YES

Problem:
 +(-(x,y),z) -> -(+(x,z),y)
 -(+(x,y),y) -> x

Proof:
 DP Processor:
  DPs:
   +#(-(x,y),z) -> +#(x,z)
   +#(-(x,y),z) -> -#(+(x,z),y)
  TRS:
   +(-(x,y),z) -> -(+(x,z),y)
   -(+(x,y),y) -> x
  Matrix Interpretation Processor: dim=1
   
   interpretation:
    [-#](x0, x1) = x0 + 3,
    
    [+#](x0, x1) = x0 + 4,
    
    [+](x0, x1) = x0 + 1,
    
    [-](x0, x1) = x0 + 1
   orientation:
    +#(-(x,y),z) = x + 5 >= x + 4 = +#(x,z)
    
    +#(-(x,y),z) = x + 5 >= x + 4 = -#(+(x,z),y)
    
    +(-(x,y),z) = x + 2 >= x + 2 = -(+(x,z),y)
    
    -(+(x,y),y) = x + 2 >= x = x
   problem:
    DPs:
     
    TRS:
     +(-(x,y),z) -> -(+(x,z),y)
     -(+(x,y),y) -> x
   Qed