YES
O(n^3)
TRS:
 {
           app(nil(), YS) -> YS,
         app(cons(X), YS) -> cons(X),
                  from(X) -> cons(X),
         zWadr(XS, nil()) -> nil(),
         zWadr(nil(), YS) -> nil(),
  zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))),
                prefix(L) -> cons(nil())
 }
 DUP: We consider a non-duplicating system.
  Trs:
   {
             app(nil(), YS) -> YS,
           app(cons(X), YS) -> cons(X),
                    from(X) -> cons(X),
           zWadr(XS, nil()) -> nil(),
           zWadr(nil(), YS) -> nil(),
    zWadr(cons(X), cons(Y)) -> cons(app(Y, cons(X))),
                  prefix(L) -> cons(nil())
   }
  Matrix Interpretation:
   Interpretation class: triangular
            [X2]    [1 0 0][X2]   [1]
   [prefix]([X1]) = [0 0 0][X1] + [1]
            [X0]    [0 0 0][X0]   [0]
   
           [X5]  [X2]    [1 1 0][X5]   [1 1 0][X2]   [0]
   [zWadr]([X4], [X1]) = [0 0 0][X4] + [0 0 0][X1] + [1]
           [X3]  [X0]    [0 0 0][X3]   [0 0 0][X0]   [1]
   
          [X2]    [1 0 0][X2]   [1]
   [from]([X1]) = [0 0 0][X1] + [1]
          [X0]    [0 0 1][X0]   [1]
   
          [X2]    [1 0 0][X2]   [0]
   [cons]([X1]) = [0 0 0][X1] + [1]
          [X0]    [0 0 0][X0]   [0]
   
           [0]
   [nil] = [1]
           [0]
   
         [X5]  [X2]    [1 0 0][X5]   [1 0 0][X2]   [1]
   [app]([X4], [X1]) = [0 1 0][X4] + [0 1 0][X1] + [0]
         [X3]  [X0]    [0 0 0][X3]   [0 0 1][X0]   [0]
   
   
   Qed