YES Problem: f(f(a())) -> f(g(n__f(a()))) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X Proof: DP Processor: DPs: f#(f(a())) -> f#(g(n__f(a()))) activate#(n__f(X)) -> f#(X) TRS: f(f(a())) -> f(g(n__f(a()))) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X TDG Processor: DPs: f#(f(a())) -> f#(g(n__f(a()))) activate#(n__f(X)) -> f#(X) TRS: f(f(a())) -> f(g(n__f(a()))) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X graph: activate#(n__f(X)) -> f#(X) -> f#(f(a())) -> f#(g(n__f(a()))) f#(f(a())) -> f#(g(n__f(a()))) -> f#(f(a())) -> f#(g(n__f(a()))) SCC Processor: #sccs: 1 #rules: 1 #arcs: 2/4 DPs: f#(f(a())) -> f#(g(n__f(a()))) TRS: f(f(a())) -> f(g(n__f(a()))) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X EDG Processor: DPs: f#(f(a())) -> f#(g(n__f(a()))) TRS: f(f(a())) -> f(g(n__f(a()))) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X graph: Qed