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Abstract. We show that (local) confluence of terminating logically con-
strained rewrite systems is undecidable, even when the underlying theory
is decidable. Several confluence criteria for logically constrained rewrite
systems are known. These were obtained by replaying existing proofs
for plain term rewrite systems in a constrained setting, involving a non-
trivial effort. We present a simple transformation from logically con-
strained rewrite systems to term rewrite systems such that critical pairs
of the latter correspond to constrained critical pairs of the former. The
usefulness of the transformation is illustrated by lifting the advanced
confluence results based on (almost) development closed critical pairs as
well as on parallel critical pairs to the constrained setting.

1 Introduction

Logically constrained rewrite systems (LCTRSs) [12] are a natural extension
of plain term rewrite systems (TRSs) with native support for constraints that
are handled by SMT solvers. The latter makes LCTRSs suitable for program
analysis [3–5,22]. In this paper we are concerned with confluence techniques
for LCTRSs. Numerous techniques exist to (dis)prove confluence of TRSs. For
LCTRSs much less is known. Kop and Nishida [12] established (weak) orthogo-
nality as sufficient confluence criteria for LCTRSs. Joinability of critical pairs for
terminating systems is implicit in [22]. Very recently, strong closedness for linear
LCTRSs and (almost) parallel closedness for left-linear LCTRSs were established
[17]. The proofs of these results were obtained by replaying existing proofs for
TRSs in a constrained setting, involving a non-trivial effort. For more advanced
confluence criteria, this is not feasible.

In particular, the conclusion in [12] that LCTRSs “are flexible: common anal-
ysis techniques for term rewriting extend to LCTRSs without much effort” is not
accurate. On the contrary, in Sect. 3 we show that (local) confluence of termi-
nating LCTRSs is undecidable, even for a decidable fragment of the theory of
integers.

In Sect. 4 we present a simple transformation from LCTRSs to TRSs which
allows us to relate results for the latter to the former. We use the transfor-
mation to extend two advanced confluence criteria based on (parallel) critical
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pairs from TRSs to LCTRSs: In Sect. 5 we prove that (almost) development
closed left-linear LCTRSs are confluent by reusing the corresponding result
for TRSs obtained by van Oostrom [15] and in Sect. 6 we lift the result of
Toyama [20] based on parallel critical pairs from TRSs to LCTRSs. Both results
are employed in state-of-the-art confluence provers for TRSs (ACP [2], CSI [14],
Hakusan [19]) and have only recently been formally verified in the Isabelle proof
assistant [7,10,11].

For the LCTRS extension of the result of Toyama [20] we observed a subtle
problem in the definition of the equivalence relation on constrained terms, which
goes back to [12] and has been used in subsequent work on LCTRSs [5,17,22].
We briefly discuss the issue at the end of the next section, after recalling basic
notions for LCTRSs. For space reasons some of the more technical proofs are
only available in an extended version of this paper [18]. The results in Sect. 4
and Sect. 5 were first announced in [13].

2 Preliminaries

We assume familiarity with the basic notions of term rewriting. In this section we
recall a few key notions for LCTRSs. For more background information we refer
to [12,17,22]. We assume a many-sorted signature F = Fte∪Fth with a term and
theory part. For every sort ι in Fth we have a non-empty set Valι ⊆ Fth of value
symbols, such that all c ∈ Valι are constants of sort ι. We demand Fte∩Fth ⊆ Val
where Val =

⋃
ι Valι. In the case of integers this results in an infinite signature

with Z ⊆ Val ⊆ Fth. A term in T (Fth,V) is called a logical term. Ground
logical terms are mapped to values by an interpretation J : [[f(t1, . . . , tn)]] =
fJ ([[t1]], . . . , [[tn]]). We assume a bijection between value symbols and elements
in the domain of J , e.g., for integers: [[0]] = 0, [[−1]] = −1, [[1]] = 1 and so
on. Logical terms of sort bool are called constraints. A constraint ϕ is valid if
[[ϕγ]] = � for all substitutions γ such that γ(x) ∈ Val for all x ∈ Var(ϕ). A
constrained rewrite rule is a triple � → r [ϕ] where �, r ∈ T (F ,V) are terms of
the same sort such that root(�) ∈ Fte \ Fth and ϕ is a constraint. We denote the
set Var(ϕ)∪(Var(r)\Var(�)) of logical variables in � → r [ϕ] by LVar(� → r [ϕ]).
A constrained rewrite rule is left-linear (right-linear) if non-logical variables in
the left-hand side (right-hand side) occur at most once. If a rule is left-linear
and right-linear then it is called linear. An LCTRS is a set of constrained rewrite
rules.

A substitution σ is said to respect a rule � → r [ϕ], denoted by σ � � → r [ϕ],
if Dom(σ) ⊆ Var(�) ∪ Var(r) ∪ Var(ϕ), σ(x) ∈ Val for all x ∈ LVar(� → r [ϕ]),
and [[ϕσ]] = �. Moreover, a constraint ϕ is respected by σ, denoted by σ �
ϕ, if σ(x) ∈ Val for all x ∈ Var(ϕ) and [[ϕσ]] = �. We call f(x1, . . . , xn) →
y [y = f(x1, . . . , xn)] with a fresh variable y and f ∈ Fth \ Val a calculation
rule. Calculation rules are not part of the rules of an LCTRS R. The set of all
calculation rules induced by the signature Fth of an LCTRS R is denoted by
Rca and we abbreviate R ∪ Rca to Rrc. An LCTRS is called linear (left-linear,
right-linear) if all its rules in R are linear (left-linear, right-linear). A rewrite step
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s →R t satisfies s|p = �σ and t = s[rσ]p for some position p, constrained rewrite
rule � → r [ϕ] in Rrc, and substitution σ such that σ � � → r [ϕ]. We drop the
subscript R from →R when no confusion arises. An LCTRS R is confluent if
there exists a term v with t →∗ v ∗← u whenever t ∗← s →∗ u, for all terms s,
t and u. For confluence analysis we need to rewrite constrained terms.

A constrained term is a pair s [ϕ] consisting of a term s and a constraint
ϕ. Two constrained terms s [ϕ] and t [ψ ] are equivalent, denoted by s [ϕ] ∼
t [ψ ], if for every substitution γ � ϕ with Dom(γ) = Var(ϕ) there is some
substitution δ � ψ with Dom(δ) = Var(ψ) such that sγ = tδ, and vice versa.
Let s [ϕ] be a constrained term. If s|p = �σ for some constrained rewrite rule
ρ : � → r [ψ ] ∈ Rrc, position p, and substitution σ such that σ(x) ∈ Val ∪
Var(ϕ) for all x ∈ LVar(ρ), ϕ is satisfiable and ϕ ⇒ ψσ is valid then s [ϕ] →R
s[rσ]p [ϕ]. The rewrite relation ∼→R on constrained terms is defined as ∼ · →R
· ∼ and s [ϕ] ∼→p t [ψ ] indicates that the rewrite step in ∼→R takes place at
position p. Similarly, we write s [ϕ] ∼→�p t [ψ ] if the position in the rewrite
step is below position p. Note that in our definition of →R the constraint is
not modified. This equals [5, Definition 2.15], but is different from [12,17] where
calculation steps s[f(v1, . . . , vn)]p [ϕ] → s[v]p [ϕ∧v = f(v1, . . . , vn)] modify the
constraint. However, the relation ∼→ can simulate the relation →R from [12,17]
as exemplified below.

