YES Problem: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Proof: DP Processor: DPs: activate#(n__h(X)) -> activate#(X) activate#(n__h(X)) -> h#(activate(X)) activate#(n__f(X)) -> activate#(X) activate#(n__f(X)) -> f#(activate(X)) TRS: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Matrix Interpretation Processor: dim=3 interpretation: [activate#](x0) = [1 1 1]x0, [h#](x0) = [1 0 0]x0, [f#](x0) = [0 1 0]x0, [1 0 1] [activate](x0) = [1 1 0]x0 [0 1 1] , [0 1 0] [1] [h](x0) = [0 0 1]x0 + [0] [1 0 0] [1], [0] [g](x0) = [0] [1], [0 1 0] [0] [n__h](x0) = [0 0 1]x0 + [0] [1 0 0] [1], [0 0 1] [0] [n__f](x0) = [1 0 0]x0 + [1] [0 1 0] [1], [0 0 1] [0] [f](x0) = [1 0 0]x0 + [1] [0 1 0] [1] orientation: activate#(n__h(X)) = [1 1 1]X + [1] >= [1 1 1]X = activate#(X) activate#(n__h(X)) = [1 1 1]X + [1] >= [1 0 1]X = h#(activate(X)) activate#(n__f(X)) = [1 1 1]X + [2] >= [1 1 1]X = activate#(X) activate#(n__f(X)) = [1 1 1]X + [2] >= [1 1 0]X = f#(activate(X)) [0 0 1] [0] [0] f(X) = [1 0 0]X + [1] >= [0] = g(n__h(n__f(X))) [0 1 0] [1] [1] [0 1 0] [1] [0 1 0] [0] h(X) = [0 0 1]X + [0] >= [0 0 1]X + [0] = n__h(X) [1 0 0] [1] [1 0 0] [1] [0 0 1] [0] [0 0 1] [0] f(X) = [1 0 0]X + [1] >= [1 0 0]X + [1] = n__f(X) [0 1 0] [1] [0 1 0] [1] [1 1 0] [1] [1 1 0] [1] activate(n__h(X)) = [0 1 1]X + [0] >= [0 1 1]X + [0] = h(activate(X)) [1 0 1] [1] [1 0 1] [1] [0 1 1] [1] [0 1 1] [0] activate(n__f(X)) = [1 0 1]X + [1] >= [1 0 1]X + [1] = f(activate(X)) [1 1 0] [2] [1 1 0] [1] [1 0 1] activate(X) = [1 1 0]X >= X = X [0 1 1] problem: DPs: TRS: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Qed