∗

∗ ∗

·

· ·

·

Figure 2. Con�uence and the diamond property.

terms are represented as triangles. The redexes contracted by
� are marked as red triangles inside the term B , the redexes
contracted by � are marked as green triangles. In the picture
the red and green triangles overlap at several positions. In
such a case we can select an innermost overlap consisting of
a step B → C ′ witnessed by proof term Δ1 and a step B → D′

witnessed by Δ2. In the picture this is indicated by the small
shaded red and green triangles. We then use the fact that
the TRS is development closed to close this overlap with
some proof term � , represented by the solid black triangles
in the picture. Using � and some additional operations on
proof terms we can construct the proof terms � / Δ1 and
�⊔(�−Δ2) /Δ1 witnessing C

′ ◦−→ C and C ′ ◦−→ D respectively.
Finally we need to show that the overlap between these new
proof terms is less than between � and � to be able to apply
the induction hypothesis.

The key ingredients for the proof are operations on proof
terms and their properties as well as measuring the amount
of overlap and the notion of an innermost overlap between�
and �. Another important ingredient, which is missing from
[29, 30], is the uni�cation of linear and variable disjoint terms.
This is used to obtain the closing step � for the innermost
overlap. All of these concepts will be covered in detail in the
next sections. We then return to the proof of Theorem 4.2 in
Section 7.

5 Proof Terms

Proof terms represent computations in term rewriting. They
were introduced by van Oostrom and de Vrijer for �rst-order
left-linear rewrite systems to study equivalence of reductions
in [31] and [27, Chapter 8].
Proof terms are built from function symbols, variables,

and rule symbols. Rule symbols represent rewrite rules and
have a �xed arity which is the number of di�erent variables
in the represented rule. In this way we can represent any
multi-step as a proof term. The special case of a proof term

with only one rule symbol corresponds to a single step and a
proof term without any rule symbols denotes an empty step.
We use Greek letters (U, V,W, . . .) for rule symbols and

uppercase letters (�, �,�, . . .) for proof terms. If U is a rule
symbol then lhs(U) (rhs(U)) denotes the left-hand (right-
hand) side of the rewrite rule denoted by U . Furthermore
var(U) = var(lhs(U)) and similarly vpos(U) = vpos(lhs(U)).
The length of this list is the arity of U . Given a rule symbol
U with var(U) = (G1, . . . , G=) and terms C1, . . . , C= , we write
⟨C1, . . . , C=⟩U for the substitution {G8 ↦→ C8 | 1 ⩽ 8 ⩽ = }.
Given a proof term�, its source src(�) and target tgt(�) are
computed by the following clauses:

src(G) = tgt(G) = G

src(5 (�1, . . . , �=)) = 5 (src(�1), . . . , src(�=))

src(U (�1, . . . , �=)) = lhs(U)⟨src(�1), . . . , src(�=)⟩U

tgt(5 (�1, . . . , �=)) = 5 (tgt(�1), . . . , tgt(�=))

tgt(U (�1, . . . , �=)) = rhs(U)⟨tgt(�1), . . . , tgt(�=)⟩U

The proof term � is a witness of the multi-step src(�) ◦−→

tgt(�). For every multi-step there exists a proof term wit-
nessing it. Proof terms � and � are said to be co-initial if
they have the same source. The following example illustrates
these concepts.

Example 5.1. Consider again the TRS R1 of Example 2.1
and the proof terms

� = " ($, a) � = h(# (a,$))

� and � represent the multi-steps

src(�) = h(f (g(a), g(a))) ◦−→ h(f (g(b), g(g(b)))) = tgt(�)

src(�) = h(f (g(a), g(a))) ◦−→ h(f (g(a), g(a))) = tgt(�)

The proof terms � and � are co-initial since they have the
same source.

Example 5.2. The critical peaks in Figure 1 are closed by
the proof terms

" (g(G), G) " (G, b) # (%, ~)

con�rming the development closedness of the TRS R1 of
Example 2.1.

In the setting of left-linear TRSs we can extend the de�ni-
tion of src to contexts of proof terms by adding the clause
src(□) = □. Doing the same for tgt or for arbitrary TRSs
however could lead to more than one hole appearing in the
computation. The following result is an easy consequence
of the idempotence of src and tgt.

200

A Formalization of the Development Closedness Criterion for Le�-Linear Term Rewrite Systems CPP ’23, January 16–17, 2023, Boston, MA, USA

C

C ′

B

D′

D

induction
hypothesis

Δ1

� / Δ1

Δ2 � / Δ2

�

� ⊔
((�
− Δ2
) / Δ

1
)

Figure 3. Picture for the step case in the proof of Theorem 4.2 (with proof terms).

Lemma 5.3. For any substitution f , proof term context� , and

proof term � we have

src(�f) = src(src(�)f)

tgt(�f) = tgt(tgt(�)f)

src(� [�]) = src(� [src(�)]) = src(�) [src(�)])

tgt(� [�]) = tgt(� [tgt(�)]) □

For co-initial proof terms � and � we can de�ne partial
operations residual (/), join (⊔), and deletion (−). The residual
� / � is used to compute which redexes in � remain after
contracting the redexes of �, � ⊔ � is used to obtain a single
proof term containing all redexes of� and �, and�−� is used
to delete the redexes of � from �. The binary orthogonality

predicate (⊥) determines whether the redexes of two proof
terms interfere with each other.

De�nition 5.4. Let � and � be proof terms. The orthogo-
nality predicate � ⊥ �, the join operation � ⊔ �, the residual
operation � / �, and the deletion operation � − � are induc-
tively de�ned by the clauses in Table 1. We call � and �

orthogonal if � ⊥ �.

The tool ProTeM4 [14] o�ers support for automatically
calculating these operations and the examples in this paper
were obtained with its help. Note that ProTeM is an experi-
mental tool independent of the Isabelle formalization. It was
developed to help better understand proof terms by imple-
menting operations on proof terms like the ones described

4h�p://informatik-protem.uibk.ac.at/

in [27] and [14]. The main goal of ProTeM is to provide an
intuitive and convenient user interface for quickly doing
computations on examples, such as the ones in this paper.

Example 5.5. Consider again the TRS R1 of Example 2.1.
We have

" (g(a), b) ⊥ h(f ($, g(%)))

" (g(a), a) ̸⊥ h(f (g(a),$))

" (g(a), b) ⊔ h(f ($, g(%))) = " ($, %)

" (g(a), %) / h(f ($, g(%))) = " (g(b), a)

" ($, %) − h(f ($, g(%))) = " (g(a), b)

" (g(a), a) ★ h(f (g(a),$)) is unde�ned for ★ ∈ {⊔, /,−}

We assume that − and / bind stronger than ⊔. Note that ⊔,
/ and − are partial operations. Hence the result of computing
� ⊔ �, � / �, or � − � is not always de�ned. Straightforward
induction proofs on the de�nitions yield the following re-
sults.

Lemma 5.6. If � and � are orthogonal then � / � and � ⊔ �

are de�ned. □

Lemma 5.7. If � / � and � /� are de�ned then

src(� /�) = tgt(�) and tgt(� / �) = tgt(� /�)

If � ★ � is de�ned then

src(� ★ �) = src(�) = src(�)

for ★ ∈ {⊔,−}. □

201

http://informatik-protem.uibk.ac.at/

CPP ’23, January 16–17, 2023, Boston, MA, USA Christina Kohl and Aart Middeldorp

Table 1. Operations on proof terms.

