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Abstract. We introduce a new technique for proving termination of
term rewriting systems. The technique, a specialization of Zantema’s
semantic labelling technique, is especially useful for establishing the cor-
rectness of transformation methods that attempt to prove termination
by transforming term rewriting systems into systems whose termination
is easier to prove. We apply the technique to modularity, distribution
elimination, and currying, resulting in new results, shorter correctness
proofs, and a positive solution to an open problem.

1 Introduction

Termination is an undecidable property of term rewriting systems. In the litera-
ture (Dershowitz [4] contains an early survey of termination techniques) several
methods for proving termination are described that are quite successful in prac-
tice. We can distinguish roughly two kinds of termination methods:

1. basic methods like recursive path order and polynomial interpretations that
apply directly to a given term rewriting system, and

2. methods that attempt to prove termination by transforming a given term
rewriting system into a term rewriting system whose termination is easier
to prove, e.g. by a method of the first kind, and implies termination of the
given system.

Transformation orders (Bellegarde and Lescanne [1]), distribution elimination
(Zantema [19]), and semantic labelling (Zantema [18]) are examples of methods
of the second kind. The starting point of the present paper is the observation that
semantic labelling is in a sense too powerful. We show that any terminating term
rewriting system can be transformed by semantic labelling into a system whose
termination can be shown by the recursive path order. The proof of this result
gives rise to a new termination method which we name self-labelling. We show
that self-labelling is especially useful for proving the correctness of termination
methods of the second kind:

1. Using self-labelling we prove a new modularity result: the extension of any
terminating term rewriting system with a terminating recursive program
scheme that defines new functions is again terminating.



2. Using self-labelling we give a positive solution to an open problem in [19]
concerning distribution elimination: right-linearity is not necessary for the
correctness of distribution elimination in the absence of distribution rules.
The proof reveals how to improve distribution elimination in the absence of
distribution rules.

3. Using self-labelling we give a short proof of the main result of Kennaway,
Klop, Sleep, and de Vries [10], the correctness of currying, which for the
purpose of this paper we view as a termination method of the second kind.

The proofs of the above results are remarkably similar.
The remainder of this paper is organized as follows. In the next section we

recapitulate semantic labelling. In Sect. 3 we show that every terminating term
rewriting system can be transformed by semantic labelling into a term rewrit-
ing system whose termination is very easy to prove. This completeness result
gives rise to the self-labelling technique. In Sect. 4 we obtain a new modularity
result with self-labelling. In Sect. 5 we use self-labelling to solve the conjec-
ture concerning distribution elimination. The self-labelling proof gives rise to a
stronger result, which we explain in Sect. 6. Our final illustration of the strength
of self-labelling can be found in Sect. 7 where we present a short proof of the
preservation of termination under currying.

2 Preliminaries

We assume the reader is familiar with the basics of term rewriting (as expounded
in [6, 11]). This paper deals with the termination property. A term rewriting
system (TRS for short) (F ,R) is said to be terminating if it doesn’t admit
infinite rewrite sequences. It is well-known that a TRS (F ,R) is terminating if
and only if there exists a reduction order—a well-founded order that is closed
under contexts and substitutions—on T (F ,V) that orients the rewrite rules of
R from left to right. Another well-known fact states that (→R ∪ B)+ is a well-
founded order on T (F ,V) for any terminating TRS (F ,R). Here s B t if and
only if t is a proper subterm of s. Observe that (→R ∪ B)+ is in general not
a reduction order as it lacks closure under contexts. In this paper we make use
of the fact that termination (confluence) is preserved under signature extension,
which follows from modularity considerations ([14, 16]).

In this preliminary section we briefly recall the ingredients of semantic la-
belling (Zantema [18]). Actually we present a special case which is sufficient for
our purposes. Let (F ,R) be a TRS and A = (A, {fA}f∈F ) an F-algebra with
non-empty carrier A. Let � be a well-founded order on A, write < for the union
of � and equality. We say that the pair (A,�) is a quasi-model for (F ,R) if

1. the interpretation fA of every n-ary function symbol f ∈ F is weakly mono-
tone (with respect to �) in all its n coordinates, i.e., fA(a1, . . . , ai, . . . , an) <
fA(a1, . . . , b, . . . , an) for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n} with ai � b,
and



2. (A,�) and (F ,R) are compatible, i.e., [α](l) < [α](r) for every rewrite rule
l → r ∈ R and assignment α:V → A. Here [α] denotes the unique homo-
morphism from T (F ,V) to A that extends α, i.e.,

[α](t) =
{
α(t) if t ∈ V,
fA([α](t1), . . . , [α](tn)) if t = f(t1, . . . , tn).