Example 1. Consider the constrained term x + 1 [x > 3]. Calculation steps as
defined in [12,17] permit x + 1 [x > 3] → z [z = x + 1 ∧ x > 3]. In our setting,
an initial equivalence step is required to introduce the fresh variable z and the
corresponding assignment needed to perform a calculation: x + 1 [x > 3] ∼
x + 1 [z = x + 1 ∧ x > 3] → z [z = x + 1 ∧ x > 3].

Our treatment allows for a much simpler definition of parallel and multi-step
rewriting since we do not have to merge different constraints.

Equivalence on Constrained Terms

The equivalence on constrained terms ∼ used in this paper also differs from
the equivalence relation used in [12,17], which we will denote by ∼′. In ∼′ the
domain of substitutions is not restricted, i.e., s [ϕ] ∼′ t [ψ ] if and only if for
all substitutions γ � ϕ there exists a substitution δ where δ � ψ and sγ =
tδ. Intuitively, constrained terms are equivalent with respect to ∼′ if their sets
of “allowed” instances are equivalent, while for ∼ we only instantiate variables
appearing in the constraints and therefore representing some value. We have
∼ � ∼′. This can be seen as follows. First of all, any substitution γ with γ � ϕ can
be split into γ1 and γ2 such that γ = γ1 ∪γ2 = γ1γ2 with Dom(γ1) = Var(ϕ) and
γ1 � ϕ. From s [ϕ] ∼ t [ψ ] we obtain a substitution δ1 where Dom(δ1) = Var(ψ),
δ1 � ψ and sγ1 = tδ1. Hence also sγ = sγ1γ2 = tδ1γ2 = tδ for δ = δ1γ2, which
implies s [ϕ] ∼′ t [ψ ]. However, ∼′ ⊆ ∼ does not hold since x [true] ∼′ y [true]
and x [true] �∼ y [true].

The change is necessary, since we have to differentiate (non-logical) vari-
ables in constrained terms from one another, to keep track of them through
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rewrite sequences. Take the (LC)TRS R consisting of the rule f(x, y) → x.
When rewriting unconstrained terms we have f(x, y) →R x and f(x, y) �→R y.
When rewriting on constrained terms with respect to ∼′, however, we have
f(x, y) [true] ∼′ · → · ∼′ x [true] and f(x, y) [true] ∼′ · → · ∼′ y [true],
losing any information connecting the resulting variable to the initial term.
This is especially problematic in our analysis of parallel critical pairs in Sect. 6,
where keeping track of variables through rewrite sequences is essential. Note that
f(x, y) [true] ∼→ x [true] but not f(x, y) [true] ∼→ y [true].

3 Undecidability

Confluence is a decidable property of finite terminating TRSs, a celebrated result
of Knuth and Bendix [9] which forms the basis of completion. For LCTRSs
matters are more complicated.

Theorem 1. Local confluence is undecidable for terminating LCTRSs.

Proof. We use a reduction from PCP [16]. Let P = {(α1, β1), . . . , (αN , βN )}
with α1, . . . , αN , β1, . . . , βN ∈ {0, 1}+ be an instance of PCP, where we assume
that αi �= βi for at least one i ∈ {1, . . . , N }. This entails no loss of generality,
since instances that violate this assumption are trivially solvable. We encode
candidate strings over {1, . . . , N } as natural numbers where the empty string
ε is represented by [ε] = 0, and a non-empty string i0i1 · · · ik is represented by
[i0i1 · · · ik] = N · [i1 · · · ik] + i0. So [i0i1 · · · ik] = i0 + i1 · N + · · · + ik · Nk. For
instance, assuming N = 3, the number 102 encodes the candidate string 3313
since 102 = 3 · 33+ 3, 33 = 3 · 10+ 3, 10 = 3 · 3+ 1 and 3 = 3 · 0+ 3. Conversely,
the candidate string 112 is mapped to 22 = 1 + 1 · 31 + 2 · 32. It is not difficult
to see that this results in a bijection between N and candidate strings, for each
N > 0.

The LCTRS RP that we construct is defined over the theory Ints, with theory
symbols Fth = {>,+, ·,=,∧} ∪ Val and values Val = B ∪ Z, with the additional
sorts PCP and String and the following term signature:

e : String 0, 1 : String → String

start,�,⊥ : PCP test : String × String → PCP

alpha, beta : Int → String

The LCTRS RP consists of the following rules:

start → test(alpha(n), beta(n)) [n > 0]
test(e, e) → �

test(0(x), 0(y)) → test(x, y) test(0(x), 1(y)) → ⊥
test(1(x), 1(y)) → test(x, y) test(1(x), 0(y)) → ⊥

test(0(x), e) → ⊥ test(e, 0(y)) → ⊥
test(1(x), e) → ⊥ test(e, 1(y)) → ⊥
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alpha(0) → e beta(0) → e

and, for all i ∈ {1, . . . , N },

alpha(n) → αi(alpha(m)) [N · m + i = n ∧ n > 0]
beta(n) → βi(beta(m)) [N · m + i = n ∧ n > 0]

Here, for a string γ ∈ {0, 1}∗ and a term t : String, γ(t) : String is defined as

γ(t) =

⎧
⎪⎨

⎪⎩

t if γ = ε

0(γ′(t)) if γ = 0γ′

1(γ′(t)) if γ = 1γ′

Note that in the constraints n and m are variables, while N and i are values.
Hence all constraints are in the decidable fragment of linear integer arithmetic
and the rewrite relation →RP

is computable.
We claim that RP is locally confluent if and only if P has no solution. The

LCTRS RP admits the constrained critical pair

test(alpha(n), beta(n)) ≈ test(alpha(m), beta(m)) [n > 0 ∧ m > 0]

with n �= m. The rules with left-hand sides alpha(n) and beta(n) give rise to
further constrained critical pairs but these are harmless since for all n,N > 0
there are unique numbers i and m satisfying the constraint [N ·m+i = n∧n > 0].

By construction of the rules for test, test(alpha(n), beta(n)) →∗ � if n repre-
sents a solution of P and test(alpha(n), beta(n)) →∗ ⊥ if n does not represent a
solution of P . Since we assume that P is non-trivial, the latter happens for some
n > 0. Hence all instances of the constrained critical pairs can only be joined if
test(alpha(n), beta(n)) →∗ ⊥ for all n > 0. Hence RP is locally confluent if and
only if P has no solution.