G ⊥ G G ⊔ G = G G / G = G G − G = G

5 (�1, . . . , �=) ⊥ 5 (�1, . . . , �=) ⇐⇒ �8 ⊥ �8 for all 1 ⩽ 8 ⩽ =

U (�1, . . . , �=) ⊥ lhs(U)⟨�1, . . . , �=⟩U ⇐⇒ �8 ⊥ �8 for all 1 ⩽ 8 ⩽ =

lhs(U)⟨�1, . . . , �=⟩U ⊥ U (�1, . . . , �=) ⇐⇒ �8 ⊥ �8 for all 1 ⩽ 8 ⩽ =

5 (�1, . . . , �=) ⊔ 5 (�1, . . . , �=) = 5 (�1 ⊔ �1, . . . , �= ⊔ �=)

U (�1, . . . , �=) ⊔ U (�1, . . . , �=) = U (�1 ⊔ �1, . . . , �= ⊔ �=)

U (�1, . . . , �=) ⊔ lhs(U)⟨�1, . . . , �=⟩U = U (�1 ⊔ �1, . . . , �= ⊔ �=)

lhs(U)⟨�1, . . . , �=⟩U ⊔ U (�1, . . . , �=) = U (�1 ⊔ �1, . . . , �= ⊔ �=)

5 (�1, . . . , �=) / 5 (�1, . . . , �=) = 5 (�1 / �1, . . . , �= / �=)

U (�1, . . . , �=) / U (�1, . . . , �=) = rhs(U)⟨�1 / �1, . . . , �= / �=⟩U
U (�1, . . . , �=) / lhs(U)⟨�1, . . . , �=⟩U = U (�1 / �1, . . . , �= / �=)

lhs(U)⟨�1, . . . , �=⟩U / U (�1, . . . , �=) = rhs(U)⟨�1 / �1, . . . , �= / �=⟩U
5 (�1, . . . , �=) − 5 (�1, . . . , �=) = 5 (�1 − �1, . . . , �= − �=)

U (�1, . . . , �=) − U (�1, . . . , �=) = lhs(U)⟨�1 − �1, . . . , �= − �=⟩U
U (�1, . . . , �=) − lhs(U)⟨�1, . . . , �=⟩U = U (�1 − �1, . . . , �= − �=)

The properties below can be used to compute joins, resid-
uals, and deletions if the proof terms involved adhere to
certain patterns.

Lemma 5.8. Let ★ ∈ {⊔, /,−}.

1. � ★ src(�) = �

2. If � ★ � = � then � [�] ★ src(�) [�] = � [�] for any

proof term context � . ✓

3. If f (G) = src(g (G)) for all G ∈ Var(�) then �f ⊔

src(�)g = �g . ✓

Overlapping Proof Terms. We present an inductive def-
inition for measuring the amount of overlap between co-
initial proof terms. It is based on a special labeling of the
source of a proof term. The following de�nition was intro-
duced in [14].

De�nition 5.9. We write lhs♯ (U) for the result of labeling
every function symbol in lhs(U) withU aswell as the distance
to the root of U :

lhs♯ (U) = i (lhs(U), U, 0)

with i (C, U, 8) = C if C ∈ V and

i (C, U, 8) = 5U8 (i (C1, U, 8 + 1), . . . , i (C=, U, 8 + 1))

if C = 5 (C1, . . . , C=). The mapping src♯ computes the labeled

source of a proof term: src♯ (�) =

� if � ∈ V

5 (src♯ (�1), . . . , src
♯ (�=)) if � = 5 (�1, . . . , �=)

lhs♯ (U)⟨src♯ (�1), . . . , src
♯ (�=)⟩U if � = U (�1, . . . , �=)

The function ℓ extracts labels from function symbols: ℓ (5U=) =

U= . The set of labeled positions for a proof term � is de�ned
as

Pos! (�) = {? ∈ Pos(src
♯ (�)) | ℓ (src♯ (�) (?)) is de�ned}

h

f

g g

a a

W

V

W

U

Figure 4. The redexes of � (red) and � (blue).

Example 5.10. Consider again the TRS R1 and the proof
terms � and � of Example 5.1. A graphical representation of
the redexes of � and � is depicted in Figure 4. We have

src♯ (�) = h" 0 (f" 1 (g$ 0 (a$ 1), g" 2 (a)))

ℓ (src♯ (�) (1)) = ℓ (f" 1) = " 1

Pos! (�) = {n, 1, 11, 12, 111}

For the proof term � we have

src♯ (�) = h(f#0 (g#1 (a), g$ 0 (a$ 1)))

Pos! (�) = {1, 11, 12, 121}

Note that ℓ (src♯ (�) (n)) and ℓ (h) are unde�ned.

By de�nition every label U= occurring at position ? in
a labeled source must be nested below = function symbols
which are labeled U=−1, . . . , U0.

Lemma 5.11. If ℓ (src♯ (�) (?)) = U= then = ⩽ |? | and for all

@ ∈ PosF (src
♯ (�)) with @ ⩽ ? and |?\@ | ⩽ = we have

ℓ (src♯ (�) (@)) = U=−|?\@ | ✓

Corollary 5.12. For all ? ∈ Pos! (�) with ℓ (src♯ (�) (?)) =

U= there exists a position @ ∈ Pos! (�) such that |?\@ | = =

and ℓ (src♯ (�) (@)) = U0. □

202

http://informatik-protem.uibk.ac.at/cpp2023/html/Proof_Terms/Residual_Join_Deletion.html#Residual_Join_Deletion.apply_f_ctxt%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/Proof_Terms/Residual_Join_Deletion.html#Residual_Join_Deletion.join_subst%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/Proof_Terms/Labels_and_Overlaps.html#Labels_and_Overlaps.label_decrease%7Cthm

A Formalization of the Development Closedness Criterion for Le�-Linear Term Rewrite Systems CPP ’23, January 16–17, 2023, Boston, MA, USA

Lemma 5.13. Given a proof term� and a position ? ∈ src(�)

such that ℓ (src♯ (�) (?)) = U0, there exists a unique position

?U ∈ Pos(�) such that � = �[U (. . .)]?U and src(�) []? =

src(�[]?U). ✓

Considering the labeled positions in src♯ (�) we can split
the proof term � into a term C without any rule symbols and
a substitution d mapping the variables of C to proof terms
(possibly containing rule symbols) such that � = Cd .

Lemma 5.14. Let src(�) = Cf for some linear term C with

variables G1, . . . , G= at positions ?1, . . . , ?= and some substitu-

tion f . If ? ∈ Pos! (�) for no ? ∈ PosF (C) then � = Cd with

d = {G8 ↦→ �|?8 | 1 ⩽ 8 ⩽ = }. ✓

De�nition 5.15. For co-initial proof terms � and � we use

the number of positions that are labeled in both src♯ (�) and

src♯ (�) as a measure for the amount of overlap between �

and �:

▲(�, �) = |Pos! (�) ∩ Pos! (�) |

Lemma 5.16. For co-initial proof terms � and �

� ⊥ � ⇐⇒ ▲(�, �) = 0 □

To extract an innermost overlap, �rst we collect all pairs
of overlapping redexes in co-initial proof terms.

De�nition 5.17. For co-initial proof terms � and � the set
overlaps(�, �) consists of all pairs (?, @) of function symbol
positions in the common source B of � and � such that

(i) ℓ (src♯ (�) (?)) = U0, ℓ (src♯ (�) (@)) = V0, and

(ii) either ? ⩽ @ and ℓ (src♯ (�) (@)) = U |@\? | or @ < ? and

ℓ (src♯ (�) (?)) = V |?\@ |

or some rule symbols U and V .

The condition ℓ (src♯ (�) (@)) = U |@\? | in the �rst case of
the above de�nition ensures that @\? is a position in lhs(U)

and likewise for the second case.