The above takes care of the semantical content of semantic labelling. We now
describe the labelling part. We label function symbols from F with elements of
A. Formally, we consider the labelled signature Flab = {fa | f ∈ F and a ∈ A}
where each fa has the same arity as f . For every assignment α we inductively
define a labelling function labα from T (F ,V) to T (Flab,V) as follows:

labα(t) =
{
t if t ∈ V,
f[α](t)(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn).

So function symbols in t are simply labelled by the value (under the assignment
α) of the corresponding subterms. We define the TRSs Rlab and dec(F ,�) over
the signature Flab as follows:

Rlab = { labα(l)→ labα(r) | l→ r ∈ R and α:V → A},
dec(F ,�) = {fa(x1, . . . , xn)→ fb(x1, . . . , xn) | f ∈ F and a, b ∈ A with a � b}.
The following theorem is a special case of the main result of Zantema [18].

Theorem 1. Let (F ,R) be a TRS, A an F-algebra, and � a well-founded order
on the carrier of A. If (A,�) is a quasi-model then termination of (F ,R) is
equivalent to termination of (Flab,Rlab ∪ dec(F ,�)). ut

Observe that in the above approach the labelling part of semantic labelling
is completely determined by the semantics. This is not the case for semantic
labelling as defined in [18], but for our purpose it suffices.

If termination of (Flab,Rlab ∪ dec(F ,�)) is proved by means of a recursive
path order, as will be the case with self-labelling, then a corresponding termi-
nation ordering for (F ,R) can be described as a semantic path order as defined
in [9].

3 Self-Labelling

In this section we show that every terminating TRS can be transformed by se-
mantic labelling into a TRS whose termination is very easily established. The
proof of this result forms the basis of a powerful technique for proving the cor-
rectness of transformation techniques for establishing termination.

Definition 2. A TRS (F ,R) is called precedence terminating if there exists a
well-founded order A on F such that root(l) A f for every rewrite rule l→ r ∈ R
and every function symbol f ∈ Fun(r).



Lemma 3. Every precedence terminating TRS is terminating.

Proof. Let (F ,R) be a precedence terminating TRS. So there exists a well-
founded order A on F that satisfies the condition of Definition 2. An easy in-
duction argument on the structure of r reveals that l Arpo r for every l→ r ∈ R.
Here Arpo denotes the recursive path order (Dershowitz [3]) induced by the
precedence A. Since Arpo is a reduction order, termination of (F ,R) follows. ut

The next result states that any terminating TRS can be transformed by
semantic labelling into a precedence terminating TRS.

Theorem 4. For every terminating TRS (F ,R) there exists a quasi-model (A,�)
such that (Flab,Rlab ∪ dec(F ,�)) is precedence terminating.

Proof. As F-algebra A we take the term algebra T (F ,V). We equip T (F ,V)
with the well-founded order � =→+

R. (Well-foundedness is an immediate conse-
quence of the termination of R.) Because rewriting is closed under contexts, all
algebra operations are (strictly) monotone in all their coordinates. Because as-
signments in the term algebra T (F ,V) are substitutions and rewriting is closed
under substitutions, (A,�) is a quasi-model for (F ,R). It remains to show that
(Flab,Rlab ∪ dec(F ,�)) is precedence terminating. To this end we define a well-
founded order A on Flab as follows: fs A gt if and only if s (→R ∪ B)+ t. Let
l→ r be a rewrite rule of Rlab ∪ dec(F ,�).

1. If l → r ∈ Rlab then there exist an assignment α:V → T (F ,V) and a
rewrite rule l′ → r′ ∈ R such that l = labα(l′) and r = labα(r′). The label
of root(l) is [α](l′) = l′α. Let ` be the label of a function symbol in r. By
construction ` = [α](t) = tα for some subterm t of r′. Hence l′α→R r′α D `.
So root(l) A f for every f ∈ Fun(r).

2. If l → r ∈ dec(F ,�) then l = fs(x1, . . . , xn) and r = ft(x1, . . . , xn) with
s→+

R t. Clearly root(l) = fs A ft.
ut

The particular use of semantic labelling in the above proof (i.e., choosing
the term algebra as semantics and thus labelling function symbols with terms)
is what we will call self-labelling. One may argue that Theorem 4 is completely
useless, since the construction of the quasi-model in the proof relies on the fact
that (F ,R) is terminating. Nevertheless, in the following sections we will see
how self-labelling gives rise to many new results and significant simplifications
of existing results on the correctness of transformation techniques for establishing
termination. Below we sketch the general framework.

