YES
O(n^2)
TRS:
 {
               zeros() -> cons(0(), n__zeros()),
               zeros() -> n__zeros(),
           activate(X) -> X,
  activate(n__zeros()) -> zeros(),
     tail(cons(X, XS)) -> activate(XS)
 }
 DUP: We consider a non-duplicating system.
  Trs:
   {
                 zeros() -> cons(0(), n__zeros()),
                 zeros() -> n__zeros(),
             activate(X) -> X,
    activate(n__zeros()) -> zeros(),
       tail(cons(X, XS)) -> activate(XS)
   }
  Matrix Interpretation:
   Interpretation class: triangular
          [X1]    [1 2][X1]   [1]
   [tail]([X0]) = [0 1][X0] + [2]
   
              [X1]    [1 0][X1]   [3]
   [activate]([X0]) = [0 1][X0] + [3]
   
             [2]
   [zeros] = [3]
   
                [0]
   [n__zeros] = [1]
   
         [0]
   [0] = [0]
   
          [X3]  [X1]    [1 2][X3]   [1 0][X1]   [0]
   [cons]([X2], [X0]) = [0 1][X2] + [0 1][X0] + [2]
   
   
   Qed