The LCTRS RP is terminating by the recursive path order [12] with the
precedence start > test > alpha > beta > 1 > 0 > e > � > ⊥ and the well-
founded order �Int on integers where x �Int y if and only if x > y and x � 0. The
key observation is that the constraint [N · m + i = n ∧ n > 0] in the recursive
rules for alpha and beta ensure n > m since N > 0 and i � 1. ��

A key difference between TRSs and LCTRSs leading to this undecidability
result can be seen in the first rule: start → test(alpha(n), beta(n)) [n > 0]. Plain
TRSs usually do not allow variables appearing only in the right-hand side of a
rule, as is the case for n here, because then termination never holds. However, in
LCTRSs such variables are useful, since they can be used to model computations
on arbitrary values which are often used to represent user input in program
analysis. For RP this leads to infinitely many possible steps starting from the
term start and in turn to infinitely many critical pairs, breaking decidability.



Confluence of LCTRSs Revisited 303

4 Transformation

In this section we present a simple transformation from LCTRSs to possibly
infinite TRSs, which exactly corresponds to the intuition behind LCTRSs. This
allows us to lift results on TRSs more easily to LCTRSs than previously possible.

Definition 1. Given an LCTRS R, the TRS R consists of the following rules:
�τ → rτ for all ρ : � → r [ϕ] ∈ Rrc with τ � ρ and Dom(τ) = LVar(ρ).

Note that R typically consists of infinitely many rules.

Lemma 1. The rewrite relations of R and R are the same. Moreover →p,R =
→p,R for all positions p.

Proof. We first show →p,R ⊆ →p,R. Assume s →p,R t. We have s = s[�σ]p →
s[rσ]p = t for some ρ : � → r [ϕ] ∈ Rrc and σ � ρ. We split σ into two substitu-
tions τ = {x �→ σ(x) | x ∈ LVar(ρ)} and δ = {x �→ σ(x) | x ∈ Var(�)\LVar(ρ)}.
From σ � ρ we infer τ � ρ and thus τ(x) ∈ Val for all x ∈ LVar(ρ). Hence
σ = τ ∪ δ = τδ. We have �τ → rτ ∈ R. Hence s = s[�τδ]p →p,R s[rτδ]p = t
as desired. To show the reverse inclusion →p,R ⊆ →p,R we assume s →p,R t.
Otherwise s = s[�μν]p →p,R s[rμν]p for some rule ρ : � → r [ϕ] ∈ R with μ � ρ.
Let σ = μν. Since μ(x) ∈ Val for all x ∈ LVar(ρ), we have xσ = xμ for all
x ∈ LVar(ρ). Hence σ � ρ and thus s = s[�σ]p →p,R s[rσ]p = t. ��

Since →R and →R coincide, we drop the subscript in the sequel. We write
EVar(� → r [ϕ]) for the set Var(r) \ (Var(�) ∪ Var(ϕ)) of extra variables of
a rule. In the computation of constrained critical pairs these variables of the
overlapping rules would lose the property of being a logical variable without
adding trivial constraints. Given a constrained rewrite rule ρ, we write ECρ for∧

{x = x | x ∈ EVar(ρ)}. The set of positions in a term s is denoted by Pos(s).
We write ε for the root position and PosF (s) for the set of positions of function
symbols in s.

Definition 2. An overlap of an LCTRS R is a triple 〈ρ1, p, ρ2〉 with rules
ρ1 : �1 → r1 [ϕ1 ] and ρ2 : �2 → r2 [ϕ2 ], satisfying the following conditions:
(1) ρ1 and ρ2 are variable-disjoint variants of rewrite rules in Rrc, (2) p ∈
PosF (�2), (3) �1 and �2|p unify with mgu σ such that σ(x) ∈ Val ∪ V for all
x ∈ LVar(ρ1) ∪ LVar(ρ2), (4) ϕ1σ ∧ ϕ2σ is satisfiable, and (5) if p = ε then ρ1
and ρ2 are not variants, or Var(r1) � Var(�1). In this case we call �2σ[r1σ]p ≈
r2σ [ϕ1σ ∧ ϕ2σ ∧ ψσ ] a constrained critical pair obtained from the overlap
〈ρ1, p, ρ2〉. Here ψ = ECρ1 ∧ ECρ2 . The peak �2σ[r1σ]p [Φ] ← �2σ [Φ] →ε r2σ [Φ]
with Φ = (ϕ1 ∧ ϕ2 ∧ ψ)σ, from which the constrained critical pair originates, is
called a constrained critical peak. The set of all constrained critical pairs of R
is denoted by CCP(R). A constrained critical pair s ≈ t [ϕ] is trivial if sσ = tσ
for every substitution σ with σ � ϕ.

A key ingredient of our approach is to relate critical pairs of the transformed
TRS to constrained critical pairs of the original LCTRS.
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Theorem 2. For every critical pair s ≈ t of R there exists a constrained critical
pair s′ ≈ t′ [ϕ′ ] of R and a substitution γ such that s = s′γ, t = t′γ and γ � ϕ′.

Proof. Let s ≈ t be a critical pair of R, originating from the critical peak
�2μσ[r1νσ]p ← �2μσ = �2μσ[�1νσ]p → r2μσ with variants ρ1 : �1 → r1 [ϕ1 ]
and ρ2 : �2 → r2 [ϕ2 ] of rules in Rrc without shared variables. Let ψi = ECρi