Let Φ be a transformation on TRSs, designed to make the task of proving
termination easier. In two of the three applications we give, the TRS Φ(F ,R)
is a subsystem of (F ,R). The crucial point is proving correctness of the trans-
formation, i.e., proving that termination of Φ(F ,R) implies termination of the
original TRS (F ,R). Write Φ(F ,R) = (F ′,R′). The basic idea is to label the
TRS (F ,R) with terms of (F ′,R′). This is achieved by executing the following
steps:



1. Turn the term algebra T (F ′,V) into an F-algebra A by choosing suitable in-
terpretations for the function symbols in F\F ′ and taking term construction
as interpretation of the function symbols in F ∩ F ′.

2. Equip the F-algebra A with the well-founded order � =→+
R′ .

3. Show that (A,�) is a quasi-model for (F ,R).
4. Define fs A gt if and only if s (→R′ ∪ B)+ t, for f, g ∈ F∩F ′ and extend this

to a well-founded order A on Flab such that the TRS (Flab,Rlab∪dec(F ,�))
is precedence terminating with respect to A.

At this point termination of (F ,R) and thus the correctness of the transforma-
tion Φ is a consequence of Theorem 1.

We would like to stress that the only creative step in this scheme is the
choice of the interpretations for the function symbols that disappear during the
transformation Φ; the choice of A will then be implied from the requirement of
precedence termination.

4 Modularity

Our first application of self-labelling is a new modularity result. Modularity
is concerned with the preservation of properties under combinations of TRSs.
Recently the focus in modularity research (Ohlebusch [15] contains a recent
overview) has shifted to so-called hierarchical combinations ([5, 12, 13]). We
will prove the following result: the combination of an arbitrary terminating TRS
and a terminating recursive program scheme that defines new functions is ter-
minating. A recursive program scheme (RPS for short) is a TRS (F ,R) whose
rewrite rules have the form

f(x1, . . . , xn)→ t

with x1, . . . , xn pairwise distinct variables such that for every function symbol
f ∈ F there is at most one such rule. The subset of F consisting of all f such that
there is a corresponding rule in R is denoted by FD. In the literature RPSs are
assumed to be finite, but we don’t need that restriction here. From a rewriting
point of view RPSs are quite simple: every RPS is confluent and termination of
RPSs is decidable. Moreover, the normals forms of an RPS (F ,R) constitute the
set T (F \ FD,V) of terms that do not contain function symbols in FD. Below
we make use of the following fact.

Lemma 5. An RPS is terminating if and only if it is precedence terminating.
Proof. The “if” direction is trivial. Let (F ,R) be a terminating RPS. Define a
binary relation� on F as follows: f � g if and only if there exists a rewrite rule
l→ r in R such that root(l) = f and g ∈ Fun(r). Termination of (F ,R) implies
that �+ is a well-founded order on F . Hence (F ,R) is precedence terminating
with respect to �+. ut
Theorem 6. Let (F ,R) be a terminating TRS and (G,S) a terminating RPS
satisfying F ∩ GD = ∅. Then (F ∪ G,R∪ S) is terminating.



Proof. Let F ′ = F ∪ (G \ GD). Using the technique of self-labelling, we show
how termination of (F ∪G,R∪S) follows from termination of (F ′,R). We turn
T (F ′,V) into an F ∪ G-algebra A by defining fA for every f ∈ GD as follows:

fA(t1, . . . , tn) = f(t1, . . . , tn)↓S
for all terms t1, . . . , tn ∈ T (F ′,V). Here f(t1, . . . , tn)↓S denotes the (unique)
normal form of f(t1, . . . , tn) with respect to the complete, i.e. confluent and
terminating, RPS (F ∪ G,S). Note that f(t1, . . . , tn)↓S ∈ T (F ′,V). As well-
founded order � on T (F ′,V) we take→+

R. We claim that (A,�) is a quasi-model
for (F ∪ G,R∪ S).

First we show by induction on t ∈ T (F ∪ G,V) that [α](t) = tα↓S for all
assignments α:V → T (F ′,V). If t ∈ V then [α](t) = α(t) = tα = tα↓S because
tα ∈ T (F ′,V) is a normal form with respect to S. Let t = f(t1, . . . , tn). We
have [α](t) = fA([α](t1), . . . , [α](tn)). From the induction hypothesis we obtain
[α](ti) = tiα↓S for all i ∈ {1, . . . , n} and thus [α](t) = fA(t1α↓S , . . . , tnα↓S).
If f /∈ GD then [α](t) = f(t1α↓S , . . . , tnα↓S) and if f ∈ GD then [α](t) =
f(t1α↓S , . . . , tnα↓S)↓S . In both cases we have [α](t) = f(t1α, . . . , tnα)↓S =
tα↓S . The above property enables us to prove compatibility of (A,�) and (F ∪
G,R ∪ S). Let l → r ∈ R ∪ S and α:V → T (F ′,V). We have to show that
[α](l) < [α](r). If l → r ∈ R then [α](l) = lα →R rα = [α](r). If l → r ∈ S
then [α](l) = lα↓S and [α](r) = rα↓S . Because lα→S rα, confluence of S yields
[α](l) = [α](r).

