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Abstract. Using higher-order functions is standard practice in func-
tional programming, but most functional logic programming languages
that have been described in the literature lack this feature. The natural
way to deal with higher-order functions in the framework of (first-order)
term rewriting is through so-called applicative term rewriting systems.
In this paper we argue that existing calculi for lazy narrowing either do
not apply to applicative systems or handle applicative terms very ineffi-
ciently. We propose a new lazy narrowing calculus for applicative term
rewriting systems and prove its completeness.

1 Introduction

There is a growing interest in combining the functional and logic programming
paradigms in a single language, see Hanus [6] for a recent overview of the field.
The underlying computational mechanism of most of these integrated languages
is (conditional) narrowing. Examples of such languages include babel [9] and
k-leaf [4]. Both babel and k-leaf lack higher-order features. Bosco and Gio-
vannetti [2] extended k-leaf to the higher-order language ideal. The semantics
of ideal is given by means a translation from ideal programs into k-leaf pro-
grams. González-Moreno et al. proposed in [5] the language sfl, a higher-order
extension of babel. The higher-order aspects of these two languages are modeled
by means of first-order applicative (conditional) constructor-based term rewrit-
ing systems. This means in particular that higher-order unification—like in the
higher-order logic programming language λ-prolog [11]—is avoided because
there are no λ-abstractions around. The following example program is taken
from [5]:

plus 0 y = y map f [ ] = [ ]
plus (Sx) y = S (plusx y) map f [x | y ] = [ f x | map f y ]
doublex = plusxx compose f g x = f (g x)

? Most of the work reported in this paper was carried out while the first author was
at the University of Tsukuba, Doctoral Program of Engineering.



The functions map and compose are higher-order. Solving the goal

map f [ S 0, 0, S 0 ] = [ S (S (S 0)), S 0, S (S (S 0)) ]

means finding a substitution for the higher-order variable f such that the value
of the left-hand side of the goal equals the right-hand side. One easily verifies
that

f 7→ compose S double

is a solution to the goal, but actually computing such solutions is a different
matter. The operational semantics of sfl is a particular kind of conditional
narrowing and González-Moreno et al. [5] prove its soundness and completeness
with respect to a declarative semantics that is based on applicative algebras over
Scott domains.

In this paper we are concerned with lazy narrowing strategies for applicative
term rewriting systems. Most lazy narrowing strategies that have been proposed
in the literature are defined for constructor-based term rewriting systems, e.g.
[1, 10, 14]. An easy but important observation is that while every applicative
term rewriting system is a particular kind of term rewriting system, not every
applicative constructor-based term rewriting system is a constructor-based term
rewriting system. Nevertheless, an applicative orthogonal (constructor-based)
term rewriting system is an orthogonal term rewriting system, so lazy narrowing
strategies that are defined and proved complete for the latter class can be used
as a computation model for higher-order functional logic programming.

We analyze the behaviour of oinc—a simple calculus proposed in [7] which
realizes lazy narrowing—for applicative orthogonal term rewriting systems. It
turns out that oinc handles applicative terms very inefficiently. We transform
oinc into a calculus nca that deals with applicative terms in an efficient way
and we prove the completeness of nca. We would like to stress that the ideas
developed in this paper do not depend on oinc. The only reason for choosing
oinc is the simplicity of its inference rules.

This paper is organized as follows. In the next section we introduce applica-
tive term rewriting. In Sect. 3 we recall the calculus oinc. In Sect. 4 we observe
that oinc doesn’t manipulate applicative term rewriting systems in a very ef-
ficient way. The new calculus nca is defined to overcome this inefficiency. The
completeness of nca is proved in Sect. 5. Section 6 is concerned with a further
optimization of our calculus, namely we extend nca with special inference rules
for dealing with strict equality in an efficient way. In Sect. 7 we compare the
relative efficiency of nca and oinc on a small example. We conclude in Sect. 8
with suggestions for future research.

2 Preliminaries

We assume the reader is familiar with the basics of term rewriting. (See [3] and
[8] for extensive surveys.) In this preliminary section we recall only some less
common definitions and we introduce the notion of applicative term rewriting.



The set of function symbols F of a term rewriting system (TRS for short)
(F ,R) is partitioned into disjoint sets FD and FC as follows: a function symbol
f belongs to FD if there is a rewrite rule l → r in R such that l = f(t1, . . . , tn)
for some terms t1, . . . , tn, otherwise f ∈ FC . Function symbols in FC are called
constructors, those in FD defined symbols. A term built from constructors and
variables is called a constructor term. A constructor system (CS for short) is
a TRS with the property that the arguments t1, . . . , tn of every left-hand side
f(t1, . . . , tn) of a rewrite rule are constructor terms. A left-linear TRS without
critical pairs is called orthogonal.

We distinguish a binary function symbol ≈, written in infix notation. A term
of the form s ≈ t, where neither s nor t contains any occurrences of ≈, is called
an equation. Observe that we do not identify the equations s ≈ t and t ≈ s.
A goal is a sequence of equations. The empty goal is the empty sequence and
denoted by �.

