YES Problem: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Proof: Arctic Interpretation Processor: dimension: 2 interpretation: [0 0] [activate](x0) = [0 0]x0, [0 -&] [h](x0) = [0 0 ]x0, [0 -&] [g](x0) = [0 -&]x0, [0 -&] [n__h](x0) = [0 0 ]x0, [0 0] [n__f](x0) = [2 2]x0, [2 1] [f](x0) = [2 2]x0 orientation: [2 1] [0 0] f(X) = [2 2]X >= [0 0]X = g(n__h(n__f(X))) [0 -&] [0 -&] h(X) = [0 0 ]X >= [0 0 ]X = n__h(X) [2 1] [0 0] f(X) = [2 2]X >= [2 2]X = n__f(X) [0 0] [0 0] activate(n__h(X)) = [0 0]X >= [0 0]X = h(activate(X)) [2 2] [2 2] activate(n__f(X)) = [2 2]X >= [2 2]X = f(activate(X)) [0 0] activate(X) = [0 0]X >= X = X problem: h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Arctic Interpretation Processor: dimension: 2 interpretation: [3 -&] [activate](x0) = [0 1 ]x0, [3 2 ] [h](x0) = [-& 3 ]x0, [3 1 ] [n__h](x0) = [-& 3 ]x0, [3 0 ] [n__f](x0) = [-& 3 ]x0, [3 0 ] [f](x0) = [-& 3 ]x0 orientation: [3 2 ] [3 1 ] h(X) = [-& 3 ]X >= [-& 3 ]X = n__h(X) [3 0 ] [3 0 ] f(X) = [-& 3 ]X >= [-& 3 ]X = n__f(X) [6 4] [6 3] activate(n__h(X)) = [3 4]X >= [3 4]X = h(activate(X)) [6 3] [6 1] activate(n__f(X)) = [3 4]X >= [3 4]X = f(activate(X)) [3 -&] activate(X) = [0 1 ]X >= X = X problem: h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) KBO Processor: weight function: w0 = 1 w(activate) = w(h) = w(n__h) = w(n__f) = w(f) = 1 precedence: activate > h ~ f > n__h ~ n__f problem: Qed