We now show that every algebra operation is weakly monotone in all its coor-
dinates. For fA with f ∈ F ′ this is a consequence of closure under contexts of the
rewrite relation→R. Let f be an n-ary function symbol in GD and s1, . . . , sn, t ∈
T (F ′,V) such that si � t. Here i is an arbitrary element of {1, . . . , n}. We
show that fA(s1, . . . , si, . . . , sn) < fA(s1, . . . , t, . . . , sn). To this end we make
use of the fact that tα↓S = t↓Sα for all terms t ∈ T (F ∪ G,V) and assignments
α:V → T (F ′,V). This property is an easy consequence of the special structure of
the left-hand sides of the rewrite rules of the RPS S. Let z be a fresh variable and
define s = f(s1, . . . , z, . . . , sn). We have fA(s1, . . . , si, . . . , sn) = sα↓S = s↓Sα
and fA(s1, . . . , t, . . . , sn) = sβ↓S = s↓Sβ. Here the substitutions (assignments)
α and β are defined by α = {z 7→ si} and β = {z 7→ t}. Because α(x) < β(x)
for every variable x, the desired s↓Sα < s↓Sβ is a consequence of closure under
contexts of the rewrite relation →R.

It remains to show that Rlab∪Slab∪dec(F∪G,�) is precedence terminating.
To this end we equip the labelled signature Flab ∪ Glab with a proper order A
defined as follows: fs A gt if and only if

1. s (→R ∪ B)+ t and either f, g ∈ F ′ or f, g ∈ GD, or
2. f ∈ GD, g ∈ G, and f I g.

Here I is any well-founded order on G such that S is precedence terminating
with respect to I. The existence of I is guaranteed by Lemma 5. From well-
foundedness of (→R ∪ B)+ and I it follows that A is a well-founded order on
Flab ∪ Glab. The rewrite rules in Rlab ∪ dec(F ∪ G,�) are taken care of by the



first clause of the definition of A, just as in the proof of Theorem 4. For the rules
in Slab we use the second clause. ut

We would like to remark that neither the results of Krishna Rao [12, 13]
nor the colorful theorems of Dershowitz [5] apply, because we don’t put any
restrictions on the base system R. One easily shows that S quasi-commutes ([2])
over right-linear R, but this doesn’t hold for arbitrary TRSs R.

As a very special case of Theorem 6 we mention that the disjoint union of
any terminating TRS R and the TRS S consisting of the single projection rule
g(x, y) → x is terminating. This is to be contrasted with the celebrated coun-
terexample of Toyama [17] against the preservation of termination under disjoint
unions in which one of the TRSs consists of both projection rules g(x, y) → x
and g(x, y)→ y.

5 Distribution Elimination

Our second application of self-labelling is the proof of a conjecture of Zan-
tema [19] concerning distribution elimination.

Let (F ,R) be a TRS and let e ∈ F be a designated function symbol whose
arity is at least one. A rewrite rule l→ r ∈ R is called a distribution rule for e if
l = C[e(x1, . . . , xn)] and r = e(C[x1], . . . , C[xn]) for some non-empty context C
in which e doesn’t occur and pairwise different variables x1, . . . , xn. Distribution
elimination is a technique that transforms (F ,R) by eliminating all distribution
rules for e and removing the symbol e from the right-hand sides of the other
rules. First we inductively define a mapping Edistr that assigns to every term in
T (F ,V) a non-empty subset of T (F \ {e},V), as follows:

Edistr(t) =





{t} if t ∈ V,
n⋃

i=1

Edistr(ti) if t = e(t1, . . . , tn),

{f(s1, . . . , sn) | si ∈ Edistr(ti)} if t = f(t1, . . . , tn) with f 6= e.

The mapping Edistr is illustrated in Fig. 1, where we assume that the numbered
contexts do not contain any occurrences of e. It is extended to rewrite systems
as follows: Edistr(R) = {l → r′ | l → r ∈ R is not a distribution rule for e and
r′ ∈ Edistr(r)}. Observe that e does not occur in Edistr(R) if and only if e does
not occur in the left-hand sides of rewrite rules of R that are not distribution
rules for e.

One of the main results of Zantema [19] is stated below.

Theorem 7. Let (F ,R) be a TRS and let e ∈ F be a non-constant symbol which
does not occur in the left-hand sides of rewrite rules of R that are not distribution
rules for e.