for i ∈ {1, 2}. Furthermore we have Dom(ν) = LVar(ρ1), Dom(μ) = LVar(ρ2),
ν � ϕ1 ∧ ψ1, μ � ϕ2 ∧ ψ2, p ∈ PosF (�2μ), and σ is an mgu of �2μ|p and �1ν.
Moreover, if p = ε then �1ν → r1ν and �2μ → r2μ are not variants. Define
τ = ν � μ. We have Dom(τ) = LVar(ρ1) ∪ LVar(ρ2). Let ϕ = ϕ1 ∧ ϕ2 ∧ ψ1 ∧ ψ2.
Clearly, �1τ = �1ν, r1τ = r1ν, �2τ = �2μ, r2τ = r2μ and τ � ϕ. Hence the
given peak can be written as �2τσ[r1τσ]p ← �2τσ = �2τσ[�1τσ]p → r2τσ and
τ � ϕ. Since �2|pτσ = �1τσ there exists an mgu δ of �2|p and �1, and a sub-
stitution γ such that δγ = τσ. Let s′ = �2δ[r1δ]p and t′ = r2δ. We claim that
〈ρ1, p, ρ2〉 is an overlap of R, resulting in the constrained critical pair s′ ≈ t′ [ϕδ ].
Condition (1) of Definition 2 is trivially satisfied. For condition (2) we need to
show p ∈ PosF (�2). This follows from p ∈ PosF (�2μ), μ(x) ∈ Val for every
x ∈ Dom(μ), and root(�2μ|p) = root(�1ν) ∈ F \ Val. For condition (3) it remains
to show that δ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Suppose to the
contrary that root(δ(x)) ∈ F \ Val for some x ∈ LVar(ρ1)∪ LVar(ρ2). Then
root(δ(x)) = root(γ(δ(x))) = root(σ(τ(x))) ∈ F \ Val, which contradicts τ � ϕ.
Condition (4) follows from the identity δγ = τσ together with τ � ϕ which imply
δγ � ϕ and thus ϕδ is satisfiable. Hence also ϕ1δ∧ϕ2δ is satisfiable. It remains to
show condition (5), so let p = ε and further assume that ρ1 and ρ2 are variants. So
there exists a variable renaming π such that ρ1π = ρ2. In particular, �1π = �2 and
r1π = r2. Let x ∈ Var(�1). If x ∈ LVar(ρ1) = Dom(ν) then τ(x) = ν(x) ∈ Val.
Moreover, π(x) ∈ LVar(ρ2) = Dom(μ) and thus τ(π(x)) = μ(π(x)) ∈ Val.
Since �1τ and �2τ are unifiable, π(τ(x)) = τ(x) = τ(π(x)). If x /∈ LVar(ρ1)
then τ(x) = x, π(x) /∈ LVar(ρ2) and similarly τ(π(x)) = π(x) = π(τ(x)).
All in all, �1τπ = �1πτ = �2τ . Now, if Var(r1) ⊆ Var(�1) then we obtain
r1τπ = r1πτ = r2τ , contradicting the fact that �1ν → r1ν and �2μ → r2μ
are not variants. We conclude that s′ ≈ t′ [ϕδ ] is a constrained critical pair of
R. So we can take ϕ′ = ϕδ. Clearly, s = s′γ and t = t′γ. Moreover, γ � ϕ′ since
ϕ′γ = ϕτσ = ϕτ and τ � ϕ. ��

The converse does not hold in general.

Example 2. Consider the LCTRS R consisting of the single rule a → x [x = 0]
where the variable x ranges over the integers. Since x appears on the right-hand
side but not the left, we obtain a constrained critical pair x ≈ x′ [x = 0∧x′ = 0].
Since the constraint uniquely determines the values of x and x′, the TRS R
consists of the single rule a → 0. Obviously R has no critical pairs.

The above example also shows that orthogonality of R does not imply orthog-
onality of R. However, the counterexample relies somewhat on a technicality in
condition (5) of Definition 2. It only occurs when the two rules �1 → r1 [ϕ1 ] and
�2 → r2 [ϕ2 ] involved in the critical pair overlap at the root and have instances
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�1τ1 → r1τ1 and �2τ2 → r2τ2 in R which are variants of each other. By dealing
with such cases separately we can prove the following theorem.

Theorem 3. For every constrained critical pair s ≈ t [ϕ] of R and every sub-
stitution σ with σ � ϕ, (1) sσ = tσ or (2) there exist a critical pair u ≈ v of R
and a substitution δ such that sσ = uδ and tσ = vδ.

Proof. Let s ≈ t [ϕ] be a constrained critical pair of R originating from the
critical peak s = �2θ[r1θ]p ← �2θ[�1θ]p → r2θ = t with variants ρ1 : �1 →
r1 [ϕ1 ] and ρ2 : �2 → r2 [ϕ2 ] of rules in Rrc, and an mgu θ of �2|p and �1 where
p ∈ PosF (�2). Moreover θ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1) ∪ LVar(ρ2), and
ϕ = ϕ1θ ∧ ϕ2θ ∧ ψθ with ψ = ECρ1 ∧ ECρ2 . Let σ be a substitution with σ � ϕ.
Hence θσ � ϕ1∧ϕ2∧ψ and further σ(θ(x)) ∈ Val for all x ∈ LVar(ρ1)∪LVar(ρ2).
We split θσ into substitutions τ1, τ2 and π as follows: τi(x) = xθσ if x ∈ LVar(ρi)
and τi(x) = x otherwise, for i ∈ {1, 2}, and π(x) = xθσ if x ∈ Dom(θσ) \
(LVar(ρ1) ∪ LVar(ρ2)) and π(x) = x otherwise. From θσ � ϕ1 ∧ ϕ2 ∧ ψ and
Var(ϕi) ⊆ LVar(ρi) we infer τi � ϕi for i ∈ {1, 2}. Since Dom(τi) = LVar(ρi),
�iτi → riτi ∈ R for i ∈ {1, 2}. Furthermore, τiπ = τi ∪ π for i ∈ {1, 2}. Hence
�2|pτ2π = �2|pθσ = �1θσ = �1τ1π, implying that �2|pτ2 and �1τ1 are unifiable.
Let γ be an mgu of these two terms. There exists a substitution δ such that
γδ = π. Clearly p ∈ PosF (�2τ2). If p �= ε or �1τ1 → r1τ1 and �2τ2 → r2τ2 are
not variants, then u ≈ v with u = �2τ2γ[r1τ1γ]p and v = r2τ2γ is a critical pair
of R. Moreover tσ = r2θσ = r2τ2π = r2τ2γδ = vδ, and similarly sσ = uδ. Thus
option (2) is satisfied. If p = ε and �1τ1 → r1τ1 and �2τ2 → r2τ2 are variants
then sσ = r1τ1γδ = r2τ2γδ = tσ, fulfilling (1). ��

A TRS (LCTRS) is weakly orthogonal if it is left-linear and all its (con-
strained) critical pairs are trivial. Since R is left-linear if and only if R is left-
linear, a direct consequence of Theorem 3 is that weak orthogonality of R implies
weak orthogonality of R.

Our transformation is not only useful for confluence analysis.

Example 3. For the LCTRS RP in the proof of Theorem 1 the TRS RP consists
of all unconstrained rules of RP together with f(v1, . . . , vn) → [[f(v1, . . . , vn)]] for
all f ∈ Fth\Val and v1, . . . , vn ∈ Val, start → test(alpha(n), beta(n)) for all n > 0,
alpha(n) → αi(alpha(m)) and beta(n) → βi(beta(m)) for all i ∈ {1, . . . , N },
n > 0 and m � 0 such that N · m + i = n. Termination of the infinite TRS RP

is easily shown by LPO or dependency pairs.

5 Development Closed Critical Pairs

Using Theorem 2 we can easily transfer confluence criteria for TRSs to LCTRSs.
Rather than reproving the confluence results reported in [12,17,22], in this
section we illustrate this by extending the result of van Oostrom [15] concerning
(almost) development closed critical pairs from TRSs to LCTRSs. This result
subsumes most critical-pair based confluence criteria, as can be seen in Fig. 2 in
the concluding section.