Lemma 5.18. For co-initial proof terms � and �

overlaps(�, �) = ∅ ⇐⇒ ▲(�, �) = 0 □

De�nition 5.19. With each overlap (?, @) ∈ overlaps(�, �)

where ℓ (src♯ (�) (?)) = U0 and ℓ (src♯ (�) (@)) = V0 we as-
sociate proof terms Δ1 and Δ2 corresponding to the two
overlapping redexes in the common source B of � and �:

Δ1 ≔ B [U (B1, . . . , B=)]? where lhs(U)⟨B1, . . . , B=⟩U = B |?

Δ2 ≔ B [V (C1, . . . , C<)]@ where lhs(V)⟨C1, . . . , C<⟩V = B |@

For left-linear rules U and V with vpos(U) = (?1, . . . , ?=)

and vpos(V) = (@1, . . . , @<) we can write this more concisely
as

Δ1 = B [U (B |??1 , . . . , B |??=)]?

Δ2 = B [V (B |@@1 , . . . , B |@@<)]@

Next we de�ne the notion of innermost overlap.

De�nition 5.20. We de�ne the following order on overlaps:

(?1, @1) ⩽ (?2, @2) ⇐⇒ ?1 ⩽ ?2 and @1 ⩽ @2

An innermost overlap of co-initial proof terms � and � is a
maximal element in overlaps(�, �) with respect to ⩽.

Example 5.21. Consider again the proof terms � and �

of Example 5.1. From computing Pos! (�) and Pos! (�) in
Example 5.10 we see that the source terms have overlap at
positions 1, 11, and 12. Hence ▲(�, �) = 3. Computing the
overlaps explicitly results in

overlaps(�, �) = { (n, 1), (n, 12), (11, 1), }

This situation is depicted in Figure 4. Both (11, 1) and (n, 12)
are innermost overlaps. For (11, 1) we have

Δ1 = h(f ($, g(a))) Δ2 = h(# (a, g(a)))

Note that it is not always the case that ▲(�, �) is the same
as |overlaps(�, �) |, since the same overlap can contribute to
several overlapping positions in the source. Only the relation
of Lemma 5.18 and the inequality▲(�, �) ⩾ |overlaps(�, �) |
hold in general.

Remark. There is more than one sensible de�nition of
innermost overlap. We also considered taking the following
ordering on overlaps instead of the one in De�nition 5.20:
(?1, @1) ⩽ (?2, @2) if either min(?1, @1) < min(?2, @2), or
min(?1, @1) = min(?2, @2) and max(?1, @1) < max(?2, @2).
Using that alternative ordering, only the overlap (n, 12) of
Example 5.21 would be innermost. Both orders are suitable
for proving Theorem 4.2 later on and we tried both options
in the formalization. In the end we chose De�nition 5.20
since it is slightly simpler.

6 Uni�cation of Linear Variable-Disjoint
Terms

In order to extract the critical pair underlying an overlap
(?, @) between proof terms � and �, a most general uni�er
(mgu) of the left-hand sides of the involved rules needs to
be computed. Due to left-linearity of the underlying TRS
this is relatively straightforward since computing an mgu
for linear terms that do not share variables is an especially
easy instance of the uni�cation problem.

De�nition 6.1. For linear terms B and C without common
variables, let vpos(B) = (?1, . . . , ?=), var(B) = (G1, . . . , G=),
vpos(C) = (@1, . . . , @<), and var(C) = (~1, . . . , ~<). The sub-
stitution g (B, C) is de�ned as follows:

g (B, C) = {G8 ↦→ C |?8 | 1 ⩽ 8 ⩽ = and ?8 ∈ Pos(C) }

∪ {~ 9 ↦→ B |@ 9
| 1 ⩽ 9 ⩽ < and @ 9 ∈ PosF (B) }

For a set of equations � = {B1 ≈ C1, . . . , B: ≈ C: } with linear
and pairwise variable-disjoint terms, we denote the union
g (B1, C1) ∪ · · · ∪ g (B: , C:) by g (�).

203

http://informatik-protem.uibk.ac.at/cpp2023/html/Proof_Terms/Labels_and_Overlaps.html#Labels_and_Overlaps.poss_labeled_source%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/Proof_Terms/Labels_and_Overlaps.html#Labels_and_Overlaps.pterm_source_substitution%7Cthm

CPP ’23, January 16–17, 2023, Boston, MA, USA Christina Kohl and Aart Middeldorp

Lemma 6.2. If B and C are uni�able and linear terms without

common variables then g (B, C) is an idempotent mgu of B and

C . ✓

Proof. Let � = {B1 ≈ C1, . . . , B: ≈ C: }with linear and pairwise
variable-disjoint terms B1, . . . , B: , C1, . . . , C: and let (be a set
of variable bindings {I8 ↦→ D1, . . . , I; ↦→ D; } such that

{I1, . . . , I; } ∩ Var(B1, . . . , B: , C1, . . . , C:) = ∅

We show by induction over the de�nition of the uni�cation
algorithm [5, Chapter 4]5 that a derivation

�, (=⇒ · · · =⇒ ∅, (′

results in a set of variable bindings of the shape

(′ = (∪ g (�)

The base case of the induction is � = ∅ in which case we
immediately obtain (′ = (= (∪ g (∅) as result. There are
three step cases to consider from the uni�cation algorithm:

Decompose. For a decomposition step

{ 5 (B′
1
, . . . , B′=) ≈ 5 (C ′

1
, . . . , C ′=) } ⊎ �

′, (

=⇒ {B′
1
≈ C ′

1
, . . . , B′= ≈ C

′
= } ∪ �

′, (

the induction hypothesis yields

(′ = (∪

=⋃

8=1

g (B′8 , C
′
8) ∪ g (�

′)

Since
=⋃

8=1

g (B′8 , C
′
8) = g (5 (B′

1
, . . . , B′=), 5 (C

′
1
, . . . , C ′=))

we obtain the desired (′ = (∪ g (�).

Eliminate (le� to right). For an equation G ≈ C ∈ �

we know that G ≠ C by assumption. Consider the variable
elimination step

{G ≈ C } ⊎ �′, (=⇒ �′f, (f ∪ {G ↦→ C }

where f = {G ↦→ C }. We have �′f = �′ and (f ∪ {G ↦→

C } = (∪ {G ↦→ C } since all variables appearing in �′ and (
are distinct from G by assumption. Moreover the induction
hypothesis yields (′ = (∪ {G ↦→ C } ∪ g (�′). The de�nition
of g ensures the equality (∪ {G ↦→ C } ∪ g (�′) = (∪ g (�).

Eliminate (right to le�). For an equation B ≈ ~ ∈ � we
again know B ≠ ~ by assumption. The variable elimination
step

{B ≈ ~ } ⊎ �, (=⇒ �′f, (f ∪ {~ ↦→ B }

with f = {~ ↦→ B } is treated analogously to the preceding
case. Here it is important to note that we may assume that B
is not a variable. Hence the condition @ 9 ∈ PosF (B) in the
de�nition of g takes e�ect. □

5The proof follows the algorithm in Figure 4.5 in [5], which served as a

template for the existing implementation in IsaFoR described in [25].

Example 6.3. Consider the terms B = f (G1, g(G2)) and C =
f (g(~1), ~2). Applying the uni�cation algorithm yields

{B ≈ C },∅

=⇒ {G1 ≈ g(~1), g(G2) ≈ ~2 },∅ (Decomposition)

=⇒ {g(G2) ≈ ~2 }, {G1 ↦→ g(~1) } (Eliminate)

=⇒ ∅, {G1 ↦→ g(~1), ~2 ↦→ g(G2) } (Eliminate)

The substitution {G1 ↦→ g(~1), ~2 ↦→ g(G2) } is exactly g (B, C)
as de�ned in De�nition 6.1.