In applicative term rewriting we deal with applicative terms. Such terms are
built from variables, constants, and a special binary function symbol application,
which is denoted by juxtaposition of its two arguments. Examples of applicative
terms are (+ (S 0)) 0 and S (x 0). To distinguish constants from variables in ap-
plicative terms we denote the former always in typewriter style. Parentheses
are omitted under the convention of association to the left, which means that
missing parentheses are restored by always taking the leftmost possibility, so
(+ (S 0)) 0 and + (S 0) 0 denote the same term, which is different from + S 0 0.
The head-symbol of an applicative term is the symbol that occurs at the leftmost-
innermost position. This symbol is either a constant or a variable. For instance,
the head-symbol of + (S 0) 0 is + and the head-symbol of x 0 is x. We assume
that every constant f is equipped with a natural number arity(f). Intuitively
this number indicates the number of arguments we have to supply in order to
evaluate the function or build the data structure. In the following definition we
identify a subclass of applicative terms that is used to define applicative term
rewriting systems.

Definition 1. A pattern is an applicative term t with the property that the
head-symbol of every non-variable subterm of t is a constant.

So a pattern is either a variable or a term of the form f t1 · · · tn where f is
not a variable and t1, . . . , tn are patterns. The term + (S 0) (+x) is a pattern,
but S (x 0) isn’t. Now we are ready to define applicative term rewriting systems.

Definition 2. An applicative rewrite rule is a pair l → r of applicative terms
such that the left-hand side l is a pattern of the form f l1 · · · ln with n = arity(f),
and Var(r) ⊆ Var(l). An applicative term rewriting system (ATRS for short)
consists of applicative rewrite rules.

Every ATRS is a TRS. Hence notions defined for TRSs like orthogonality
apply to ATRSs. We would like to point out however that the definition of CS
doesn’t make much sense in the context of ATRSs. The well-known map function



from functional programming can be specified as the following ATRS:
{
map f nil → nil
map f (:x y)→ : (f x) (map f y)

We have arity(map) = 2. This ATRS is not a CS because the arguments of the
two left-hand sides contain (hidden) application symbols, which are in FD. For
example, the arguments of the left-hand side map f nil are map f and nil, not f
and nil. Nevertheless, there is a clear separation between constants that define
functions (map) and those that build data structures (nil and :). This suggests
the following definition.

Definition 3. Let R be an ATRS. A constant f is said to be applicatively
defined if it is the head-symbol of the left-hand side of some rewrite rule in
R. An applicative constructor is a constant that is not defined. We call R an
applicative constructor system (ACS for short) if the terms t1, . . . , tn in the
left-hand side f t1 · · · tn of every rewrite rule do not contain defined symbols.

The ATRS defining the map function is an ACS. We would like to stress
that ACSs are not CSs, except in trivial cases. So narrowing strategies that are
defined for CSs do not apply to ACSs.

When writing applicative terms we find it convenient to abbreviate f t1 · · · tn
to f tn. Observe that tn is not a term. If n = 0 then f tn denotes the constant f .
By the same convention x sn tm stands for the term x s1 · · · sn t1 · · · tm. A term
of the form x tn is called a head-variable term. In the sequel, when dealing with
ATRSs, we usually omit the adjective applicative.

In this paper we consider untyped systems since typing does affect neither
the design nor the soundness and completeness of our narrowing calculus nca.
However, in Sect. 8 we briefly explain why typing is useful to reduce the search
space of nca.

3 The Outside-In Narrowing Calculus

In this section we recall the outside-in narrowing calculus of [7] and state its
completeness.

Definition 4. Let R be an orthogonal TRS. The outside-in narrowing calculus,
oinc for short, consists of the following inference rules (E denotes an arbitrary
sequence of equations):

[on] outermost narrowing

f(s1, . . . , sn) ≈ t, E
s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, E t /∈ V

if there exists a fresh variant f(l1, . . . , ln)→ r of a rewrite rule in R,



[d] decomposition
f(s1, . . . , sn) ≈ f(t1, . . . , tn), E

s1 ≈ t1, . . . , sn ≈ tn, E
[v] variable elimination

t ≈ x,E
Eθ

and
x ≈ t, E
Eθ

t /∈ V
with θ = {x 7→ t}.

We introduce some useful notations relating to the calculus oinc. If G and G′

are the upper and lower goal in the inference rule [α] (α ∈ {on, d, v}), we write
G⇒[α] G

′. This is called an oinc-step. The applied rewrite rule or substitution
may be supplied as a subscript, that is, we will write things like G ⇒[on], l→r
G′ and G ⇒[v], θ G

′. A finite oinc-derivation G1 ⇒θ1 · · · ⇒θn−1 Gn may be
abbreviated to G1 ⇒∗θ Gn with θ = θ1 · · · θn−1. A successful oinc-derivation
ends in the empty goal �. The number of steps in an oinc-derivation A:G⇒∗ G′
is denoted by |A|. If |A| > 1 then A>1 denotes the derivation obtained from A
by omitting the first step.

The calculus oinc has been designed with the restriction in mind that initial
goals are right-normal.

Definition 5. A goal G is called right-normal if the right-hand side t of every
equation s ≈ t in G is a ground normal form. A goal G′ is called proper if there
exists an oinc-derivation G⇒∗ G′ starting from a right-normal goal G.

The restriction to proper goals is motivated from the understanding that
functional logic programming languages deal with so-called strict equality in or-
der to model non-termination correctly. Every goal consisting of strict equations
is right-normal, see Sect. 6.

