YES Problem: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X Proof: DP Processor: DPs: f#(s(0())) -> p#(s(0())) f#(s(0())) -> f#(p(s(0()))) activate#(n__f(X)) -> activate#(X) activate#(n__f(X)) -> f#(activate(X)) activate#(n__s(X)) -> activate#(X) activate#(n__s(X)) -> s#(activate(X)) activate#(n__0()) -> 0#() TRS: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X Matrix Interpretation Processor: dim=1 interpretation: [activate#](x0) = 3x0, [0#] = 0, [s#](x0) = 0, [p#](x0) = 0, [f#](x0) = 2x0, [activate](x0) = 2x0, [p](x0) = 1/2x0 + 2, [s](x0) = 3x0 + 3, [cons](x0, x1) = 3x0 + 3, [n__f](x0) = 7/2x0 + 3/2, [n__s](x0) = 3x0 + 3/2, [n__0] = 5/2, [f](x0) = 7/2x0 + 3/2, [0] = 3 orientation: f#(s(0())) = 24 >= 0 = p#(s(0())) f#(s(0())) = 24 >= 16 = f#(p(s(0()))) activate#(n__f(X)) = 21/2X + 9/2 >= 3X = activate#(X) activate#(n__f(X)) = 21/2X + 9/2 >= 4X = f#(activate(X)) activate#(n__s(X)) = 9X + 9/2 >= 3X = activate#(X) activate#(n__s(X)) = 9X + 9/2 >= 0 = s#(activate(X)) activate#(n__0()) = 15/2 >= 0 = 0#() f(0()) = 12 >= 12 = cons(0(),n__f(n__s(n__0()))) f(s(0())) = 87/2 >= 59/2 = f(p(s(0()))) p(s(X)) = 3/2X + 7/2 >= X = X f(X) = 7/2X + 3/2 >= 7/2X + 3/2 = n__f(X) s(X) = 3X + 3 >= 3X + 3/2 = n__s(X) 0() = 3 >= 5/2 = n__0() activate(n__f(X)) = 7X + 3 >= 7X + 3/2 = f(activate(X)) activate(n__s(X)) = 6X + 3 >= 6X + 3 = s(activate(X)) activate(n__0()) = 5 >= 3 = 0() activate(X) = 2X >= X = X problem: DPs: TRS: f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) s(X) -> n__s(X) 0() -> n__0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__0()) -> 0() activate(X) -> X Qed