7 Main Proof

In the following we �rst show how, for each overlap, we
can extract the corresponding critical peak of the underlying
TRS.

De�nition 7.1. Given an overlap> = (?, @) ∈ overlaps(�, �)

with @ ⩽ ? , we let

• U and V be the rule symbols at positions ? and @ in

src(�) and src(�) such that ℓ (src♯ (�) (?)) = U0 and

ℓ (src♯ (�) (@)) = V0,
• B = src(�) = src(�),
• @′ = ?\@,
• vpos(U) = (?1, . . . , ?=) and var(U) = (G1, . . . , G=),
• vpos(V) = (@1, . . . , @<) and var(V) = (~1, . . . , ~<)

• @V ∈ Pos(�) be the position of V in � according to
Lemma 5.13 such that � = � [V (�1, . . . , �<)]@V and
src(�) []@ = src(� []@V)

and assume {G1, . . . , G= } ∩ {~1, . . . , ~< } = ∅ without loss of
generality. We de�ne the substitutions

f> = {G8 ↦→ B |??8 | 1 ⩽ 8 ⩽ = } ∪ {~ 9 ↦→ B |@@ 9
| 1 ⩽ 9 ⩽ < }

g> = g (lhs(U), lhs(V) |@′)

The substitutionf> maps the variables of lhs(U) and lhs(V)
to subterms of B such that lhs(U)f> = B |? and lhs(V)f> = B |@
and g> is an mgu of lhs(U) and lhs(V) |@′ . The key proper-
ties of these substitutions are captured by the following two
lemmata.

Lemma 7.2. For every overlap > = (?, @) ∈ overlaps(�, �)

with @ ⩽ ?

lhs(V) [lhs(U)g>]@′ = lhs(V)g>

lhs(V) [rhs(U)g>]@′ rhs(V)g>

U
@′

V
n

is a critical peak. ✓

Proof. Since U and V both operate on the same source term
B we know that lhs(U) and lhs(V) |@′ are uni�able; simply
take as uni�er the substitution f> . In addition both lhs(U)

and lhs(V) must be linear and hence Lemma 6.2 is applicable
and yields g> as idempotent mgu of lhs(U) and lhs(V) |@′ . In

204

http://informatik-protem.uibk.ac.at/cpp2023/html/Proof_Terms/Utils.html#Utils.mgu_linear_var_disjoint%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.critical_pair%7Cthm

A Formalization of the Development Closedness Criterion for Le�-Linear Term Rewrite Systems CPP ’23, January 16–17, 2023, Boston, MA, USA

addition g> does not replace any variables of lhs(V) that
occur at positions above or parallel to @′. Hence

lhs(V) [lhs(U)]@′g> = lhs(V) [lhs(U)g>]@′ □

Lemma 7.3. For every overlap > = (?, @) ∈ overlaps(�, �)

with @ ⩽ ? we have G8g>f> = B |??8 for 1 ⩽ 8 ⩽ = and ~ 9g>f> =

B |@@ 9
for 1 ⩽ 9 ⩽ <, and hence

B = B [lhs(V)g>f>]@ = B [lhs(U)g>f>]?

= B [lhs(V) [lhs(U)g>]@′f>]@ ✓

Proof. For 1 ⩽ 8 ⩽ = we have G8g>f> = G8f> = B |??8 when
@′?8 ∉ Pos(lhs(V)). If @′?8 ∈ Pos(lhs(V)) then G8g>f> =

lhs(V) |@′?8f> = B |@@′?8 = B |??8 since lhs(V)f> = B |@ . An anal-
ogous inspection yields ~ 9g>f> = B |@@ 9

whenever @ 9\@
′
∉

PosF (lhs(U)) and ~ 9g>f> = lhs(U) |@ 9 \@′f> = B |? (@ 9 \@′) =

B |@@ 9
whenever @ 9\@

′ ∈ PosF (lhs(U)) since lhs(U)f> =

B |? . □

Assuming that the given TRS is development closed, we
know there exists amulti-step lhs(V) [rhs(U)g]@′ ◦−→ rhs(V)g .
In the following the proof term representation of such a
multi-step will be called � ′. Inserting � ′ into a proper con-
text yields a proof term � witnessing the multi-step tgt(Δ1)

◦−→ tgt(Δ2) (C
′ ◦−→ D′ in Figure 3). This is captured by the

following result.

Lemma 7.4. Let > = (?, @) ∈ overlaps(�, �) where @ ⩽

? and de�ne � = B [� ′f>]@ for a proof term � ′ witnessing

lhs(V) [rhs(U)g>]@′ ◦−→ rhs(V)g> . Then � witnesses the multi-

step tgt(Δ1) ◦−→ tgt(Δ2). ✓

Proof. We have

src(�) = src(B [� ′f>]@) = B [src(� ′)f>]@

= B [lhs(V)g> [rhs(U)g>]@′f>]@

= B [lhs(V)g>f> [rhs(U)g>f>]@′]@

= B [B |@ [rhs(U)g>f>]@′]@

= B [rhs(U)⟨B |??1, . . . , B |??= ⟩U]? (7.3)

= tgt(Δ1)

and

tgt(�) = tgt(B [� ′f>]@) = B [tgt(� ′)f>]@

= B [rhs(V)g>f>]@

= B [rhs(V)⟨B |@@1, . . . , B |@@< ⟩V]@ (7.3)

= tgt(Δ2) □

The proof term � can be used to construct the proof term
� ⊔ (� − Δ2) / Δ1 witnessing the multi-step tgt(Δ1) ◦−→

tgt(�) which corresponds to the arrow C ′ ◦−→ D in Figure 3.
To show that the constructed proof term is well-de�ned,
we use another substitution d> , which is similar to f> but
maps to subterms of � while f> maps to the sources of these
proof terms. Recall from De�nition 7.1 that � has the shape
� = � [V (�1, . . . , �<)]@V for some proof terms �1, . . . , �<

and position @V . The purpose of the substitution d> de�ned
below is to reconstruct the arguments of V , i.e., the proof
terms �1, . . . , �< , in the intermediate proof term � ′.

De�nition 7.5. Given an overlap> = (?, @) ∈ overlaps(�, �)

with @ ⩽ ? , let � 9 = � |@V 9 for 1 ⩽ 9 ⩽ <. We de�ne the sub-
stitution

d> = {~ 9 ↦→ � 9 | 1 ⩽ 9 ⩽ < }

∪ {G8 ↦→ lhs(V)⟨�1, . . . , �<⟩V |@′?8 | 1 ⩽ 8 ⩽ = }

Lemma 7.6. If 1 ⩽ 9 ⩽ < then g> (~ 9)d> = � 9 . ✓

Proof. We distinguish two cases: g> (~ 9) = ~ 9 and g> (~ 9) ≠ ~ 9 .
In the �rst case we immediately obtain g> (~ 9)d> = d> (~ 9) =

� 9 from the de�nition of d> . For the second case we �rst

verify that src♯ (lhs(V)⟨�1, . . . , �<⟩V |@′) (?
′) is unlabeled for

?′ ∈ PosF (lhs(U)). This relies on the fact that having a la-
beled function symbol at such a position ?′ would contradict
the assumption that (?, @) is an innermost overlap of � and
�. Then it follows from the second part of the de�nition of
d> and Lemma 5.14 that

lhs(U)d> = lhs(V)⟨�1, . . . , �<⟩V |@′ (∗)

Subsequently we obtain

g> (~ 9)d> = lhs(U) |@ 9 \@′d> (de�nition of g>)

= (lhs(V)⟨�1, . . . , �<⟩V |@′) |@ 9 \@′ (by ∗)

