YES

Problem:
 +(0(),y) -> y
 +(s(x),y) -> s(+(x,y))
 -(0(),y) -> 0()
 -(x,0()) -> x
 -(s(x),s(y)) -> -(x,y)

Proof:
 Matrix Interpretation Processor: dim=3
  
  interpretation:
                 [1 0 0]     [1 0 0]     [0]
   [-](x0, x1) = [0 1 0]x0 + [0 0 0]x1 + [1]
                 [1 0 1]     [0 0 0]     [0],
   
                  [0]
   [s](x0) = x0 + [0]
                  [1],
   
                 [1 0 1]     [1 1 1]  
   [+](x0, x1) = [1 1 1]x0 + [1 1 1]x1
                 [1 0 1]     [1 1 1]  ,
   
         [1]
   [0] = [0]
         [0]
  orientation:
              [1 1 1]    [1]         
   +(0(),y) = [1 1 1]y + [1] >= y = y
              [1 1 1]    [1]         
   
               [1 0 1]    [1 1 1]    [1]    [1 0 1]    [1 1 1]    [0]            
   +(s(x),y) = [1 1 1]x + [1 1 1]y + [1] >= [1 1 1]x + [1 1 1]y + [0] = s(+(x,y))
               [1 0 1]    [1 1 1]    [1]    [1 0 1]    [1 1 1]    [1]            
   
              [1 0 0]    [1]    [1]      
   -(0(),y) = [0 0 0]y + [1] >= [0] = 0()
              [0 0 0]    [1]    [0]      
   
              [1 0 0]    [1]         
   -(x,0()) = [0 1 0]x + [1] >= x = x
              [1 0 1]    [0]         
   
                  [1 0 0]    [1 0 0]    [0]    [1 0 0]    [1 0 0]    [0]         
   -(s(x),s(y)) = [0 1 0]x + [0 0 0]y + [1] >= [0 1 0]x + [0 0 0]y + [1] = -(x,y)
                  [1 0 1]    [0 0 0]    [1]    [1 0 1]    [0 0 0]    [0]         
  problem:
   -(0(),y) -> 0()
   -(s(x),s(y)) -> -(x,y)
  Matrix Interpretation Processor: dim=3
   
   interpretation:
                  [1 0 1]     [1 1 0]  
    [-](x0, x1) = [1 0 0]x0 + [0 0 0]x1
                  [0 0 1]     [0 0 0]  ,
    
                   [0]
    [s](x0) = x0 + [1]
                   [0],
    
          [0]
    [0] = [0]
          [1]
   orientation:
               [1 1 0]    [1]    [0]      
    -(0(),y) = [0 0 0]y + [0] >= [0] = 0()
               [0 0 0]    [1]    [1]      
    
                   [1 0 1]    [1 1 0]    [1]    [1 0 1]    [1 1 0]          
    -(s(x),s(y)) = [1 0 0]x + [0 0 0]y + [0] >= [1 0 0]x + [0 0 0]y = -(x,y)
                   [0 0 1]    [0 0 0]    [0]    [0 0 1]    [0 0 0]          
   problem:
    
   Qed