YES Problem: f(0()) -> cons(0(),n__f(s(0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X Proof: DP Processor: DPs: f#(s(0())) -> p#(s(0())) f#(s(0())) -> f#(p(s(0()))) activate#(n__f(X)) -> f#(X) TRS: f(0()) -> cons(0(),n__f(s(0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X Arctic Interpretation Processor: dimension: 1 interpretation: [activate#](x0) = 4x0 + -16, [p#](x0) = -15x0 + 0, [f#](x0) = -7x0 + 0, [activate](x0) = 6x0 + 1, [p](x0) = -4x0 + 0, [cons](x0, x1) = x0 + x1 + -16, [n__f](x0) = -8x0 + 0, [s](x0) = 5x0 + 8, [f](x0) = -3x0 + 1, [0] = 0 orientation: f#(s(0())) = 1 >= 0 = p#(s(0())) f#(s(0())) = 1 >= 0 = f#(p(s(0()))) activate#(n__f(X)) = -4X + 4 >= -7X + 0 = f#(X) f(0()) = 1 >= 0 = cons(0(),n__f(s(0()))) f(s(0())) = 5 >= 1 = f(p(s(0()))) p(s(X)) = 1X + 4 >= X = X f(X) = -3X + 1 >= -8X + 0 = n__f(X) activate(n__f(X)) = -2X + 6 >= -3X + 1 = f(X) activate(X) = 6X + 1 >= X = X problem: DPs: TRS: f(0()) -> cons(0(),n__f(s(0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X Qed