306 J. Schöpf et al.

Definition 3. Let R be an LCTRS. The multi-step relation ◦−→ on terms is
defined inductively as follows: (1) x ◦−→ x for all variables x, (2) f(s1, . . . , sn) ◦−→
f(t1, . . . , tn) if si ◦−→ ti with 1 � i � n, (3) �σ ◦−→ rτ if � → r [ϕ] ∈ Rrc,
σ � � → r [ϕ] and σ ◦−→ τ , where σ ◦→ τ denotes σ(x) ◦−→ τ(x) for all variables
x ∈ Dom(σ).

Definition 4. A critical pair s ≈ t is development closed if s ◦−→ t. It is almost
development closed if it is not an overlay and development closed, or it is an
overlay and s ◦−→ · ∗← t. A TRS is called (almost) development closed if all its
critical pairs are (almost) development closed.

The following result from [15] has recently been formalized in Isabelle [10,11].

Theorem 4. Left-linear almost development closed TRSs are confluent. ��

We define multi-step rewriting on constrained terms.

Definition 5. Let R be an LCTRS. The multi-step relation ◦−→ on constrained
terms is defined inductively as follows:

1. x [ϕ] ◦−→ x [ϕ] for all variables x,
2. f(s1, . . . , sn) [ϕ] ◦−→ f(t1, . . . , tn) [ϕ] if si [ϕ] ◦−→ ti [ϕ] for 1 � i � n,
3. �σ [ϕ] ◦−→ rτ [ϕ] if ρ : � → r [ψ ] ∈ Rrc, σ(x) ∈ Val ∪ Var(ϕ) for all x ∈

LVar(ρ), ϕ is satisfiable, ϕ ⇒ ψσ is valid, and σ [ϕ] ◦−→ τ [ϕ].

Here σ [ϕ] ◦−→ τ [ϕ] denotes σ(x) [ϕ] ◦−→ τ(x) [ϕ] for all variables x ∈ Dom(σ).
The relation ∼◦−→ on constrained terms is defined as ∼ · ◦−→ · ∼.

Example 4. Consider the following LCTRS R over the theory Ints with the rules:

max(x, y) → x [x � y ] max(x, y) → y [y � x]

Rewriting the term max(1 + 2, 3 + 2) to its normal form 5 requires three single
steps. These steps can be combined into a single multi-step max(1+2, 3+2) ◦→ 5.

The constrained term max(1 + x, 3 + y) [x > 3 ∧ y = 1] rewrites in a single
multi-step to its normal form z [z = 1+ x ∧ x > 3]. This involves the following
parts of Definition 5. Let ϕ be x > 3 ∧ y = 1 ∧ z = 1 + x ∧ z′ = 3 + y. Case
(3) gives 1 + x [ϕ] ◦−→ z [ϕ] and 3 + y [ϕ] ◦−→ z′ [ϕ]. Using this we obtain
max(1 + x, 3 + y) [ϕ] ◦−→ max(z, z′) [ϕ] by case (2). A final application of case
(3) yields max(z, z′) [ϕ] ◦−→ z [ϕ]. Together with the equivalences

max(1+ x, 3+ y) [x > 3 ∧ y = 1] ∼ max(1+ x, 3+ y) [ϕ]
z [ϕ] ∼ z [z = 1 + x ∧ x > 3]

we obtain max(1+ x, 3+ y) [x > 3 ∧ y = 1] ∼◦−→ z [z = 1 + x ∧ x > 3].

Definition 4 is extended to LCTRSs as follows.
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Definition 6. A constrained critical pair s ≈ t [ϕ] is development closed if
s ≈ t [ϕ] ∼◦−→�1 u ≈ v [ψ ] for some trivial u ≈ v [ψ ]. A constrained critical pair
is almost development closed if it is not an overlay and development closed, or
it is an overlay and s ≈ t [ϕ] ∼◦−→�1 · ∼→∗

�2 u ≈ v [ψ ] for some trivial u ≈ v [ψ ].
An LCTRS is called (almost) development closed if all its constrained critical
pairs are (almost) development closed.

Similar to [17,22], the symbol ≈ is treated as a fresh binary function symbol,
resulting in constrained equations whose positions are addressed in the usual
way. Therefore positions below 1 in s ≈ t [ϕ] refer to subterms of s.

Figure 1 conveys the idea how the main result (Theorem 5) in this section is
obtained. For every critical pair in the transformed TRS R there exists a corre-
sponding constrained critical pair in the original LCTRS R (Theorem2). Almost
development closure of the constrained critical pair implies almost development
closure of the critical pair (Lemma4). Since the rewrite relations of R and R
coincide (Lemma 1), we obtain the confluence of almost development closed left-
linear LCTRSs from the corresponding result in [15].

Fig. 1. Proof idea for Theorem 5.

We now present a few technical results that relate rewrite sequences and
multi-steps on (constrained) terms. These prepare for the use of Theorem 2 to
obtain the confluence of (almost) development closed LCTRSs. The proofs of
the following two lemmata can be found in [18].

Lemma 2. Suppose s ≈ t [ϕ] ∼→∗
�p u ≈ v [ψ ] with γ � ϕ and position p. If

p = 1q for a position q then sγ →∗
�q uδ and tγ = vδ for some substitution δ

with δ � ψ. If p = 2q for a position q then sγ = uδ and tγ ∼→∗
�q vδ for some

substitution δ with δ � ψ. ��

Lemma 3. If s ≈ t [ϕ] ∼◦−→�1 u ≈ v [ψ ] then for all substitutions σ � ϕ there
exists δ � ψ such that sσ ◦−→ uδ and tσ = vδ. ��

Lemma 4. If a constrained critical pair s ≈ t [ϕ] is almost development closed
then for all substitutions σ with σ � ϕ we have sσ ◦−→ · ∗← tσ.

Proof. Let s ≈ t [ϕ] be an almost development closed constrained critical pair,
and σ � ϕ some substitution. From Definition 6 we obtain

s ≈ t [ϕ] ∼◦−→�1 u′ ≈ v′ [ψ′ ] ∼→∗
�2 u ≈ v [ψ ] (1)
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where uτ = vτ for all τ � ψ for some constrained term u′ ≈ v′ [ψ′ ]. We apply
Lemma 3 to the first step in (1). This yields a substitution δ where sσ ◦−→ u′δ,
tσ = v′δ and δ � ψ′. For the second part of (1) we use Lemma 2 and obtain
v′δ →∗ vγ, u′δ = uγ for some γ � ψ. Moreover we have uγ = vγ. Hence
sσ ◦−→ u′δ = uγ = vγ ∗← v′δ = tσ. ��

Theorem 5. If an LCTRS R is almost development closed then so is R.