= lhs(V)⟨�1, . . . , �<⟩V |@ 9

= � 9 □

Lemma 7.7. Let > = (?, @) ∈ overlaps(�, �) be an innermost

overlap where @ ⩽ ? and de�ne � as in Lemma 7.4. Then

1. � ⊔ (� − Δ2) / Δ1 = � [� ′d>]@V ✓

2. � ⊔ (� − Δ2) / Δ1 witnesses tgt(Δ1) ◦−→ tgt(�) ✓✓

Proof. Since src(� []@V) = B []@ , Lemma 5.8(2) is applicable
to compute � − Δ2:

� − Δ2 = � [lhs(V)⟨�1, . . . , �<⟩V]@V (5.8(2))

= � [lhs(V)g>d>]@V (7.6)

= � [lhs(V) [lhs(U)g>]@′d>]@V (7.2)

Since src(� [lhs(V) []@′d>]@V) = B []? , another application
of Lemma 5.8(2) yields

(� − Δ2) / Δ1 = � [lhs(V) [rhs(U)g>]@′d>]@V

From Lemma 5.8(3) we obtain

� ′f> ⊔ lhs(V) [rhs(U)g>]@′d> = � ′d>

and since � = B [� ′f>]@ we can apply Lemma 5.8(2) (modulo
symmetry of ⊔) to obtain the desired

� ⊔ (� − Δ2) / Δ1 = � [� ′d>]@V

From Lemmata 5.7 and 7.4 we obtain

src((� − Δ2) / Δ1) = tgt(Δ1) = src(�)

205

http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.sigma_tau_vars%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.source_target_D%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.apply_tau_o_rho_o%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.join_D_B'%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.source_join_D_B'%7Cthm
http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.target_join_D_B'%7Cthm

CPP ’23, January 16–17, 2023, Boston, MA, USA Christina Kohl and Aart Middeldorp

and hence

src(� ⊔ (� − Δ2) / Δ1) = tgt(Δ1)

It remains to show tgt(� ⊔ (� −Δ2) /Δ1) = tgt(�). We have

tgt(� [� ′d>]@V)

= tgt(� [tgt(rhs(V)g>d>)]@V) (5.3)

= tgt(� [tgt(rhs(V)⟨�1, . . . , �<⟩V)]@V) (7.6)

= tgt(� [V (�1, . . . , �<)]@V) (5.3)

= tgt(�) □

Lemma 7.8. Let > = (?, @) ∈ overlaps(�, �) be an innermost

overlap where @ ⩽ ? and de�ne � as in Lemma 7.4. Then

▲(� / Δ1, � ⊔ (� − Δ2) / Δ1) < ▲(�, �) ✓

Proof (sketch). The proof is structured in three main parts
corresponding to the equations (1)–(3) below. We �rst show

A ∈ Pos! (� / Δ1) ∩ Pos! (� [�
′d>]@V)

=⇒ A < ? ∨ A ∥ ? (1)

The proof proceeds by assuming ? ⩽ A and deriving a contra-
diction. This requires a lengthy case analysis on the position
A and was one of the main challenges of the formalization.
The implication (1) immediately yields

? ∉ Pos! (� / Δ1) ∩ Pos! (� [�
′d>]@V) (2)

The implication (1) can moreover be used to obtain

A ∈ Pos! (� / Δ1) ∩ Pos! (� [�
′d>]@V)

=⇒ A ∈ Pos! (�) ∩ Pos! (�) (3)

The �rst part A ∈ Pos! (�) follows immediately from (1).
Showing A ∈ Pos! (� [�

′d>]@V) requires another tedious
case analysis on A—the most di�cult part being the case
where A occurs below @. Finally we conclude

▲(� / Δ1, � [�
′d>]@V) < ▲(�, �)

since there is at least one overlap less on the left-hand side,
i.e., the overlap at position ? . □

Example 7.9. We continue our running example and as in
Example 5.21 select as innermost overlap > = (?, @) between
� and � the overlap (11, 1) involving rule symbols $ and # .
Hence @′ = 1 and

f> = {G ↦→ a, ~ ↦→ g(a) }

g> = {G ↦→ a}

d> = {G ↦→ a, ~ ↦→ $ }

We obtain the critical peak

f (g(b), ~)
$
←− f (g(a), ~)

#
−→ f (g(a), g(a))

which can be closed by a multi-step represented by the proof
term � ′ = # (%, ~) and hence � = h(# (%, g(a))). The posi-
tion of rule symbol V in � is @V = 1 and the proof term

� ⊔ (� − Δ2) / Δ1 = � [� ′d>]@V = h(# (%,$))

witnesses the multi-step

tgt(Δ1) = h(f (g(b), g(a))) ◦−→ h(f (g(a), g(a))) = tgt(�)

We have

src♯ (� / Δ1) = h" 0 (f" 1 (g(b), g" 2 (a)))

src♯ (� [� ′d>]@V) = h(f#0 (g#1 (b%0), g$ 0 (a$ 1)))

and hence

▲(� / Δ1, � [�
′d>]@V) = 2 < 3 = ▲(�, �)

The following two examples illustrate the need for select-
ing an innermost overlap in the preceding lemmata. The �rst
example shows that the residual (� − Δ2) / Δ1 is not always
de�ned for overlaps that are not innermost. The second exam-
ple shows that even if we could come up with a di�erent way
of constructing some closing step � for tgt(Δ1) ◦−→ tgt(�)

we may run into the problem of ▲(� / Δ1,�) not being
smaller than ▲(�, �).

Example 7.10. We can observe the e�ect of selecting the
non-innermost overlap (n, 1) in our running example. Since
we require @ ⩽ ? for the selected overlap (?, @) we need to
swap � and � in this case. Furthermore we need to rename
the variables in rules U and V to make them distinct. So we
consider the TRS

" h(f (G1, g(G2))) → h(f (G1, g(G1))) $ g(a) → g(b)

f (g(~1), ~2) → f (g(~1), g(~1)) % b→ a

and the proof terms

� = h(# (a,$)) � = " ($, a)

with non-innermost overlap (1, n). We obtain

Δ1 = h(# (a, g(a)))

Δ2 = " (g(a), a)

� − Δ2 = h(f ($, g(a)))

The term lhs(V) does not match �−Δ2 and hence (�−Δ2)/Δ1

is unde�ned.Moreover the substitution d> is not well-de�ned
and there does not exist any substitution d such that

lhs(#)d = lhs(")⟨$, a⟩" |@′ = f ($, a)

as required by Lemma 7.6 since the rule symbol $ is in the
way.

Example 7.11. The left-linear TRS R2 consisting of the
rewrite rules

" f (G) → g(G, G) # a→ b % b→ c

$ a→ c 9 c→ b

is development closed since the only critical pair 1 ≈ 2 aris-
ing from the root overlap between # and $ can be closed in
both directions by % and 9 respectively. Consider the proof
terms � = " (#) and � = " ($). We have overlaps(�, �) =
{ (n, n), (1, 1) } and▲(�, �) = 2. By selecting the �rst overlap—
which is not innermost—we obtain Δ1 = Δ2 = " (a). Then

206

http://informatik-protem.uibk.ac.at/cpp2023/html/CR/Development_Closed.html#Development_Closed.innermost_overlap.measure_dec%7Cthm

A Formalization of the Development Closedness Criterion for Le�-Linear Term Rewrite Systems CPP ’23, January 16–17, 2023, Boston, MA, USA

� ′g(G, G) and � = g(a, a) and therefore � ⊔ (� − Δ2) /

Δ1 = g($,$). Since � / Δ1 = g(#, #) the amount of overlap
▲(� / Δ1, � ⊔ (� − Δ2) / Δ1) is again 2 since # and $ have
been duplicated by the application of " .

We are now ready to prove our main theorem.