It is not difficult to show that the term t in a proper goal E1, s ≈ t, E2 has no
variables in common with s and E1. This explains why we don’t need the occur-
check in the variable elimination rules. It also explains why there is no imitation
rule in oinc. Finally, the absence of the symmetric outermost narrowing rule

t ≈ f(s1, . . . , sn), E
s1 ≈ l1, . . . , sn ≈ ln, t ≈ r, E

is easily explained by the restriction to orthogonal TRSs and proper goals.

Definition 6. LetR be a TRS and G a goal. A substitution θ is called a solution
of G if sθ =R tθ for every equation s ≈ t in G.

Ida and Nakahara [7] obtained the following soundness and completeness
result.

Theorem 7. Let R be an orthogonal TRS and G a right-normal goal. If there
exists a successful oinc-derivation G⇒∗θ � then θ is a solution of G. For every
normalizable solution θ of G there exists a successful oinc-derivation G ⇒∗θ′ �
such that θ′ 6R θ [Var(G)]. ut

If the substitution θ in the second part of Theorem 7 is normalized, the
subscript R can be dropped.



4 A Narrowing Calculus for Applicative Systems

Every ATRS is a TRS, hence oinc is complete (in the sense of the second part
of Theorem 7) for orthogonal ATRSs. However, oinc doesn’t handle applicative
terms very efficiently. The problem is that the applicable inference rules and
(in the case of [on]) rewrite rules are determined by the outermost symbol of
the left-hand side of the leftmost equation of the current goal. In the context of
ATRSs this outermost symbol is almost always the binary application symbol,
which doesn’t carry any useful information for restricting the choice of inference
and rewrite rules. Let us consider two examples.

Example 1. The (right-normal) goal cx y ≈ c a b is solved by the following oinc-
derivation:

cx y ≈ c a b⇒[d] cx ≈ c a, y ≈ b

⇒[d] c ≈ c, x ≈ a, y ≈ b

⇒[d] x ≈ a, y ≈ b

⇒[v], {x 7→a} y ≈ b

⇒[v], {y 7→b} �.

Recall that the term cx y has the (hidden) application symbol as root with cx
and y as arguments. Likewise the term c a b consists of the application of c a
and b. Hence the inference rule [d] decomposes the equation cx y ≈ c a b into
cx ≈ c a and y ≈ b. We need three decomposition steps before we can bind the
variables.

Example 2. Consider the orthogonal ATRS

R =
{
inc → add1
add1x→ Sx

The following oinc-derivation computes the solution {x 7→ 0} of the goal incx ≈
S 0:

incx ≈ S 0⇒[on], add1 x1→S x1 inc ≈ add1, x ≈ x1, Sx1 ≈ S 0

⇒[on], inc→add1 add1 ≈ add1, x ≈ x1, Sx1 ≈ S 0

⇒[d] x ≈ x1, Sx1 ≈ S 0

⇒[v], {x1 7→x} Sx ≈ S 0

⇒[d] S ≈ S, x ≈ 0

⇒[d] x ≈ 0

⇒[v], {x 7→0} �.

It is essential that we choose the (renamed) rewrite rule add1x1 → Sx1 for the
equation incx ≈ S 0 in the first outermost narrowing step. However, we have no
way to implement this choice. In order to ensure completeness all rewrite rules
whose left-hand side is not a single constant must be used in combination with
the outermost narrowing rule.



We overcome the problems mentioned above by looking at the head-symbol
rather than the outermost symbol of the left-hand side of the equation under
consideration. This is natural since the head-symbol of an applicative term cor-
responds to the outermost symbol of a functional term. The narrowing calculus
defined below implements this idea.

Definition 8. Let R be an orthogonal ATRS. The calculus nca—Narrowing
Calculus for Applicative TRSs—consists of the following five inference rules:

[ona] outermost narrowing of applicative terms

f sn tm ≈ t, E
s1 ≈ u1, . . . , sn ≈ un, r tm ≈ t, E t /∈ V

if there exists a fresh variant f un → r of a rewrite rule in R,
[onv] outermost narrowing of head-variable terms

x sn tm ≈ t, E
(s1 ≈ v1, . . . , sn ≈ vn, r tm ≈ t, E)θ

t /∈ V

if there exists a fresh variant f uk vn → r of a rewrite rule in R, n > 0,
and θ = {x 7→ f uk},

[da] decomposition of applicative terms

f sn ≈ f tn, E
s1 ≈ t1, . . . , sn ≈ tn, E

[dv] decomposition of head-variable terms

x sn ≈ f tm un, E
(s1 ≈ u1, . . . , sn ≈ un, E)θ

if θ = {x 7→ f tm},
[v] variable elimination

t ≈ x,E
Eθ

if θ = {x 7→ t}.

Observe that the second variable elimination rule of oinc is subsumed by the
inference rule [dv] of nca. In order to distinguish nca-derivations from oinc-
derivations, we use V instead of ⇒ for the former.

Example 3. The goal cx y ≈ c a b is solved by the following nca-derivation:

cx y ≈ c a bV[da] x ≈ a, y ≈ b

V[dv], {x 7→a} y ≈ b

V[dv], {y 7→b} �.



