YES
O(n^3)
TRS:
 {
     r1(empty(), a) -> a,
  r1(cons(x, k), a) -> r1(k, cons(x, a)),
            rev(ls) -> r1(ls, empty())
 }
 DUP: We consider a non-duplicating system.
  Trs:
   {
       r1(empty(), a) -> a,
    r1(cons(x, k), a) -> r1(k, cons(x, a)),
              rev(ls) -> r1(ls, empty())
   }
  Matrix Interpretation:
   Interpretation class: triangular
          [X5]  [X2]    [1 0 0][X5]   [1 0 0][X2]   [0]
   [cons]([X4], [X1]) = [0 0 0][X4] + [0 1 0][X1] + [1]
          [X3]  [X0]    [0 0 0][X3]   [0 0 1][X0]   [1]
   
         [X2]    [1 1 1][X2]   [1]
   [rev]([X1]) = [0 1 1][X1] + [1]
         [X0]    [0 0 1][X0]   [0]
   
             [0]
   [empty] = [1]
             [0]
   
        [X5]  [X2]    [1 1 1][X5]   [1 0 0][X2]   [0]
   [r1]([X4], [X1]) = [0 1 0][X4] + [0 1 0][X1] + [0]
        [X3]  [X0]    [0 0 1][X3]   [0 0 1][X0]   [0]
   
   
   Qed