YES
O(n^4)
TRS:
 {
           f(s(X)) -> f(X),
  g(cons(s(X), Y)) -> s(X),
   g(cons(0(), Y)) -> g(Y),
     h(cons(X, Y)) -> h(g(cons(X, Y)))
 }
 DUP: We consider a non-duplicating system.
  Trs:
   {
             f(s(X)) -> f(X),
    g(cons(s(X), Y)) -> s(X),
     g(cons(0(), Y)) -> g(Y),
       h(cons(X, Y)) -> h(g(cons(X, Y)))
   }
  Matrix Interpretation:
   Interpretation class: triangular
       [X3]    [1 0 1 0][X3]   [0]
       [X2]    [0 0 0 0][X2]   [0]
   [h]([X1]) = [0 0 0 0][X1] + [0]
       [X0]    [0 0 0 0][X0]   [0]
   
         [0]
         [0]
   [0] = [0]
         [1]
   
          [X7]  [X3]    [1 0 0 1][X7]   [1 0 0 0][X3]   [0]
          [X6]  [X2]    [0 0 0 0][X6]   [0 0 0 0][X2]   [0]
   [cons]([X5], [X1]) = [0 0 0 0][X5] + [0 0 0 0][X1] + [1]
          [X4]  [X0]    [0 0 0 0][X4]   [0 0 0 0][X0]   [0]
   
       [X3]    [1 0 0 0][X3]   [0]
       [X2]    [0 0 0 0][X2]   [0]
   [g]([X1]) = [0 0 0 0][X1] + [0]
       [X0]    [0 0 0 0][X0]   [1]
   
       [X3]    [1 0 0 1][X3]   [0]
       [X2]    [0 0 0 0][X2]   [0]
   [s]([X1]) = [0 0 0 0][X1] + [0]
       [X0]    [0 0 0 0][X0]   [1]
   
       [X3]    [1 0 0 1][X3]   [0]
       [X2]    [0 0 0 0][X2]   [0]
   [f]([X1]) = [0 0 0 0][X1] + [0]
       [X0]    [0 0 0 0][X0]   [0]
   
   
   Qed