With respect to the ATRS R of Example 2, the goal incx ≈ S 0 is solved by
the following nca-derivation:

incx ≈ S 0V[ona], inc→add1 add1x ≈ S 0

V[ona], add1 x1→S x1 x ≈ x1, Sx1 ≈ S 0

V[v], {x1 7→x} Sx ≈ S 0

V[da] x ≈ 0

V[dv], {x 7→0} �.
The inference rule [onv] of nca is used to bind higher-order logical variables.

This is illustrated in the next example.

Example 4. Consider the orthogonal ATRS

R =





plus 0x → x (1)
plus (Sx) y → S (plusx y) (2)
map f nil → nil (3)
map f (x : y)→ (f x) : (map f y) (4)

Here : is a binary constructor, written in infix notation, and nil is a constant
denoting the empty list. We adopt the usual convention of writing [t1, . . . , tn]
to denote the list (t1 : (· · · (tn : nil) · · ·)). The goal mapx [S 0] ≈ [S 0] is solved by
the following nca-derivation:

mapx [S 0] ≈ [S 0]
V[ona], (4) x ≈ f1, [S 0] ≈ (x1 : y1), (f1 x1) : (map f1 y1) ≈ [S 0]
V[v], {f1 7→x} [S 0] ≈ (x1 : y1), (xx1) : (mapx y1) ≈ [S 0]
V[da] S 0 ≈ x1, nil ≈ y1, (xx1) : (mapx y1) ≈ [S 0]
V[v], {x1 7→S 0} nil ≈ y1, (x (S 0)) : (mapx y1) ≈ [S 0]
V[v], {y1 7→nil} (x (S 0)) : (mapx nil) ≈ [S 0]
V[da] x (S 0) ≈ S 0, mapx nil ≈ nil

V[onv], (1), {x7→plus 0} S 0 ≈ y2, y2 ≈ S 0, map (plus 0) nil ≈ nil

V[v], {y2 7→S 0} S 0 ≈ S 0, map (plus 0) nil ≈ nil

V+
[da] map (plus 0) nil ≈ nil

V[ona], (3) plus 0 ≈ f3, nil ≈ nil, nil ≈ nil

V[v], {f3 7→plus 0} nil ≈ nil, nil ≈ nil

V+
[da] �.

Note that in the V[onv]-step the variable x is bound to the higher-order term
(plus 0).

Soundness of nca is expressed in the following theorem.

Theorem 9. Let R be an orthogonal TRS and G a right-normal goal. If there
exists a successful nca-derivation GV∗θ � then θ is a solution of G.

Proof. Straightforward induction on the length of the successful nca-derivation
GV∗θ �. ut



5 Completeness

In this section we establish the completeness of nca. The idea behind the proof is
straightforward. We show that for every non-empty oinc-derivation A:G⇒+

θ �
there exist an nca-step GVσ G

′ and an oinc-derivation A′:G′ ⇒∗θ′ � such that
θ = σθ′ and |A′| < |A|. Completeness of nca is then reduced to the completeness
of oinc by a routine induction argument. First we define an appropriate notion
of descendant for oinc-derivations.

Definition 10. Let R be an ATRS. In the oinc-derivation

E ⇒∗ s1 s2 ≈ t1 t2, E1 ⇒[d] s1 ≈ t1, s2 ≈ t2, E1 ⇒∗ E2

the equation s1 ≈ t1 is called an immediate descendant of the equation s1 s2 ≈
t1 t2. In the oinc-derivation

E ⇒∗ s1 s2 ≈ t, E1 ⇒[on] s1 ≈ l1, s2 ≈ l2, r ≈ t, E1 ⇒∗ E2

where l1 l2 → r is a fresh variant of a rewrite rule in R, the equation s1 ≈ l1
is called an immediate descendant of the equation s1 s2 ≈ t. The notion of
immediate descendants generalizes to a notion of descendant by reflexivity and
transitivity.

In Lemmata 11–16 we observe basic properties of successful oinc-derivations.

Lemma 11. Let G = f sn ≈ g tm, E be a goal such that f 6= g or n 6= m.
In all successful oinc-derivations starting from G the rule [on] is applied to a
descendant of f sn ≈ g tm.

Proof. Obvious. ut
Lemma 12. Let G = x sn ≈ g tm, E be a goal such that m < n. In all successful
oinc-derivations starting from G the rule [on] is applied to a descendant of
x sn ≈ g tm.

Proof. Obvious. ut
Lemma 13. Let G = f sn ≈ t, E be a goal such that n < arity(f). There exist
no successful oinc-derivations starting from G in which the rule [on] is applied
to a descendant of f sn ≈ t.
Proof. We use induction on n. If n = 0 then there are no rewrite rules of the
form f → r because arity(f) > 0 and hence [on] is not applicable. Suppose
n > 0. Let A be an arbitrary successful oinc-derivation starting from G. We
distinguish the following three cases:

1. Suppose the inference rule [d] is applied in the first step of A, so A can be
written as

f sn ≈ t, E ⇒[d] f sn−1 ≈ t1, sn ≈ t2, E ⇒∗ �
with t = t1 t2. According to the induction hypothesis the inference rule [on]
is not applied to a descendant of f sn−1 ≈ t1 in the subderivation A>1.
Therefore [on] is not applied to a descendant of f sn ≈ t in A.