1. If Edistr(R) is terminating and right-linear then R is terminating.
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Fig. 1. The mapping Edistr.

2. If Edistr(R) is simply terminating and right-linear then R is simply termi-
nating.

3. If Edistr(R) is totally terminating then R is totally terminating.
ut

The following example from [19] shows that right-linearity is essential in parts
1 and 2.

Example 1. Consider the TRS

R =





f(a, b, x)→ f(x, x, e(a, b))
f(e(x, y), z, w)→ e(f(x, z, w), f(y, z, w))
f(x, e(y, z), w)→ e(f(x, y, w), f(x, z, w))



 .

The last two rules are distribution rules for e and e does not occur in the left-hand
side of the first rule. The TRS Edistr(R) = {f(a, b, x) → f(x, x, a), f(a, b, x) →
f(x, x, b)} can be shown to be simply terminating, while the term f(a, b, e(a, b))
admits an infinite reduction in R.

In [19] it is conjectured that in the absence of distribution rules for e the right-
linearity assumption in part 1 of Theorem 7 can be omitted. Before proving this
conjecture with the technique of self-labelling, we show that a similar statement
for simple termination doesn’t hold, i.e., right-linearity is essential in part 2 of
Theorem 7 even in the absence of distribution rules for e.

Example 2. Let R′ consist of the first rule of the TRS R of Example 1. Simple
termination of Edistr(R′) = Edistr(R) was established in Example 1, but R′ fails
to be simply terminating as s = f(a, b, e(a, b))→R′ f(e(a, b), e(a, b), e(a, b)) = t
with s embedded in t. However, termination ofR′ follows from Theorem 8 below.

Theorem 8. Let (F ,R) be a TRS and let e ∈ F be a non-constant symbol
which does not occur in the left-hand sides of rewrite rules of R. If Edistr(R) is
terminating then R is terminating.



Proof. We turn the term algebra T (F \ {e},V) into an F-algebra A by defining

eA(t1, . . . , tn) = tπ

for all terms t1, . . . , tn ∈ T (F\{e},V). Here π is an arbitrary but fixed element of
{1, . . . , n}. So eA is simply projection onto the π-th coordinate. We equip A with
the well-founded order � =→+

Edistr(R). We show that (A,�) is a quasi-model for
(F ,R). It is very easy to see that eA is weakly monotone in all its coordinates.
All other operations are strictly monotone in all their coordinates (as→+

Edistr(R)

is closed under contexts). Let ε be the identity assignment from V to V. We
denote [ε](t) by 〈t〉. An easy induction proof shows that [α](t) = 〈t〉α for all
terms t ∈ T (F ,V) and assignments α:V → T (F \ {e},V). Also the following
two properties are easily shown by induction on the structure of t ∈ T (F ,V):
1. 〈t〉 ∈ Edistr(t) and 2. if s E t then there exists a term t′ ∈ Edistr(t) such that
〈s〉 E t′.
1. If t ∈ V then 〈t〉 = t and Edistr(t) = {t}. For the induction step we distinguish

two cases. If t = e(t1, . . . , tn) then 〈t〉 = 〈tπ〉 and Edistr(t) =
⋃n
i=1Edistr(ti).

We have 〈tπ〉 ∈ Edistr(tπ) according to the induction hypothesis. Hence 〈t〉 ∈
Edistr(t). If t = f(t1, . . . , tn) with f 6= e then 〈t〉 = f(〈t1〉, . . . , 〈tn〉) and
Edistr(t) = {f(s1, . . . , sn) | si ∈ Edistr(ti)}. The induction hypothesis yields
〈ti〉 ∈ Edistr(ti) for all i = 1, . . . , n. Hence also in this case we obtain the
desired 〈t〉 ∈ Edistr(t).

2. Observe that for s = t the statement follows from property 1 because we can
take t′ = 〈t〉. This observation also takes care of the base of the induction.
Suppose t = f(t1, . . . , tn) and let s be a proper subterm of t, so s is a subterm
of tk for some k ∈ {1, . . . , n}. From the induction hypothesis we obtain a term
t′k ∈ Edistr(tk) such that 〈s〉 E t′k. Again we distinguish two cases. If f = e
then Edistr(t) =

⋃n
i=1Edistr(ti) and thus we can take t′ = t′k. If f 6= e then

Edistr(t) = {f(s1, . . . , sn) | si ∈ Edistr(ti)}. Let t′ = f(〈t1〉, . . . , t′k, . . . , 〈tn〉).
Using property 1 we infer that t′ ∈ Edistr(t). Clearly 〈s〉 E t′.

