YES

Problem:
 f(empty(),l) -> l
 f(cons(x,k),l) -> g(k,l,cons(x,k))
 g(a,b,c) -> f(a,cons(b,c))

Proof:
 Matrix Interpretation Processor: dim=1
  
  interpretation:
   [g](x0, x1, x2) = 6x0 + x1 + 2x2 + 1,
   
   [cons](x0, x1) = x0 + 2x1,
   
   [f](x0, x1) = 5x0 + x1 + 1,
   
   [empty] = 0
  orientation:
   f(empty(),l) = l + 1 >= l = l
   
   f(cons(x,k),l) = 10k + l + 5x + 1 >= 10k + l + 2x + 1 = g(k,l,cons(x,k))
   
   g(a,b,c) = 6a + b + 2c + 1 >= 5a + b + 2c + 1 = f(a,cons(b,c))
  problem:
   f(cons(x,k),l) -> g(k,l,cons(x,k))
   g(a,b,c) -> f(a,cons(b,c))
  Matrix Interpretation Processor: dim=1
   
   interpretation:
    [g](x0, x1, x2) = 6x0 + x1 + 2x2 + 6,
    
    [cons](x0, x1) = x0 + 2x1 + 2,
    
    [f](x0, x1) = 6x0 + x1 + 3
   orientation:
    f(cons(x,k),l) = 12k + l + 6x + 15 >= 10k + l + 2x + 10 = g(k,l,cons(x,k))
    
    g(a,b,c) = 6a + b + 2c + 6 >= 6a + b + 2c + 5 = f(a,cons(b,c))
   problem:
    
   Qed