2. Suppose the inference rule [on] is applied in the first step of A, so A can be
written as

f sn ≈ t, E ⇒[on], l1 l2→r f sn−1 ≈ l1, sn ≈ l2, r ≈ t, E ⇒∗ �
for some rewrite rule l1 l2 → r. We have to show that this is impossible.
According to the induction hypothesis the inference rule [on] is not applied
to a descendant of f sn−1 ≈ l1 in the subderivation A>1. Because l1 l2 is
a pattern, l1 is not a head-variable term, so we may write l1 = g um with
m = arity(g)− 1. We have either f 6= g or n− 1 6= m. Now Lemma 11 yields
the desired contradiction.

3. If the inference rule [v] is applied in the first step of A then by definition
there are no descendants of f sn ≈ t left in A>1 to which [on] can be applied.
Therefore [on] is not applied to a descendant of f sn ≈ t in A.

ut
Lemma 14. Let G = f sn ≈ f tn, E be a goal such that n < arity(f). In every
successful oinc-derivation starting from G the rule [d] is applied to all descen-
dants of f sn ≈ f tn.

Proof. Easy consequence of Lemma 13. ut
Lemma 15. Let G = f sn ≈ t, E be a goal such that n = arity(f). If there
exists a successful oinc-derivation starting from G in which the first step is an
application of the rule [on], then the rewrite rule used in this step is of the form
f un → r.

Proof. Easy consequence of Lemmata 11 and 13. ut
Lemma 16. Let G = f sn tm ≈ t, E be a goal such that n = arity(f) and m > 0.
If there exists a successful oinc-derivation A starting from G in which the rule
[on] is applied to a descendant f sn tk ≈ t′ (1 6 k 6 m) then [on] is applied to
the descendant f sn ≈ t′′ of f sn tm ≈ t.
Proof. Without loss of generality we may write A as

G⇒∗ f sn tk ≈ t′, E′
⇒[on], g u`→r f sn tk−1 ≈ g u`−1, tk ≈ u`, r ≈ t′, E′
⇒∗[d] f sn ≈ g u`−k, E′′

⇒∗θ �

where g u` → r is a fresh variant of a rewrite rule in R. Note that ` = n if f = g.
So we have f 6= g or n 6= `− k. According to Lemmata 11 and 13 the inference
rule [on] is applied to the equation f sn ≈ g u`−k. ut

In Lemmata 17–21 we prove that for certain successful oinc-derivation
A:G ⇒+

θ � there exists an oinc-derivation A′:G′ ⇒∗θ′ � such that G Vσ G
′,

θ = σθ′, and |A′| < |A|. In Lemma 22 we show that there are no other cases to
consider.



Lemma 17. Let A: s ≈ x,E ⇒+
θ � be an oinc-derivation. There exists an oinc-

derivation A′:Eσ ⇒∗θ′ � with σ = {x 7→ s} such that θ = σθ′ and |A′| < |A|.

Proof. The first step of A must be an application of the inference rule [v]:

A: s ≈ x,E ⇒[v], σ Eσ ⇒∗θ′ �

with θ = σθ′ and σ = {x 7→ s}. Define A′ = A>1. We clearly have |A′| =
|A| − 1 < |A|. ut

The initial goals of A and A′ in Lemma 17 are connected by a V[v], σ-step.

Lemma 18. Let A: f sn ≈ f tn, E ⇒+
θ � be an oinc-derivation. If [on] is never

applied to a descendant of f sn ≈ f tn then there exists an oinc-derivation
A′: s1 ≈ t1, . . . , sn ≈ tn, E ⇒∗θ � such that |A′| < |A|.

Proof. By induction on n. If n = 0 then we take A′ = A>1. In this case we clearly
have |A′| < |A|. Suppose n > 0. The first step of A must be an application of
[d], so we may write A as

f sn ≈ f tn, E ⇒[d] f sn−1 ≈ f tn−1, sn ≈ tn, E ⇒+
θ �.

An application of the induction hypothesis to the oinc-derivation A>1 yields an
oinc-derivation

A′: s1 ≈ t1, . . . , sn−1 ≈ tn−1, sn ≈ tn, E ⇒∗θ �

with |A′| < |A>1| = |A| − 1 < |A|. ut

Note that the initial goals of A and A′ in Lemma 18 are connected by a
V[da]-step.

Lemma 19. Let A:x sn ≈ f tm un ⇒+
θ � be an oinc-derivation. If [on] is never

applied to a descendant of x sn ≈ f tm un then there exists an oinc-derivation
A′: (s1 ≈ u1, . . . , sn ≈ un, E)σ ⇒∗θ′ � with σ = {x 7→ f tm} such that θ = σθ′

and |A′| < |A|.

Proof. Similar to the proof of Lemma 18. ut

The initial goals of A and A′ in Lemma 19 are connected by a V[dv], σ-step.

Lemma 20. Let A: f sn tm ≈ t⇒+
θ � be an oinc-derivation with n = arity(f).

If [on] is applied to the descendant f sn ≈ t′ of f sn tm ≈ t using the rewrite rule
f un → r then there exists an oinc-derivation

A′: s1 ≈ u1, . . . , sn ≈ un, r tm ≈ t, E ⇒∗θ �

such that |A′| < |A|.