Proof of Theorem 4.2. Assume C ◦←− B ◦−→ D and let � be a
proof term representing B ◦−→ C and let � be a proof term
representing B ◦−→ D. We show C ◦−→ E ◦←− D for some term E

bywell-founded induction on the amount of overlap between
� and �. If ▲(�, �) = 0 then � ⊥ � (Lemmata 5.18 and 5.16)
and hence � / � and � /� are well-de�ned (Lemma 5.6) and
represent the multi-steps C ◦−→ tgt(�/�) andD ◦−→ tgt(�/�)

respectively. Since tgt(� / �) = tgt(� / �) by Lemma 5.7
this proves the base case of the induction. If ▲(�, �) > 0

then overlaps(�, �) ≠ ∅ and we can select an innermost
overlap (?, @) and assume without loss of generality that
@ ⩽ ? . Then we can apply the construction of Lemma 7.7.
Therefore we obtain proof terms� /Δ1 and � ⊔ (�−Δ2) /Δ1

such that tgt(� / Δ1) = tgt(�) and tgt(� ⊔ (� − Δ2) / Δ1) =

tgt(�). The induction hypothesis can now be applied since
▲(� / Δ1, � ⊔ (� − Δ2) / Δ1) < ▲(�, �) by Lemma 7.8 and
yields multi-steps C ◦−→ E andD ◦−→ E for some common term
E . □

8 Formalization Details

We have integrated our formalization into IsaFoR, the Isabelle
Formalization of Rewriting. This is an Isabelle/HOL library
containing many useful results about �rst-order terms, sub-
stitutions, and contexts as well as numerous abstract results
and concrete techniques from the term rewriting literature.
Our new contributions consist of formalizing the operations
on proof terms and labeling of the source of a proof term, as
well as proving that the construction described in Section 7
does indeed yield a formal proof of the correctness of the
development closedness criterion for inferring con�uence.
Of course this also includes the numerous smaller lemmata
introduced in the previous sections and therefore has led to
an extension of IsaFoR by more than 10000 new lines of code,
including 300 new facts and 30 new de�nitions.
We have extended IsaFoR with a subfolder (and corre-

sponding session) Proof_Terms which consists of the fol-
lowing �les:

Utils.thy This �le contains small useful results that are
used in the formalization but are not necessarily re-
lated to proof terms or the con�uence proof. This in-
volves for example lemmata about variables, positions,
substitutions, and contexts. It also contains the proof
of Lemma 6.2 about uni�cation of linear terms.

Proof_Terms.thy This �le contains the datatype for proof
terms and the de�nition of a notion of well-de�ned
proof terms over a given TRS. We provide more details
about these de�nitions below. The �le also contains

de�nitions of the functions src and tgt and the proof
of the correspondence between multi-steps and proof
terms.

Residual_Join_Deletion.thy As the name suggests, this
�le contains de�nitions of the three partial operations
/, ⊔ and − on proof terms. It also contains proofs that
these operations ful�ll Lemma 5.8 as well as various
other properties of these operations, like for example
the symmetry of ⊔.

Orthogonal_PT.thy This �le contains the de�nition of the
orthogonality predicate (⊥) and the proofs that � / �
and�⊔� arewell-de�nedwhenever� ⊥ � (Lemma 5.6).

Labels_and_Overlaps.thy This is by far the largest of the
�ve �les in this folder. Here we �rst de�ne the type
of a labeled term and the function that computes the
labeled source of a proof term. Then we prove several

properties of src♯ (�) (e.g. Lemma 5.11). Finally the
�le also contains the de�nition of the measure func-
tion ▲(�, �) and the function overlaps(�, �) as well
as properties of these functions and the connections
overlaps(�, �) = ∅ ⇐⇒ measure(�, �) = 0 ⇐⇒

� ⊥ � (Lemmata 5.16 and 5.18).

In addition we added the �le Development_Closed.thy in-
side Confluence_and_Completion. That �le contains the
proof of Theorem 4.2 as outlined in the previous section.

In the following we discuss some interesting details of the
formalization. Proof terms are de�ned as an extension of
�rst order terms:

type_synonym

(’f, ’v) pterm = "((’f, ’v) prule + ’f, ’v) term"

Since proof terms are now essentially de�ned as terms, where
function symbols are either rewrite rules of type (’f, ’v)

prule or the usual function symbols of type ’f, we can reuse
all existing results about �rst-order terms. This is especially
useful when dealing with substitutions and contexts of proof
terms. To increase readability when dealing with instances of
this sum type, which usually requires writing Inl and Inr for
the two options, we introduced the following abbreviations:

abbreviation Prule

where "Prule U As ≡ Fun (Inl U) As"

abbreviation Pfun

where "Pfun f As ≡ Fun (Inr f) As"

We use the predicate wf_pterm ' to check whether the cor-
rect number of arguments is provided for rule symbols and
whether all rule symbols belong to a certain TRS '.

inductive_set wf_pterm for R where

"Var x ∈ wf_pterm R"

| "∀t ∈ set ts. t ∈ wf_pterm R =⇒

Pfun f ts ∈ wf_pterm R"

| "(lhs U, rhs U) ∈ R =⇒

length As = length (var_rule U) =⇒

∀a ∈ set As. a ∈ wf_pterm R =⇒

Prule U As ∈ wf_pterm R"

207

CPP ’23, January 16–17, 2023, Boston, MA, USA Christina Kohl and Aart Middeldorp

9 Integration into CeTA

The tool CeTA [20] is a certi�er for, among other proper-
ties, (non-)con�uence of rewrite systems with and without
conditions. It can check certi�cates for con�uence in CPF
(certi�cation problem format) [26] as generated by tools like
CSI [17] and ACP [4]. All techniques veri�ed by CeTA are
proved in IsaFoR. To be precise, IsaFoR contains executable
“check”-functions for each formalized proof technique to-
gether with proofs that whenever such a check is accepted,
the technique is applied correctly and yields the correct re-
sult. CeTA is then obtained via code-generation directly from
the Isabelle formalization. A graphical representation of the
relation between IsaFoR and CeTA is shown in Figure 5. In
order to implement the development closedness technique
in CeTA we had to perform the following steps:

1. Provide a formal proof of Theorem 4.2 in Isabelle/HOL
by extending the existing IsaFoR library.

2. Decide on an appropriate extension of the CPF and
extend the parser for CeTA accordingly.

3. Provide an executable check function in IsaFoR that
checks the conditions for development closed TRSs.

The most di�cult step was proving Theorem 4.2 in IsaFoR.
Our approach to the formalization has been extensively de-
scribed in the previous sections. For extending the CPF we
looked at the existing implementation of the parallel closed-
ness condition [19] and modeled development closedness
in an analogous fashion. This means that a CPF proof for
development closedness simply consists of the given TRS
together with the claim that it is development closed. Since
CeTA together with its parser is obtained via code generation
from IsaFoR, changing the parser to accept such certi�cates
means changing the corresponding IsaFoR code. When CeTA

reads a certi�cate it needs to check whether the claims in
it are correct. For this purpose we provided an executable
function in IsaFoR that takes as input a TRS R and veri�es
all conditions of development closedness. So it �rst checks
whether the TRS ful�lls the variable conditions that lhs(U)
is not a variable and Var(rhs(U)) ⊆ Var(lhs(U)) for all
U ∈ R. Then it checks whether R is left-linear. Finally the
function computes all critical pairs B ≈ C of R and checks
whether there exists a multi-step B ◦−→R C for each of them. A
function for computing all critical pairs of R already existed
in IsaFoR since this is also needed for many other con�uence
results based on critical pair criteria. An executable function
for checking whether there exists a multi-step B ◦−→R C be-
tween arbitrary terms B and C was not yet present and had
to be implemented by us.