Proof. Take any critical pair s ≈ t from R. From Theorem 2 we know that
there exists a constrained critical pair s′ ≈ t′ [ϕ] in R where s′σ = s and
t′σ = t for some σ � ϕ. Since the constrained critical pair must be almost
development closed, Lemma 4 yields s = s′σ ◦−→ · ∗← t′σ = t if it is an overlay
and s = s′σ ◦−→ t′σ = t otherwise. This proves that R is almost development
closed. ��

Interestingly, the converse does not hold, as seen in the following example.

Example 5. Consider the LCTRS R over the theory Ints with the rules

f(x) → g(x) g(x) → h(2) [x = 2z ]
f(x) → h(x) [1 � x � 2] g(x) → h(1) [x = 2z + 1]

The TRS R consists of the rules

f(x) → g(x) f(1) → h(1) g(n) → h(1) for all odd n ∈ Z

f(2) → h(2) g(n) → h(2) for all even n ∈ Z

and has two (modulo symmetry) critical pairs g(1) ≈ h(1) and g(2) ≈ h(2). Since
g(1) ◦−→ h(1) and g(2) ◦−→ h(2), R is almost development closed. The constrained
critical pair g(x) ≈ h(x) [1 � x � 2] is not almost development closed, since it
is a normal form with respect to the rewrite relation on constrained terms.

This also makes intuitive sense, since a rewrite step s ≈ t [ϕ] ∼→ u ≈ v [ψ ]
implies that the same step can be taken on all instances sσ ≈ tσ where σ � ϕ.
However it may be the case, like in the above example, that different instances of
the constrained critical pair require different steps to obtain a closing sequence,
which cannot directly be modeled using rewriting on constrained terms.

Since left-linearity of R is preserved, the following corollary is obtained from
Theorems 4 and 5. In fact R only has to be linear in the variables x /∈ LVar,
since that is sufficient for R to be linear.

Corollary 1. Left-linear almost development closed LCTRSs are confluent. ��

Example 6. The LCTRS R over the theory Ints with the rules

f(x, y) → h(g(y, 2 · 2)) [x � y ∧ y = 2] g(x, y) → g(y, x) h(x) → x

f(x, y) → c(4, x) [y � x] c(x, y) → g(4, 2) [x �= y ]
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admits the two constrained critical pairs (with simplified constraints)

h(g(y, 2 · 2)) ≈ c(4, x) [ϕ] c(4, x) ≈ h(g(y, 2 · 2)) [ϕ]

Both are almost development closed:

h(g(y, 2 · 2)) ≈ c(4, x) [ϕ] c(4, x) ≈ h(g(y, 2 · 2)) [ϕ]
∼◦−→�1 g(4, 2) ≈ c(4, x) [x = 2] ∼◦−→�1 g(4, 2) ≈ h(g(y, 2 · 2)) [y = 2]
∼→�2 g(4, 2) ≈ g(4, 2) [true] ∼→∗

�2 g(4, 2) ≈ g(4, 2) [true]

Here ϕ is the constraint x = y ∧ y = 2. Hence R is almost development closed.
Since R is left-linear, confluence follows by Corollary 1.

6 Parallel Critical Pairs

In this section we extend the confluence result by Toyama [20] based on paral-
lel critical pairs to LCTRSs. Recently there is a renewed interest in this result;
Shintani and Hirokawa proved in [19] that it subsumes Toyama’s later conflu-
ence result in [21]. The latter was already lifted to LCTRSs in [17] and is also
subsumed by Corollary 1. The result of Toyama [20] is a proper extension of the
confluence criterion on parallel critical pairs by Gramlich [6]. In the sequel we
mainly follow the notions from [19].

Definition 7. Let R be an LCTRS. The parallel rewrite relation ‖→ on terms
is defined inductively as follows:

1. x ‖→ x for all variables x,
2. f(s1, . . . , sn) ‖→ f(t1, . . . , tn) if si ‖→ ti for 1 � i � n,
3. �σ ‖→ rσ if � → r [ϕ] ∈ Rrc and σ � � → r [ϕ]

We extend ‖→ to constrained terms inductively as follows:

1. x [ϕ] ‖→ x [ϕ] for all variables x,
2. f(s1, . . . , sn) [ϕ] ‖→ f(t1, . . . , tn) [ϕ] if si [ϕ] ‖→ ti [ϕ] for 1 � i � n,
3. �σ [ϕ] ‖→ rσ [ϕ] if ρ : � → r [ψ ] ∈ Rrc, σ(x) ∈ Val ∪ Var(ϕ) for all x ∈

LVar(ρ), ϕ is satisfiable and ϕ ⇒ ψσ is valid.

The parallel rewrite relation ∼‖→ on constrained terms is defined as ∼ · ‖→ · ∼.

Let s be a term and P ⊆ Pos(s) be a set of parallel positions. Given terms
tp for p ∈ P , we denote by s[tp]p∈P the simultaneous replacement of the terms
at position p ∈ P in s by tp. We recall the definition of parallel critical pairs for
TRSs.

Definition 8. Let R be a TRS, ρ : � → r a rule in R, and P ⊆ PosF (�) a
non-empty set of parallel positions. For every p ∈ P let ρp : �p → rp be a variant
of a rule in R. The peak �σ[rpσ]p∈P

‖→�σ →ε,R rσ forms a parallel critical pair
�σ[rpσ]p∈P ≈ rσ if the following conditions are satisfied:
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1. Var(ρ1) ∩ Var(ρ2) = ∅ for different rules ρ1 and ρ2 in {ρ} ∪ {ρp | p ∈ P },
2. σ is an mgu of {�p ≈ �|p | p ∈ P },
3. if P = {ε} then ρε is not a variant of ρ.

The set of all constrained parallel critical pairs of R is denoted by PCP(R).

We lift this notion to the constrained setting and define it for LCTRSs.

Definition 9. Let R be an LCTRS, ρ : � → r [ϕ] a rule in Rrc, and P ⊆
PosF (�) a non-empty set of parallel positions. For every p ∈ P let ρp : �p →
rp [ϕp ] be a variant of a rule in Rrc. Let ψ = ECρ ∧

∧
p∈P ECρp

and Φ =
ϕσ ∧ ψσ ∧

∧
p∈P ϕpσ. The peak �σ[rpσ]p∈P [Φ] ‖→�σ [Φ] →ε,R rσ [Φ] forms a

constrained parallel critical pair �σ[rpσ]p∈P ≈ rσ [Φ] if the following conditions
are satisfied:

1. Var(ρ1) ∩ Var(ρ2) = ∅ for different rules ρ1 and ρ2 in {ρ} ∪ {ρp | p ∈ P },
2. σ is an mgu of {�p = �|p | p ∈ P } such that σ(x) ∈ Val ∪ V for all x ∈

LVar(ρ) ∪
⋃

p∈P LVar(ρp),
3. ϕσ ∧

∧
p∈P ϕpσ is satisfiable,

4. if P = {ε} then ρε is not a variant of ρ or Var(r) � Var(�).