Now let l → r be an arbitrary rewrite rule of R and α:V → T (F \ {e},V) an
arbitrary assignment. We have [α](l) = 〈l〉α and [α](r) = 〈r〉α. Since e doesn’t
occur in l, 〈l〉 = l and hence [α](l) = lα. Because 〈r〉 ∈ Edistr(r), the rule l→ 〈r〉
belongs to Edistr(R). Therefore lα→Edistr(R) 〈r〉α and thus also [α](l) < [α](r).

Define a well-founded order A on Flab as follows: fs A gt if and only if
s (→Edistr(R) ∪ B)+

t. We will show that (Flab,Rlab ∪ dec(F ,�)) is precedence
terminating with respect to A. Let l → r be a rewrite rule in Rlab ∪ dec(F ,�
). We distinguish two cases. If l → r ∈ Rlab then there exist an assignment
α:V → T (F \ {e},V) and a rewrite rule l′ → r′ ∈ R such that l = labα(l′)
and r = labα(r′). The label of root(l) is [α](l′) = 〈l′〉α = l′α. Let ` be the
label of a function symbol in r. By construction ` = [α](t) = 〈t〉α for some
subterm t of r′. According to property 2 above, 〈t〉 is a subterm of some r′′ ∈
Edistr(r). By definition l′ → r′′ ∈ Edistr(R). Hence l′α →Edistr(R) r

′′α D `. So
root(l) A f for every f ∈ Fun(r). If l → r ∈ dec(F ,�) then l = fs(x1, . . . , xn)
and r = ft(x1, . . . , xn) with f ∈ F and s � t. In this case we clearly have
root(l) = fs A ft. ut



The only creative element in the above proof is the choice of eA. The rest is
a routine verification of the two proof obligations of self-labelling.

6 Distribution Elimination Revisited

In the proof of Theorem 8 we saw that we can take any projection function as
semantics for e. This freedom makes it possible to improve distribution elimina-
tion (in the absence of distribution rules) by reducing the size of Edistr(R) while
preserving correctness of the transformation.

What are the essential properties of Edistr that make the proof of Theo-
rem 8 work? A careful inspection reveals, apart from the obvious termination
requirement for Edistr(R), the following two properties:

1. 〈t〉 ∈ Edistr(t), and
2. if s E t then there exists a term t′ ∈ Edistr(t) such that 〈s〉 E t′,

for every t ∈ T (F ,V). Below we define a new transformation Eπdistr that satisfies
these two properties. The transformation is parameterized by the argument po-
sitions π of the function symbol e. The definition relies on the F-algebra defined
in the proof of Theorem 8 in that we use 〈t〉.

Definition 9. Let (F ,R) be a TRS and let e ∈ F be a function symbol whose
arity is at least one. Fix π ∈ {1, . . . , arity(e)}. We inductively define mappings
φ and Eπdistr that assigns to every term in T (F ,V) a subset of T (F \ {e},V), as
follows:

φ(t) =





∅ if t ∈ V,
φ(tπ) ∪

⋃

i 6=π
Eπdistr(ti) if t = e(t1, . . . , tn),

n⋃

i=1

φ(ti) if t = f(t1, . . . , tn) with f 6= e,

and
Eπdistr(t) = φ(t) ∪ {〈t〉}.

We extend the mapping Eπdistr to R as follows: Eπdistr(R) = {l → r′ | l → r ∈ R
is not a distribution rule for e and r′ ∈ Eπdistr(r)}.

Figure 2 shows the effect of E1
distr and E2

distr on the term t of Fig. 1. Observe
that each numbered context occurs exactly once in each set. The following lemma
states that Eπdistr has the two required properties.

Lemma 10. Let (F ,R) be a TRS and let e and π be as above. For every t ∈
T (F ,V) we have

1. 〈t〉 ∈ Eπdistr(t), and
2. if s E t then there exists a term t′ ∈ Eπdistr(t) such that 〈s〉 E t′.
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distr(t) =

8>>>>>><>>>>>>:
9>>>>>=>>>>>;

Fig. 2. The mapping Eπdistr.

Proof. The first statement holds by definition. The second statement we prove
by induction on the structure of t ∈ T (F ,V). If s = t then the result follows
from the first statement. Hence we may assume that s C t. This is only possible
if t is a non-variable term f(t1, . . . , tn). There exists a k ∈ {1, . . . , n} such that
s E tk. The induction hypothesis yields a term t′k ∈ Eπdistr(tk) = φ(tk) ∪ {〈tk〉}
such that 〈s〉 E t′k. We distinguish two cases. Suppose f = e. In this case we
have

Eπdistr(t) = φ(t) ∪ {〈t〉} = φ(tπ) ∪ {〈t〉} ∪
⋃

i 6=π
Eπdistr(ti).

