YES
O(n^2)
TRS:
 {
        or(x, x) -> x,
       and(x, x) -> x,
   not(or(x, y)) -> and(not(x), not(y)),
  not(and(x, y)) -> or(not(x), not(y)),
     not(not(x)) -> x
 }
 DUP: We consider a non-duplicating system.
  Trs:
   {
          or(x, x) -> x,
         and(x, x) -> x,
     not(or(x, y)) -> and(not(x), not(y)),
    not(and(x, y)) -> or(not(x), not(y)),
       not(not(x)) -> x
   }
  Matrix Interpretation:
   Interpretation class: triangular
         [X1]    [1 3][X1]   [2]
   [not]([X0]) = [0 1][X0] + [0]
   
         [X3]  [X1]    [1 2][X3]   [1 1][X1]   [2]
   [and]([X2], [X0]) = [0 1][X2] + [0 1][X0] + [1]
   
        [X3]  [X1]    [1 2][X3]   [1 1][X1]   [2]
   [or]([X2], [X0]) = [0 1][X2] + [0 1][X0] + [1]
   
   
   Qed