Proof. We use induction on m. If m = 0 then the inference rule [on] with rewrite
rule f un → r is used in the first step of A. If n = 0 then we take A′ = A>1. If
n > 0 then we may write A as

f sn ≈ t, E ⇒[on] f sn−1 ≈ f un−1, sn ≈ un, r ≈ t, E ⇒+
θ �.

According to Lemma 14 the inference rule [on] is not applied to descendants of
f sn−1 ≈ f un−1 in the subderivation A>1. Hence we can apply Lemma 18 to
A>1. This yields an oinc-derivation

A′: s1 ≈ u1, . . . , sn−1 ≈ un−1, sn ≈ un, r ≈ t, E ⇒∗θ �
such that |A′| < |A>1| = |A| − 1 < |A|. For the induction step, suppose m > 0.
Let us abbreviate s1 ≈ u1, . . . , sn ≈ un to E′. We distinguish the following cases:

1. Suppose the inference rule [d] is used in the first step of A. This means that
we may write A as s ≈ t, E ⇒[d] f sn tm−1 ≈ v1, tm ≈ v2, E ⇒+

θ � with
t = v1 v2. An application of the induction hypothesis to the subderivation
A>1 yields an oinc-derivation

B:E′, r tm−1 ≈ v1, tm ≈ v2, E ⇒∗θ �
such that |B| < |A>1| < |A|. The oinc-derivation B can be split into

B1:E′, r tm−1 ≈ v1, tm ≈ v2, E ⇒∗θ1 (r tm−1 ≈ v1, tm ≈ v2, E)θ1

and
B2: (r tm−1 ≈ v1, tm ≈ v2, E)θ1 ⇒∗θ2 �

with θ = θ1θ2. The oinc-derivation B1 can easily be transformed into the
oinc-derivation

C:E′, r tm ≈ v1 v2, E ⇒∗θ1 (r tm ≈ v1 v2, E)θ1.

Because m > 0 we can apply the inference rule [d] to the final goal (r tm ≈
v1 v2, E)θ1 of C, yielding the oinc-step

D: (r tm ≈ v1 v2, E)θ1 ⇒[d] (r tm−1 ≈ v1, tm ≈ v2, E)θ1.

Concatenating the three oinc-derivations C, D, and B2 yields the desired
oinc-derivation

A′:E′, r tm ≈ t, E ⇒∗θ �.
Note that |A′| = |C|+ |D|+ |B2| = |B|+ 1 < |A|.

2. Suppose the inference rule [on] is used in the first step of A. This means that
there exists a fresh variant v1 v2 → r′ of a rewrite rule in R such that A can
be written as

s ≈ t, E ⇒[on] f sn tm−1 ≈ v1, tm ≈ v2, r
′ ≈ t, E ⇒+

θ �

An application of the induction hypothesis to A>1 yields an oinc-derivation

B:E′, r tm−1 ≈ v1, tm ≈ v2, r
′ ≈ t, E ⇒∗θ �



such that |B| < |A>1| < |A|. The oinc-derivation B can be split into

B1:E′, r tm−1 ≈ v1, tm ≈ v2, r
′ ≈ t, E ⇒∗θ1 (r tm−1 ≈ v1, tm ≈ v2, r

′ ≈ t, E)θ1

and
B2: (r tm−1 ≈ v1, tm ≈ v2, r

′ ≈ t, E)θ1 ⇒∗θ2 �
with θ = θ1θ2. We transform B1 into the oinc-derivation

C:E′, r tm ≈ t, E ⇒∗θ1 (r tm ≈ t, E)θ1.

Next we apply the inference rule [on] to the final goal (r tm ≈ t, E)θ1 of C,
using exactly the same variant v1 v2 → r′. This yields the oinc-step

D: (r tm ≈ t, E)θ1 ⇒[on] (r tm−1 ≈ v1, tm ≈ v2, r
′ ≈ t, E)θ1.

Also in this case the desired oinc-derivation A′ is obtained by concatenating
C, D, and B2.

3. It is not possible that the first step of A is an application of the variable
elimination rule [v] because then there is no descendant left to which [on]
can be applied.

ut
Observe that the initial goals of A and A′ in Lemma 20 are connected by a

V[ona]-step.

Lemma 21. Let A:x sn tm ≈ t, E ⇒+
θ � be an oinc-derivation with n > 0. If

[on] is applied to the descendant x sn ≈ t′ of x sn tm ≈ t using the rewrite rule
f uk vn → r and x sn ≈ t′ is the last descendant to which [on] is applied then
there exists an oinc-derivation A′: (s1 ≈ v1, . . . , sn ≈ vn, r tm ≈ t, E)σ ⇒∗θ′ �
with σ = {x 7→ f uk} such that θ = σθ′ and |A′| < |A|.
Proof. Similar to the proof of Lemma 20. ut

In Lemma 21 the initial goals of A and A′ are connected by a V[onv], σ-step.

Lemma 22. Let G be a proper goal. For every oinc-derivation A:G ⇒+
θ �

there exist an nca-step G Vσ G′ and an oinc-derivation A′:G′ ⇒∗θ′ � such
that θ = σθ′ and |A′| < |A|.
Proof. We have to show that Lemmata 17–21 cover all possible cases. Let G be
the goal s ≈ t, E. The case that t is a variable is covered by Lemma 17, so we
may assume that t is not a variable. Because G is proper the right-hand side t
is a pattern. Hence t is not a head-variable term. We distinguish two cases.

