YES

Problem:
 __(__(X,Y),Z) -> __(X,__(Y,Z))
 __(X,nil()) -> X
 __(nil(),X) -> X
 and(tt(),X) -> activate(X)
 isNePal(__(I,__(P,I))) -> tt()
 activate(X) -> X

Proof:
 DP Processor:
  DPs:
   __#(__(X,Y),Z) -> __#(Y,Z)
   __#(__(X,Y),Z) -> __#(X,__(Y,Z))
   and#(tt(),X) -> activate#(X)
  TRS:
   __(__(X,Y),Z) -> __(X,__(Y,Z))
   __(X,nil()) -> X
   __(nil(),X) -> X
   and(tt(),X) -> activate(X)
   isNePal(__(I,__(P,I))) -> tt()
   activate(X) -> X
  Matrix Interpretation Processor: dim=1
   
   interpretation:
    [activate#](x0) = 0,
    
    [and#](x0, x1) = 4x0 + 2x1 + 1,
    
    [__#](x0, x1) = 3x0 + 2,
    
    [isNePal](x0) = x0,
    
    [activate](x0) = 4x0,
    
    [and](x0, x1) = 4x1 + 4,
    
    [tt] = 6,
    
    [nil] = 0,
    
    [__](x0, x1) = 3x0 + x1 + 3
   orientation:
    __#(__(X,Y),Z) = 9X + 3Y + 11 >= 3Y + 2 = __#(Y,Z)
    
    __#(__(X,Y),Z) = 9X + 3Y + 11 >= 3X + 2 = __#(X,__(Y,Z))
    
    and#(tt(),X) = 2X + 25 >= 0 = activate#(X)
    
    __(__(X,Y),Z) = 9X + 3Y + Z + 12 >= 3X + 3Y + Z + 6 = __(X,__(Y,Z))
    
    __(X,nil()) = 3X + 3 >= X = X
    
    __(nil(),X) = X + 3 >= X = X
    
    and(tt(),X) = 4X + 4 >= 4X = activate(X)
    
    isNePal(__(I,__(P,I))) = 4I + 3P + 6 >= 6 = tt()
    
    activate(X) = 4X >= X = X
   problem:
    DPs:
     
    TRS:
     __(__(X,Y),Z) -> __(X,__(Y,Z))
     __(X,nil()) -> X
     __(nil(),X) -> X
     and(tt(),X) -> activate(X)
     isNePal(__(I,__(P,I))) -> tt()
     activate(X) -> X
   Qed