To test this new extension of CeTA we used the con�uence
tool CSI[17] where the development closedness criterion was
already implemented. Only a small adaptation of CSI’s certi�-
cate output was necessary6 in order to certify its output. We

6Per default CSI always applied the more general almost development closed

criterion. Since CeTA does not yet incorporate this extension, we had to

then tested CeTA together with CSI on the COPS database.7

We did not observe a signi�cant increase in the number of
certi�able con�uence proofs on this database. This is likely
due to the already powerful certi�ed strategy implemented
in CSI (e.g., incorporating redundant rules). We expect how-
ever that some extensions of the development closedness
criterion (as mentioned in the next section) may yield more
certi�able proofs in the future.

10 Conclusion and Future Work

The development-closed criterion for left-linear TRSs by van
Oostrom [30] is easy to state. It is also easy to automate and
several con�uence tools support it. It is not easy to formalize
in a proof assistant. In this paper we presented the �rst for-
malization in Isabelle/HOL. The formalized proof is roughly
based on the picture proof in [29, 30] but several obstacles
had to be overcome. We obtained several formalized results
on proof terms, which may bene�t future formalizations (e.g.
[31]).
There are a number of extensions of the development-

closed criterion for con�uence which are worthwhile to for-
malize since they will reduce the gap between the number
of YES/NO answers by con�uence tools and the number of
certi�ed YES/NO answers on COPS problems. At the time of
writing, con�uence tools deliver 503 YES/NO answers8 for
the 562 TRSs in COPS, of which 375 are veri�ed by CETA.9

The extensions include

• the almost development-closed criterion [29], in which
the joinability requirement of critical peaks stemming
from overlapping rules at the root is relaxed,
• commutation by relative termination [10, Theorems 3.2
and 4.3], in which (certain) critical steps are required
to be terminating with regard to the original rewrite
rules,
• hot-decreasing as well as critical pair closing systems
[11, Theorems 2 and 3].

Especially the latter one is expected to reduce the certi�ca-
tion gap signi�cantly. Extending the formalization to higher-
order pattern rewrite systems will be a formidable task since
IsaFoR o�ers no support for higher-order terms.

Acknowledgments

This research was funded in part by the Austrian Science
Fund (FWF) project I5943. The authors would like to thank
Julian Nagele for starting the formalization of proof terms
back in 2014 and René Thiemann for valuable input con-
cerning Isabelle, especially on how to deal with conditional

di�erentiate between development closed and almost development closed

systems.
7h�p://cops.uibk.ac.at/
8h�p://cops.uibk.ac.at/results/?y=2021-full-run&c=TRS
9h�p://cops.uibk.ac.at/results/?y=2021-full-run&c=CPF-TRS

208

http://cops.uibk.ac.at/
http://cops.uibk.ac.at/results/?y=2021-full-run&c=TRS
http://cops.uibk.ac.at/results/?y=2021-full-run&c=CPF-TRS

A Formalization of the Development Closedness Criterion for Le�-Linear Term Rewrite Systems CPP ’23, January 16–17, 2023, Boston, MA, USA

con�uence criterion

IsaFoR

proof

Isabelle/HOL

con�uence tool
(e.g. CSI)

CeTA

TRS

accept/reject

implementation

code generation

CPF certi�cateformalization certi�cation

Figure 5. Schematic of the interaction between IsaFoR, con�uence tools, and CeTA. Adapted from [18].

code equations. The valuable feedback of the anonymous
reviewers improved the presentation.

References
[1] Takahito Aoto. 2010. Automated Con�uence Proof by Decreasing Dia-

grams based on Rule-Labelling. In Proc. 21st International Conference

on Rewriting Techniques and Applications (LIPIcs, Vol. 6), Christopher

Lynch (Ed.). 7–16. h�ps://doi.org/10.4230/LIPIcs.RTA.2010.7

[2] Takahito Aoto. 2013. Disproving Con�uence of Term Rewriting Sys-

tems by Interpretation and Ordering. In Proc. 9th International Sym-

posium on Frontiers of Combining Systems (LNCS, Vol. 8152), Pascal

Fontaine, Christophe Ringeissen, and Renate A. Schmidt (Eds.). 311–

326. h�ps://doi.org/10.1007/978-3-642-40885-4_22

[3] Takahito Aoto and Yoshihito Toyama. 2012. A Reduction-Preserving

Completion for Proving Con�uence of Non-Terminating Term Rewrit-

ing Systems. Logical Methods in Computer Science 8, 1 (2012), 1–29.

h�ps://doi.org/10.2168/LMCS-8(1:31)2012

[4] Takahito Aoto, Junichi Yoshida, and Yoshihito Toyama. 2009. Proving

Con�uence of Term Rewriting Systems Automatically. In Proc. 20th In-

ternational Conference on Rewriting Techniques and Applications (LNCS,

Vol. 5595), Ralf Treinen (Ed.). 93–102. h�ps://doi.org/10.1007/978-3-

642-02348-4_7

[5] Franz Baader and Tobias Nipkow. 1998. Term Rewriting and

All That. Cambridge University Press. h�ps://doi.org/10.1017/

CBO9781139172752

[6] Alonzo Church and John Barkley Rosser. 1936. Some Properties of

Conversion. Trans. Amer. Math. Soc. 39, 3 (1936), 472–482. h�ps:

//doi.org/10.1090/S0002-9947-1936-1501858-0

[7] Bertram Felgenhauer and René Thiemann. 2017. Reachability, Con-

�uence, and Termination Analysis with State-Compatible Automata.

Information and Computation 253, 3 (2017), 467–483. h�ps://doi.org/

10.1016/j.ic.2016.06.011

[8] André Luiz Galdino andMauricio Ayala-Rincón. 2010. A Formalization

of the Knuth-Bendix(-Huet) Critical Pair Theorem. Journal of Auto-

mated Reasoning 45, 3 (2010), 301–325. h�ps://doi.org/10.1007/s10817-

010-9165-2

[9] Nao Hirokawa and Aart Middeldorp. 2011. Decreasing Diagrams and

Relative Termination. Journal of Automated Reasoning 47, 4 (2011),

481–501. h�ps://doi.org/10.1007/s10817-011-9238-x

[10] Nao Hirokawa and Aart Middeldorp. 2013. Commutation via Relative

Termination. In Proc. 2nd International Workshop on Con�uence, Nao

Hirokawa and Vincent van Oostrom (Eds.). 29–33. Available from

h�p://cl-informatik.uibk.ac.at/iwc/iwc2013.pdf.

[11] Nao Hirokawa, Julian Nagele, Vincent van Oostrom, and Michio Oya-

maguchi. 2019. Con�uence by Critical Pair Analysis Revisited. In

Proc. 27th International Conference on Automated Deduction (LNAI,

Vol. 11716), Pascal Fontaine (Ed.). 319–336. h�ps://doi.org/10.1007/978-

3-030-29436-6_19

[12] Gérard Huet. 1980. Con�uent Reductions: Abstract Properties and

Applications to Term Rewriting Systems. J. ACM 27, 4 (1980), 797–821.

h�ps://doi.org/10.1145/322217.322230

[13] Donald E. Knuth and Peter B. Bendix. 1970. Simple Word Problems in

Universal Algebras. In Computational Problems in Abstract Algebra,

John Leech (Ed.). Pergamon Press, 263–297.

[14] Christina Kohl and Aart Middeldorp. 2018. ProTeM: A Proof Term

Manipulator (System Description). In Proc. 3rd International Conference

on Formal Structures for Computation and Deduction (LIPIcs, Vol. 108),

Hélène Kirchner (Ed.). 31:1–31:8. h�ps://doi.org/10.4230/LIPIcs.FSCD.