1. Suppose [on] is not applied to a descendant of s ≈ t.
(a) If the head-symbol of s is a constant f then, according to Lemma 11, we

must have s = f sn and t = f tn. This case is covered by Lemma 18.
(b) If the head-symbol of s is a variable x then, according to Lemma 12,

s = x sn and t = f tm un. This case is covered by Lemma 19.



2. Suppose [on] is applied to a descendant of s ≈ t.
(a) If the head-symbol of s is a constant f then, according to Lemma 13,

we have s = f sn tm with n = arity(f). From Lemma 13 we also infer
that [on] is never applied to descendants of the form f sk ≈ t′ with
k < arity(f). Hence the application of [on] is to a descendant of the form
f sn tk ≈ t′′ with 0 6 k 6 m. According to Lemma 16 [on] is applied to
the descendant f sn ≈ t′′′. Lemma 15 states that the employed rewrite
rule is of the form f un → r. Hence this case is covered by Lemma 20.

(b) The case that the head-symbol of s is a variable x is covered by Lemma 21,
using similar reasoning as in the previous case.

ut

The completeness of nca is an easy consequence of the previous lemma and
the completeness of oinc (Theorem 7).

Theorem 23. Let R be an orthogonal ATRS and G a right-normal goal. For
every normalizable solution θ of G there exists a successful nca-derivation GV∗θ′
� such that θ′ 6R θ [Var(G)].

Proof. According to the second part of Theorem 7 there exists a successful oinc-
derivation A:G⇒∗θ′ � such that θ′ 6R θ [Var(G)]. By induction on |A| we show
the existence of a successful nca-derivation GV∗θ′ �. The case |A| = 0 is trivial.
Suppose |A| > 0. According to Lemma 22 there exist an nca-step G Vσ G′

and an oinc-derivation A′:G′ ⇒∗θ′′ � such that θ′ = σθ′′ and |A′| < |A|. The
induction hypothesis yields an successful nca-derivation G′ V∗θ′′ �. Combining
this derivation with the nca-step G Vσ G′ yields the desired nca-derivation
GV∗θ′ �. ut

Inspection of the above proofs reveals that the length of the resulting nca-
derivation G V∗ � never exceeds the length of the oinc-derivation G ⇒∗ �.
Moreover, it is not difficult to see that for every application of Lemmata 18–21
in the transformation from G⇒∗ � to G⇒∗ � we gain n steps (corresponding
to applications of the inference rule [d] in the oinc-derivation G⇒∗ �).

6 Incorporating Strict Equality into NCA

In functional logic programming languages like k-leaf [4] and babel [9] two
expressions are considered to be equal if and only if they reduce to the same
ground constructor normal form. This so-called strict equality is adopted to
model non-termination correctly. In the framework of applicative term rewriting,
strict equality is realized by adding the rewrite rules



c ≡ c → true if c is a nullary constructor,
cxn ≡ cyn → x1 ≡ y1 ∧ · · · ∧ xn ≡ yn if c is an n-ary constructor with n > 0,
true ∧ x → x



to a given ATRS R, resulting in the ATRS Rs. Here ≡ denotes strict equality
and ∧ is a binary right-associative symbol, written in infix notation, denoting
logical conjunction. In our framework a strict equation is an equation of the
form (s ≡ t) ≈ true, which we abbreviate to s ≈s t. A goal consisting of strict
equations is trivially right-normal.

Since Rs inherits orthogonality from R, we can solve (strict) equations with
respect to the calculus nca and the ATRS Rs. However, as observed by Ida
and Nakahara [7] in the context of oinc, it is much more efficient to add special
inference rules for the rewrite rules in Rs\R. Based on their ideas, we extend
nca in the following definition.

Definition 24. Let R be an orthogonal ATRS. The calculus ncas is obtained
by adding the following inference rules to nca:

[onas] outermost narrowing of applicative terms for strict equations

f sn tm 's t, E
s1 ≈ u1, . . . , sn ≈ un, r tm ≈s t, E

if there exists a fresh variant f un → r of a rewrite rule in R,
[onvs] outermost narrowing of head-variable terms for strict equations

x sn tm 's t, E
(s1 ≈ v1, . . . , sn ≈ vn, r tm ≈s t, E)θ

if there exists a fresh variant f uk vn → r of a rewrite rule in R, n > 0,
and θ = {x 7→ f uk},

[das] decomposition of applicative terms for strict equations

c sn ≈s c tn, E
s1 ≈s t1, . . . , sn ≈s tn, E

if c is an n-ary constructor symbol,
[imas] imitation for strict equations

x sn 's c tm un, E
(x1 ≈s t1, . . . , xm ≈s tm, s1 ≈s u1, . . . , sn ≈s un, E)θ

if c is an (m+ n)-ary constructor symbol and θ = {x 7→ cxm} with xm
fresh variables,

[dvs] decomposition of head-variable terms for strict equations

x sn 's y tm un, E
(x1 ≈s t1, . . . , xm ≈s tm, s1 ≈s u1, . . . , sn ≈s un, E)θ

if either x = y, m = 0, and θ is the empty substitution, or x 6= y and
θ = {x 7→ y xm} with xm fresh variables.

