YES
O(n^4)
TRS:
 {
                     a(y, x) -> y,
  a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()),
                     b(x, y) -> c(a(c(y), a(0(), x)))
 }
 DUP: We consider a non-duplicating system.
  Trs:
   {
                       a(y, x) -> y,
    a(y, c(b(a(0(), x), 0()))) -> b(a(c(b(0(), y)), x), 0()),
                       b(x, y) -> c(a(c(y), a(0(), x)))
   }
  Matrix Interpretation:
   Interpretation class: triangular
       [X7]  [X3]    [1 3 2 0][X7]   [1 0 0 0][X3]   [3]
       [X6]  [X2]    [0 0 0 0][X6]   [0 0 0 2][X2]   [0]
   [b]([X5], [X1]) = [0 0 0 0][X5] + [0 0 0 0][X1] + [0]
       [X4]  [X0]    [0 0 0 0][X4]   [0 0 0 0][X0]   [0]
   
         [0]
         [0]
   [0] = [2]
         [0]
   
       [X7]  [X3]    [1 0 0 0][X7]   [1 0 0 0][X3]   [1]
       [X6]  [X2]    [0 1 2 0][X6]   [0 0 0 0][X2]   [0]
   [a]([X5], [X1]) = [0 0 1 0][X5] + [0 0 0 0][X1] + [0]
       [X4]  [X0]    [0 0 0 1][X4]   [0 0 0 0][X0]   [0]
   
       [X3]    [1 0 0 0][X3]   [0]
       [X2]    [0 0 0 0][X2]   [0]
   [c]([X1]) = [0 0 0 0][X1] + [0]
       [X0]    [0 0 0 0][X0]   [0]
   
   
   Qed