A constrained peak forming a constrained parallel critical pair is called a con-
strained parallel critical peak. The set of all constrained parallel critical pairs of
R is denoted by CPCP(R).

For a term t and a set of parallel positions P in t, we write Var(t, P ) to
denote

⋃
p∈P Var(t|p). For a set of parallel positions P we denote by ‖→P that

each rewrite step obtained in case (3) of Definition 7 is performed at a position
p ∈ P and no two steps share a position. Moreover, for a set of parallel positions
P and a position q we denote by ‖→P

�q that p � q for all p ∈ P .

Definition 10. A critical pair s ≈ t is 1-parallel closed if s ‖→ · ∗← t. A TRS
is 1-parallel closed if all its critical pairs are 1-parallel closed. A parallel critical
pair �σ[rpσ]p∈P ≈ rσ originating from the peak �σ[rpσ]p∈P

‖→�σ →ε rσ is 2-
parallel closed if there exists a term v and a set of parallel positions Q such that
�σ[rpσ]p∈P →∗ v Q ‖→rσ with Var(v,Q) ⊆ Var(�σ, P ). A TRS is 2-parallel closed
if all its parallel critical pairs are 2-parallel closed. A TRS is parallel closed if it
is 1-parallel closed and 2-parallel closed.

The following result from [20] has recently been formalized in Isabelle [7].

Theorem 6. Left-linear parallel closed TRSs are confluent. ��

In the remainder of this section we extend this result to LCTRSs. To this end
we introduce the notion T Var(t, ϕ) = Var(t) \ Var(ϕ) denoting the set of non-
logical variables in term t with respect to the logical constraint ϕ. We restrict
this to non-logical variables in subterms below a set of parallel positions P in t:
T Var(t, ϕ, P ) =

⋃
p∈P T Var(t|p, ϕ).
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Definition 11. A constrained critical pair s ≈ t [ϕ] is 1-parallel closed if s ≈
t [ϕ] ∼‖→�1 · ∼→∗

�2 u ≈ v [ψ ] for some trivial u ≈ v [ψ ]. An LCTRS is 1-parallel
closed if all its constrained critical pairs are 1-parallel closed. A constrained
parallel critical pair �σ[rpσ]p∈P ≈ rσ [ϕ] is 2-parallel closed if there exists a set
of parallel positions Q such that

�σ[rpσ]p∈P ≈ rσ [ϕ] ∼‖→Q
�2 · ∼→∗

�1 u ≈ v [ψ ]

for some trivial u ≈ v [ψ ] and T Var(v, ψ,Q) ⊆ T Var(�σ, ϕ, P ). An LCTRS is
2-parallel closed if all its constrained parallel critical pairs are 2-parallel closed.
An LCTRS is parallel closed if it is 1-parallel closed and 2-parallel closed.

Recall from Sect. 2 that our definition of ∼ differs from the equivalence rela-
tion ∼′ defined in [12,17]. The change is necessary for the variable condition of
2-parallel closedness to make sense, as illustrated in the following example.

Example 7. Consider the (LC)TRS consisting of the rules

f(g(x), y) → f(b, y) g(x) → a f(a, x) → x f(b, x) → x

The peak f(a, y) [true] {1} ‖→f(g(x), y) [true] → f(b, y) [true] gives rise to the
(constrained) parallel critical pair f(a, y) ≈ f(b, y) [true]. Using ∼′ we have

f(a, y) ≈ f(b, y) [true] ‖→{ε}
�2 · →∗

�1 y ≈ y [true] ∼′ x ≈ x [true]

and the variable condition T Var(x, true, {ε}) ⊆ T Var(f(g(x), y), true, {1}) holds.
Since the system has no logical constraints it can also be analyzed in the TRS
setting. Following Definition 10 we would have to check the variable condition
Var(y, {ε}) ⊆ Var(f(g(x), y), {1}), which does not hold. Using ∼ resolves this
difference, since y ≈ y [true] �∼ x ≈ x [true]. So the conditions in Definition 11
reduce to the ones in Definition 10 for TRSs.

In Theorem 2 in Sect. 4 we related critical pairs of the transformed TRS to
constrained critical pairs of the originating LCTRS. The following theorem does
the same for parallel critical pairs.

Theorem 7. For every parallel critical pair s ≈ t of R there exists a constrained
parallel critical pair s′ ≈ t′ [ϕ′ ] of R and a substitution γ such that s = s′γ,
t = t′γ and γ � ϕ′.

Proof. Let s ≈ t be a parallel critical pair of R, originating from the parallel
critical peak �μσ[rpνpσ]p∈P

‖→�μσ = �μσ[�pνpσ]p∈P →ε rμσ with variants
ρ : � → r [ϕ] and ρp : �p → rp [ϕp ] for p ∈ P of rules in Rrc without shared
variables, ψ = ECρ and ψp = ECρp

for p ∈ P . Furthermore, Dom(νp) = LVar(ρp)
for p ∈ P , Dom(μ) = LVar(ρ), νp � ϕp ∧ ψp for p ∈ P , μ � ϕ ∧ ψ, p ∈ PosF (�μ),
and σ is an mgu of {�μ|p ≈ �pνp | p ∈ P }. Moreover, if P = {ε} then �ενε →
rενε [ϕενε ] and �μ → rμ [ϕμ] are not variants. Define the substitution τ as⋃

{νp | p ∈ P } � μ. Clearly, �pτ = �pνp and rpτ = rpνp for p ∈ P , �τ = �μ,
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rτ = rμ, τ � ϕ ∧ ψ and τ � ϕp ∧ ψp for all p ∈ P . Hence the given peak can be
written as �τσ[rpτσ]p∈P

‖→�τσ = �τσ[�pτσ]p∈P →ε rτσ with τ � ϕ′′ where

ϕ′′ = ϕ ∧ ECρ ∧
∧

p∈P

(ϕp ∧ ECρp
)

Since �|pτσ = �pτσ for all p ∈ P there exists an mgu δ of {�|p = �p | p ∈ P } and a
substitution γ such that δγ = τσ. Let s′ = �δ[rpδ]p∈P and t′ = rδ. We claim that
this results in the constrained parallel critical pair s′ ≈ t′ [ϕ′′δ ]. Condition (1) of
Definition 9 is trivially satisfied. We obtain P ⊆ PosF (�) because P ⊆ PosF (�μ),
μ(x) ∈ Val for every x ∈ Dom(μ), and root(�μ|p) = root(�pν) ∈ F \ Val for
all p ∈ P . For condition (2) it remains to show that δ(x) ∈ Val ∪ V for all
x ∈ LVar(ρ) ∪