Here s 's t stands for s ≈s t or t ≈s s.



Observe that the rewrite rules in Rs\R for strict equality are no longer
needed in ncas.

Example 5. Let R = {a→ b}. The following ncas-derivation, starting from the
goal G = x a a ≈s y a, produces the substitution σ = {y 7→ x b}:

GV[dvs], {y 7→x x1} a ≈s x1, a ≈s aV[onas], a→b b ≈s x1, a ≈s a
V[imas], {x1 7→b} a ≈s a V[onas], a→b b ≈s a
V[onas], a→b b ≈s b V[das] �

Note that σ is not a solution of G since the terms x a a and x b a do not reduce
to the same ground constructor normal form. However, we would like to stress
that σ represents (all) solutions of G in the sense that σθ is a solution of G for
all θ = {x 7→ c tn | c is an (n + 2)-ary constructor and t1, . . . , tn are ground
constructor terms}.

Below we state the completeness of ncas. The proof, which is essentially the
same as the completeness proof of the calculus s-oinc studied in [7], is omitted.

Theorem 25. Let R be an orthogonal ATRS and G a right-normal goal. For
every normalizable solution θ of G there exists a successful ncas-derivation
GV∗θ′ � such that θ′ 6R θ [Var(G)]. ut

7 Experimental Results

In this section we compare the performance of nca and oinc on a small example.
We have implemented both calculi in Sicstus Prolog 2.1. We solved goals of the
form

Gn = map f [Sn 0, Sn−1 0, . . . , 0] ≈ [S2n+1 0, S2n−1 0, . . . , 0]

with respect to the example program in Sect. 1. Here Sn 0 denotes the term

S (S (· · · (S︸ ︷︷ ︸
n

0) · · ·)).

Since for each n there are infinitely many normalized solutions of Gn, we mea-
sured the runtime of the two programs to compute the first solution {f 7→
compose S double}. Table 1 shows, for several values of n, these times in mil-
liseconds as well as the length of the resulting successful derivation.

It is apparent that nca has a much better performance than oinc.



Table 1. Comparison between oinc and nca

n oinc nca

1 3800 msec. (73 steps) 120 msec. (42 steps)

2 5448 msec. (136 steps) 179 msec. (77 steps)

3 7401 msec. (210 steps) 250 msec. (118 steps)

4 8799 msec. (295 steps) 305 msec. (165 steps)

5 10769 msec. (391 steps) 380 msec. (218 steps)

8 Concluding Remarks

We have presented complete narrowing calculi for applicative term rewriting.
Applicative term rewriting is a natural first-order framework for dealing with
higher-order functions in the setting of functional (logic) programming with lazy
semantics. Because of the absence of (λ-)abstraction, applicative term rewriting
cannot express all higher-order features. Prehofer [13] describes a full higher-
order lazy narrowing calculus.

Although nca and ncas have been designed to deal efficiently with applica-
tive terms, there remains some room for improvement. In order to ensure com-
pleteness of the calculi, the various inference rules have to be applied don’t know
non-deterministically. In general more than one inference rule is applicable to
a given goal. For instance, both [ona] and [da] apply to certain goals. One way
to remove this particular non-determinism is by restricting ourselves to ACSs.
The restriction to ACSs also enables us to add failure rules which can be used to
prune unsuccessful derivations at an early stage. Another source of inefficiency in
our calculi is in the inference rules [onv] and [onvs] themselves. In the worst case
there are arity(f)−1 different ways to apply the two inference rules with respect
to a given rewrite rule f uk vn → r. A practical restriction to remove this non-
determinism is by adding types to applicative term rewriting systems. In typed
systems we can associate a type with every (head-)variable. This implies that we
can uniquely determine the number k for the rewrite rule f uk vn → r such that
the type of the head-variable x is (unifiable with) the type of the term f uk. For
example, consider the ACS {plus 0x → x (1), plus (Sx) y → S (plusx y) (2)}
and the goal z 0 (S 0) ≈ S 0. In the untyped system presented in this paper there
are four different ways to apply the inference rule [onv]. Only one of them leads
to a successful derivation. One of the three unsuccessful applications of [onv] is

z 0 (S 0) ≈ 0V[onv], (2), {z 7→plus (S x}) 0 ≈ y, S (plusx y) (S 0) ≈ S 0.

Notice that the term S (plusx y) (S 0) cannot be typed. In a (polymorphically)
typed system we can actually avoid the above [onv] step by letting the type of
the variable z be Nat→ Nat→ Nat and observing that the type Nat→ Nat
of the term plus (Sx) isn’t unifiable with the type of z. So by type-checking the
substitution θ = {x 7→ f uk} in [onv] steps we can avoid invalid ones and hence
(significantly) reduce the search space.



As a final remark, we emphasize that the basic ideas in this paper do not
depend on the calculus oinc. For example, it is only a matter of diligence to
extend nca to a calculus based on the calculus lnc studied in [12]. Because the
inference rules of lnc are more complex than those of oinc, the former calculus
is complete for arbitrary confluent term rewriting systems and arbitrary initial
goals.
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