If k = π then t′k ∈ φ(tπ) ∪ {〈tk〉} = φ(tπ) ∪ {〈t〉} ⊆ Eπdistr(t). If k 6= π then
t′k ∈ Eπdistr(tk) ⊆ Eπdistr(t). Hence in both cases we can take t′ = t′k. Suppose
f 6= e. We have

Eπdistr(t) = φ(t) ∪ {〈t〉} =
n⋃

i=1

φ(ti) ∪ {f(〈t1〉, . . . , 〈tn〉)}.

If t′k ∈ φ(tk) then clearly t′k ∈ Eπdistr(t) and hence we can take t′ = t′k. If t′k = 〈tk〉
then we take t′ = f(〈t1〉, . . . , 〈tn〉) which satisfies 〈s〉 E t′k E t′. ut

Hence we obtain the following result along the lines of the proof of Theorem 8.

Theorem 11. Let (F ,R) be a TRS and let e ∈ F be a non-constant symbol
which does not occur in the left-hand sides of rewrite rules of R. If Eπdistr(R) is
terminating for some π ∈ {1, . . . , arity(e)} then R is terminating. ut
Example 3. Consider the TRSR = {f(a)→ f(e(a, b))}. Distribution elimination
results in the non-terminating TRS Edistr(R) = {f(a) → f(a), f(a) → f(b)}.
The termination of the TRS

E2
distr(R) =

{
f(a)→ f(b)
f(a)→ a

}

can be verified by recursive path order. Hence termination of R follows from
Theorem 11. Observe that E1

distr(R) fails to be terminating.



An obvious question is whether Eπdistr works in combination with distribution
rules, i.e., does Theorem 7 hold for Eπdistr? The following example shows that the
answer is negative.

Example 4. Consider the non-terminating TRS

R =





f(a, b)→ f(e(a, b), e(a, b))
f(e(x, y), z)→ e(f(x, z), f(y, z))
f(x, e(y, z))→ e(f(x, y), f(x, z))



 .

The TRS Eπdistr(R) is right-linear and (simply and totally) terminating for both
choices of π. For instance,

E1
distr(R) =

{
f(a, b)→ f(a, a)
f(a, b)→ b

}
.

A natural question to ask is whether we need the assumption in Theorems 8
and 11 that e does not occur in the left-hand sides of the rewrite rules in R. In
the proof of Theorem 8 this assumption is only used to conclude that 〈l〉 = l
(where l is the left-hand side of a rewrite rule in R). We need this identity
because the left-hand sides of rewrite rules in Edistr(R) and Eπdistr(R) are of the
form l rather than 〈l〉. This implies that we can completely remove the restriction
that e does not occur in the left-hand sides of rules in R, provided we change
Eπdistr(R) accordingly: Eπdistr(R) = {〈l〉 → r′ | l → r ∈ R and r′ ∈ Eπdistr(r)}.
This extension is useful since it enables us to conclude the termination of a
non-simply terminating TRS like R = {f(e(a, b), a) → f(e(a, b), e(a, b))} by
transforming it into the TRS

E2
distr(R) =

{
f(b, a)→ f(b, b)
f(b, a)→ a

}

whose termination can be verified by recursive path order.
The transformation Eπdistr is similar in spirit to the dummy elimination tech-

nique of Ferreira and Zantema [8]: a function symbol is eliminated from (the
right-hand sides of) the rewrite rules without duplicating the other parts. In
dummy elimination this is achieved by introducing a fresh constant � to sepa-
rate those parts, rather than gluing different parts together. The effect of dummy
elimination—Edummy—on the term t of Fig. 1 is shown in Fig. 3. Observe that
Edummy(t) shares with Eπdistr(t) the characteristic that each numbered contexts
occurs exactly once. An application of Edummy to the TRS R of Example 3
results in the (terminating) TRS

Edummy(R) =




f(a)→ f(�)
f(a)→ a
f(a)→ b



 .

A correctness proof of dummy elimination can be given along the lines of the
proof of Theorem 8, because the two key properties identified earlier hold for
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Edummy(t) =

8><>:
9>=>;

Fig. 3. The mapping Edummy.

Edummy as well, provided we change the interpretation of e to eA(t1, . . . , tn) = �
for all t1, . . . , tn ∈ T ((F \ {e}) ∪ {�},V).

A thorough investigation of the relative strength of (variants of) distribution
elimination and dummy elimination can be found in Ferreira [7].

7 Currying

In this final section we show that the main result of Kennaway, Klop, Sleep, and
de Vries [10]—the preservation of termination under currying—is easily proved
by self-labelling. Currying is the transformation on TRSs defined below.