2018.31

[15] Aart Middeldorp, Julian Nagele, and Kiraku Shintani. 2021. CoCo

2019: Report on the Eighth Con�uence Competition. International

Journal on Software Tools for Technology Transfer 23, 6 (2021), 905–916.

h�ps://doi.org/10.1007/s10009-021-00620-4

[16] Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. 2015. Im-

proving Automatic Con�uence Analysis of Rewrite Systems by Re-

dundant Rules. In Proc. 26th International Conference on Rewriting

Techniques and Applications (LIPIcs, Vol. 36), Maribel Fernández (Ed.).

257–268. h�ps://doi.org/10.4230/LIPIcs.RTA.2015.257

[17] Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp. 2017. CSI:

New Evidence — A Progress Report. In Proc. 26th International Confer-

ence on Automated Deduction (LNAI, Vol. 10395), Leonardo de Moura

(Ed.). 385–397. h�ps://doi.org/10.1007/978-3-319-63046-5_24

[18] Julian Nagele, Bertram Felgenhauer, andHarald Zankl. 2017. Certifying

Con�uence Proofs via Relative Termination and Rule Labeling. Logical

Methods in Computer Science 13, 2:4 (2017), 1–27. h�ps://doi.org/10.

23638/LMCS-13(2:4)2017

209

https://doi.org/10.4230/LIPIcs.RTA.2010.7
https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.2168/LMCS-8(1:31)2012
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1090/S0002-9947-1936-1501858-0
https://doi.org/10.1016/j.ic.2016.06.011
https://doi.org/10.1016/j.ic.2016.06.011
https://doi.org/10.1007/s10817-010-9165-2
https://doi.org/10.1007/s10817-010-9165-2
https://doi.org/10.1007/s10817-011-9238-x
http://cl-informatik.uibk.ac.at/iwc/iwc2013.pdf
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1007/978-3-030-29436-6_19
https://doi.org/10.1145/322217.322230
https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.4230/LIPIcs.FSCD.2018.31
https://doi.org/10.1007/s10009-021-00620-4
https://doi.org/10.4230/LIPIcs.RTA.2015.257
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.23638/LMCS-13(2:4)2017
https://doi.org/10.23638/LMCS-13(2:4)2017

CPP ’23, January 16–17, 2023, Boston, MA, USA Christina Kohl and Aart Middeldorp

[19] Julian Nagele and Aart Middeldorp. 2016. Certi�cation of Classical

Con�uence Results for Left-Linear Term Rewrite Systems. In Proc.

7th International Joint Conference on Automated Reasoning (LNCS,

Vol. 9807), Jasmin Christian Blanchette and Stephan Merz (Eds.). 290–

306. h�ps://doi.org/10.1007/978-3-319-43144-4_18

[20] Julian Nagele and René Thiemann. 2014. Certi�cation of Con�uence

Proofs using CeTA. In Proc. 3rd International Workshop on Con�uence,

Takahito Aoto and Delia Kesner (Eds.). 19–23. Available from h�p:

//cl-informatik.uibk.ac.at/iwc/iwc2014.pdf.

[21] Julian Nagele and Harald Zankl. 2015. Certi�ed Rule Labeling. In Proc.

26th International Conference on Rewriting Techniques and Applications

(LIPIcs, Vol. 36), Maribel Fernández (Ed.). 269–284. h�ps://doi.org/10.

4230/LIPIcs.RTA.2015.269

[22] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Is-

abelle/HOL – A Proof Assistant for Higher-Order Logic. LNCS, Vol. 2283.

Springer. h�ps://doi.org/10.1007/3-540-45949-9

[23] Ana Cristina Rocha-Oliveira, André Luiz Galdino, and Mauricio Ayala-

Rincón. 2017. Con�uence of Orthogonal Term Rewriting Systems in

the Prototype Veri�cation System. Journal of Automated Reasoning 58,

2 (2017), 231–251. h�ps://doi.org/10.1007/s10817-016-9376-2

[24] José-Luis Ruiz-Reina, José-Antonio Alonso, María-José Hidalgo, and

Francisco-Jesús Martín-Mateos. 2002. Formal Proofs About Rewriting

Using ACL2. Annals of Mathematics and Arti�cial Intelligence 36, 3

(2002), 239–262. h�ps://doi.org/10.1023/A:1016003314081

[25] Christian Sternagel and René Thiemann. 2013. Formalizing Knuth–

Bendix Orders and Knuth–Bendix Completion. In Proc. 24th Inter-

national Conference on Rewriting Techniques and Applications (LIPIcs,

Vol. 21), Femke van Raamsdonk (Ed.). 287–302. h�ps://doi.org/10.

4230/LIPIcs.RTA.2013.287

[26] Christian Sternagel and René Thiemann. 2014. The Certi�cation Prob-

lem Format. In Proceedings of the 11th International Workshop on User

Interfaces for Theorem Provers (Electronic Proceedings in Theoretical

Computer Science, Vol. 167), Christoph Benzmüller and Bruno Woltzen-

logel Paleo (Eds.). 61–72. h�ps://doi.org/10.4204/EPTCS.167.8

[27] TeReSe (Ed.). 2003. Term Rewriting Systems. Cambridge Tracts in

Theoretical Computer Science, Vol. 55. Cambridge University Press.

[28] Yoshihito Toyama. 1988. Commutativity of Term Rewriting Systems.

In Programming of Future Generation Computers II, Kazuhiro Fuchi and

Laurent Kott (Eds.). North-Holland, 393–407.

[29] Vincent van Oostrom. 1995. Development Closed Critical Pairs. In Proc.

2nd International Workshop on Higher-Order Algebra, Logic, and Term

Rewriting (LNCS, Vol. 1074), Gilles Dowek, Jan Heering, Karl Meinke,

and Bernhard Möller (Eds.). 185–200. h�ps://doi.org/10.1007/3-540-

61254-8_26

[30] Vincent van Oostrom. 1997. Developing Developments. Theoretical

Computer Science 175, 1 (1997), 159–181. h�ps://doi.org/10.1016/S0304-

3975(96)00173-9

[31] Vincent van Oostrom and Roel de Vrijer. 2002. Four Equivalent Equiva-

lences of Reductions. In Proc. 2nd International Workshop on Reduction

Strategies in Rewriting and Programming (Electronic Notes in Theoretical

Computer Science, Vol. 70(6)), Bernhard Gramlich and Salvador Lucas

(Eds.). 21–61. h�ps://doi.org/10.1016/S1571-0661(04)80599-1

Received 2022-09-21; accepted 2022-11-21

210

https://doi.org/10.1007/978-3-319-43144-4_18
http://cl-informatik.uibk.ac.at/iwc/iwc2014.pdf
http://cl-informatik.uibk.ac.at/iwc/iwc2014.pdf
https://doi.org/10.4230/LIPIcs.RTA.2015.269
https://doi.org/10.4230/LIPIcs.RTA.2015.269
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/s10817-016-9376-2
https://doi.org/10.1023/A:1016003314081
https://doi.org/10.4230/LIPIcs.RTA.2013.287
https://doi.org/10.4230/LIPIcs.RTA.2013.287
https://doi.org/10.4204/EPTCS.167.8
https://doi.org/10.1007/3-540-61254-8_26
https://doi.org/10.1007/3-540-61254-8_26
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.1016/S1571-0661(04)80599-1

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Term Rewriting
	2.2 Isabelle/HOL

	3 Related Work
	4 Development Closed Critical Pairs
	5 Proof Terms
	6 Unification of Linear Variable-Disjoint Terms
	7 Main Proof
	8 Formalization Details
	9 Integration into CeTA
	10 Conclusion and Future Work
	Acknowledgments
	References