⋃
p∈P LVar(ρp). Suppose to the contrary that root(δ(x)) ∈ F \

Val for some x ∈ LVar(ρ)∪
⋃

p∈P LVar(ρp). Then root(δ(x)) = root(γ(δ(x))) =
root(σ(τ(x))) ∈ F \ Val, which contradicts τ � ϕ′′. Condition (3) follows from
the identity δγ = τσ together with τ � ϕ′′ which imply δγ � ϕ′′ and thus
ϕ′′δ is satisfiable. Hence also ϕδ ∧

∧
p∈P ϕpδ is satisfiable. It remains to show

condition (4), so let P = {ε} and further assume that ρε and ρ are variants.
So there exists a variable renaming π such that ρεπ = ρ. In particular, �επ = �
and rεπ = r. We show τ(π(x)) = π(τ(x)) for all x ∈ Var(�ε). Let x ∈ Var(�ε). If
x ∈ LVar(ρε) = Dom(ν) then τ(x) = ν(x) ∈ Val. Moreover, π(x) ∈ LVar(ρ) =
Dom(μ) and thus τ(π(x)) = μ(π(x)) ∈ Val. Since �ετ and �τ are unifiable,
π(τ(x)) = τ(x) = τ(π(x)). If x /∈ LVar(ρε) then τ(x) = x, π(x) /∈ LVar(ρ)
and similarly τ(π(x)) = π(x) = π(τ(x)). All in all, �ετπ = �επτ = �τ . Now, if
Var(rε) ⊆ Var(�ε) then we obtain rετπ = rεπτ = rτ , contradicting the fact that
�εν → rεν and �μ → rμ are not variants. We conclude that s′ ≈ t′ [ϕ′′δ ] is a
constrained parallel critical pair of R. So we can take ϕ′ = ϕ′′δ. Clearly, s = s′γ
and t = t′γ. Moreover, γ � ϕ′ since ϕ′γ = ϕ′′τσ = ϕ′′τ and τ � ϕ′′. ��

The proofs of the following lemmata are given in [18].

Lemma 5. If s ≈ t [ϕ] ∼‖→P
�1 u ≈ v [ψ ] then for all substitutions σ � ϕ there

exists a substitution δ such that δ � ψ, sσ ‖→P uδ and tσ = vδ. ��

Lemma 6. If a constrained critical pair s ≈ t [ϕ] is 1-parallel closed then sσ ‖→
· ∗← tσ for all substitutions σ with σ � ϕ. ��

Lemma 7. If a constrained parallel critical pair s = �σ′[rpσ
′]p∈P ≈ rσ′ = t [ϕ]

is 2-parallel closed then there exist a term v and a set Q of parallel positions
such that sσ →∗ v Q ‖→tσ and Var(v,Q) ⊆ Var(�σ′σ, P ) for all substitutions σ
with σ � ϕ. ��

Theorem 8. If an LCTRS R is parallel closed then R is parallel closed.

Proof. Let R be a parallel closed LCTRS. First consider an arbitrary critical
pair s ≈ t ∈ CP(R). From Theorem2 we know that there exist a constrained
critical pair s′ ≈ t′ [ϕ] ∈ CCP(R) and a substitution σ such that s′σ = s, t′σ = t
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and σ � ϕ. Since the constrained critical pair is 1-parallel closed, Lemma 6 yields
s ‖→ · ∗← t. Hence R is 1-parallel closed.

Next consider an arbitrary parallel critical pair s ≈ t ∈ PCP(R). Theorem
7 yields a constrained parallel critical pair s′ = �σ′[rpσ

′]p∈P ≈ rσ′ = t′ [ϕ] in
CPCP(R) and a substitution σ such that s′σ = s, t′σ = t and σ � ϕ. Since the
constrained parallel critical pair is 2-parallel closed, by Lemma 7 there exist a
term v and a set of parallel positions Q such that s →∗ v Q ‖→t and Var(v,Q) ⊆
Var(�σ′σ, P ). Hence R is 2-parallel closed. ��

Since left-linearity of R is preserved in R and left-linear, parallel closed TRSs
are confluent by Theorem 6, we obtain the following corollary via Theorems 7 and
8. Again, R only has to be left-linear in the variables x /∈ LVar, since that is
sufficient for R to be left-linear.

Corollary 2. Every left-linear parallel closed LCTRS is confluent. ��

We illustrate the corollary on a concrete example.

Example 8. Consider the LCTRS R over the theory Ints with the rules

f(a) → g(4, 4) a → g(1+ 1, 3+ 1) g(x, y) → f(g(z, y)) [z = x − 2]

The constrained (parallel) critical pair f(g(1+1, 3+1)) ≈ g(4, 4) [true] originating
from the peak f(g(1+1, 3+1)) [true] {1} ‖→f(a) [true] →ε g(4, 4) [true] is 2-parallel
closed:

f(g(1+ 1, 3+ 1)) ≈ g(4, 4) [true] ∼‖→�1 f(g(2, 4)) ≈ g(4, 4) [true]
∼‖→{2}

�2 f(g(2, 4)) ≈ f(g(2, 4)) [true]

Note that the condition T Var(f(g(2, 4)), true, {2}) ⊆ T Var(f(a), true, {1}) is triv-
ially satisfied. One easily checks that the corresponding constrained critical pair
is 1-parallel closed. Since the only other remaining constrained critical pair is
trivial, we conclude confluence by Corollary 2.

7 Conclusion

We presented a left-linearity preserving transformation from LCTRSs to TRSs
such that (parallel) critical pairs in the latter correspond to constrained (paral-
lel) critical pairs in the former. As a consequence, confluence results for TRSs
based on restricted joinability conditions easily carry over to LCTRSs. This was
illustrated by generalizing the advanced confluence results of van Oostrom [15]
and Toyama [20] from TRSs to LCTRSs. We also proved that (local) confluence
of terminating LCTRSs over a decidable theory is undecidable in general.

Figure 2 relates the confluence criteria in this paper to the earlier ones from
[12,17]. The acronyms stand for weak orthogonality (WO, [12, Theorem 4]),
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Fig. 2. Relating confluence criteria for LCTRSs.

strong closedness (SC, [17, Theorem 2]), almost parallel closedness (APC, [17,
Theorem 4]), almost development closedness (ADC, Corollary 1), and parallel
closedness of (parallel) critical pairs (PCP, Corollary 2). All areas are inhabited
and the numbers refer to examples in this paper.

The confluence results of [12,17] have been implemented in crest.1 The tool
is currently under heavy development, not only to incorporate the results in this
paper but also termination and completion techniques. Confluence of LCTRSs
is a new category in the upcoming edition of the Confluence Competition2 and
we expect to present experimental results obtained with crest at the conference.

For TRSs numerous other confluence techniques, not based on restricted
joinability conditions of critical pairs, as well as sufficient conditions for non-
confluence are known [1,8,19,23]. We plan to investigate which techniques gen-
eralize to LCTRSs with our transformation. The transformation also makes the
formal verification of confluence criteria for LCTRSs in a proof assistant a more
realistic goal.
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