Definition 12. With every TRS (F ,R) we associate a TRS (F@,R@) as follows:
the signature F@ contains all function symbols of F together with

1. function symbols fi of arity i for every f ∈ F of arity n with 0 6 i < n,
2. a binary function symbol @, called application,

and R@ is the extension of R with all rewrite rules

@(fi(x1, . . . , xi), y)→ fi+1(x1, . . . , xi, y)

with f ∈ F of arity n > 1 and 0 6 i < n. Here x1, . . . , xi, y are pairwise different
variables and fi+1 denotes f if i+ 1 = n.

Clearly termination of R@ implies termination of R.

Theorem 13 Kennaway et al. [10]. If R is a terminating TRS then R@ is ter-
minating. ut

The proof in [10] is rather involved. We present a self-labelling proof.

Proof. Let F ′ = F@ \{@}. The question is how termination of (F@,R@) follows
from termination of (F ′,R). We turn T (F ′,V) into an F@-algebra A by defining
@A(s, t) by induction on the structure of s, as follows:

@A(s, t) =




t if s ∈ V,
fi+1(s1, . . . , si, t) if s = fi(s1, . . . , si) with i < arity(f),
f(@A(s1, t), . . . ,@A(sn, t)) if s = f(s1, . . . , sn).

As well-founded order � on T (F ′,V) we take →+
R.

We show that (A,�) is a quasi-model for (F@,R@). We claim that every al-
gebra operation is strictly monotone in all its coordinates. Here we consider



only the first coordinate of @A, which is the most interesting case. Before
proceeding we mention the following fact, which is easily proved by induc-
tion on the structure of s: if s ∈ T (F ,V), t ∈ T (F ′,V), and σ ∈ Σ(F ′,V)
then @A(sσ, t) = s@A(σ, t). Here the substitution @A(σ, t) is defined as the
mapping that assigns to every variable x the term @A(xσ, t). We show that
@A(s, t) →R @A(u, t) whenever s, t, u ∈ T (F ′,V) with s →R u by induc-
tion on the structure of s. Strict monotonicity of @A in its first coordinate
follows from this by an obvious induction argument. Since s cannot be a vari-
able, we have either s = fi(s1, . . . , si) with i < arity(f) or s = f(s1, . . . , sn).
In the former case we have @A(s, t) = fi+1(s1, . . . , si, t). Moreover, as s is
root-stable, u must be of the form fi(s1, . . . , uj , . . . , si) with sj →R uj . Hence
@A(s, t) →R fi+1(s1, . . . , uj , . . . , si, t) = @A(u, t). Suppose s = f(s1, . . . , sn).
If the rewrite step from s to u takes place in one of the arguments of s then
v = f(s1, . . . , uj , . . . , sn) with sj →R uj . From the induction hypothesis we
obtain @A(sj , t)→R @A(uj , t) and therefore

@A(s, t) = f(@A(s1, t), . . . ,@A(sj , t), . . . ,@A(sn, t))
→R f(@A(s1, t), . . . ,@A(uj , t), . . . ,@A(sn, t))
= @A(u, t).

If the rewrite step from s to u takes place at the root of s then s = lσ and u = rσ
for some rewrite rule l → r ∈ R and substitution σ ∈ Σ(F ′,V). Because l and
r do not contain function symbols from F ′ \ F , we obtain @A(s, t) = l@A(σ, t)
and @A(u, t) = r@A(σ, t) from the above fact. Therefore also in this case
we have @A(s, t) →R @A(u, t). In order to conclude that (A,�) is a quasi-
model for (F@,R@), it remains to show that [α](l) < [α](r) for every rewrite
rule l → r ∈ R@ and assignment α from V to T (F ′,V). If l → r ∈ R
then [α](l) = lα →R rα = [α](r). Otherwise l = @(fi(x1, . . . , xi), y) and
r = fi+1(x1, . . . , xi, y) for some f ∈ F and i < arity(f), in which case we
have [α](l) = fi+1(x1, . . . , xi, y)α = [α](r) by definition.

To conclude our proof we show that (R@)lab ∪ dec(F@,�) is precedence
terminating with respect to the well-founded order A defined as follows: fs A gt
if and only if

1. s (→R ∪ B)+ t and either f, g 6= @ or f, g = @, or
2. f = @ and g 6= @.

It is easy to see that A is indeed a well-founded order. Clearly (R@)lab = Rlab ∪
(R@ \ R)lab. The rewrite rules in Rlab∪dec(F@,�) are taken care of by the first
clause of the definition of A, just as in the proof of Theorem 4. For the rules in
(R@ \ R)lab we use the second clause. ut

The reader is invited to compare our proof with the one of Kennaway et al.
[10].
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