YES Problem: active(f(f(a()))) -> mark(f(g(f(a())))) active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Matrix Interpretation Processor: dim=3 interpretation: [1 1 1] [top](x0) = [0 0 0]x0 [1 1 1] , [1] [ok](x0) = x0 + [0] [0], [1] [proper](x0) = x0 + [0] [0], [1 0 0] [0] [mark](x0) = [0 1 1]x0 + [1] [0 0 0] [0], [1 0 0] [g](x0) = [0 1 1]x0 [0 0 0] , [1 1 1] [0] [active](x0) = [0 0 0]x0 + [1] [0 0 0] [0], [1 0 0] [f](x0) = [0 0 0]x0 [0 0 1] , [0] [a] = [0] [1] orientation: [1] [0] active(f(f(a()))) = [1] >= [1] = mark(f(g(f(a())))) [0] [0] [1 1 1] [0] [1 1 1] [0] active(g(X)) = [0 0 0]X + [1] >= [0 0 0]X + [1] = g(active(X)) [0 0 0] [0] [0 0 0] [0] [1 0 0] [0] [1 0 0] [0] g(mark(X)) = [0 1 1]X + [1] >= [0 1 1]X + [1] = mark(g(X)) [0 0 0] [0] [0 0 0] [0] [1 0 0] [1] [1 0 0] [1] proper(f(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = f(proper(X)) [0 0 1] [0] [0 0 1] [0] [1] [1] proper(a()) = [0] >= [0] = ok(a()) [1] [1] [1 0 0] [1] [1 0 0] [1] proper(g(X)) = [0 1 1]X + [0] >= [0 1 1]X + [0] = g(proper(X)) [0 0 0] [0] [0 0 0] [0] [1 0 0] [1] [1 0 0] [1] f(ok(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = ok(f(X)) [0 0 1] [0] [0 0 1] [0] [1 0 0] [1] [1 0 0] [1] g(ok(X)) = [0 1 1]X + [0] >= [0 1 1]X + [0] = ok(g(X)) [0 0 0] [0] [0 0 0] [0] [1 1 1] [1] [1 1 1] [1] top(mark(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = top(proper(X)) [1 1 1] [1] [1 1 1] [1] [1 1 1] [1] [1 1 1] [1] top(ok(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = top(active(X)) [1 1 1] [1] [1 1 1] [1] problem: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Matrix Interpretation Processor: dim=1 interpretation: [top](x0) = 3x0 + 1, [ok](x0) = x0 + 4, [proper](x0) = x0 + 4, [mark](x0) = x0 + 4, [g](x0) = x0 + 2, [active](x0) = x0 + 1, [f](x0) = x0 + 2, [a] = 4 orientation: active(g(X)) = X + 3 >= X + 3 = g(active(X)) g(mark(X)) = X + 6 >= X + 6 = mark(g(X)) proper(f(X)) = X + 6 >= X + 6 = f(proper(X)) proper(a()) = 8 >= 8 = ok(a()) proper(g(X)) = X + 6 >= X + 6 = g(proper(X)) f(ok(X)) = X + 6 >= X + 6 = ok(f(X)) g(ok(X)) = X + 6 >= X + 6 = ok(g(X)) top(mark(X)) = 3X + 13 >= 3X + 13 = top(proper(X)) top(ok(X)) = 3X + 13 >= 3X + 4 = top(active(X)) problem: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) Matrix Interpretation Processor: dim=1 interpretation: [top](x0) = x0 + 1, [ok](x0) = 2x0 + 3, [proper](x0) = 2x0 + 3, [mark](x0) = 3x0 + 6, [g](x0) = 2x0 + 3, [active](x0) = 3x0 + 6, [f](x0) = 2x0 + 3, [a] = 0 orientation: active(g(X)) = 6X + 15 >= 6X + 15 = g(active(X)) g(mark(X)) = 6X + 15 >= 6X + 15 = mark(g(X)) proper(f(X)) = 4X + 9 >= 4X + 9 = f(proper(X)) proper(a()) = 3 >= 3 = ok(a()) proper(g(X)) = 4X + 9 >= 4X + 9 = g(proper(X)) f(ok(X)) = 4X + 9 >= 4X + 9 = ok(f(X)) g(ok(X)) = 4X + 9 >= 4X + 9 = ok(g(X)) top(mark(X)) = 3X + 7 >= 2X + 4 = top(proper(X)) problem: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) Matrix Interpretation Processor: dim=1 interpretation: [ok](x0) = 4x0 + 4, [proper](x0) = 5x0 + 4, [mark](x0) = x0, [g](x0) = 2x0 + 1, [active](x0) = 4x0 + 3, [f](x0) = x0, [a] = 0 orientation: active(g(X)) = 8X + 7 >= 8X + 7 = g(active(X)) g(mark(X)) = 2X + 1 >= 2X + 1 = mark(g(X)) proper(f(X)) = 5X + 4 >= 5X + 4 = f(proper(X)) proper(a()) = 4 >= 4 = ok(a()) proper(g(X)) = 10X + 9 >= 10X + 9 = g(proper(X)) f(ok(X)) = 4X + 4 >= 4X + 4 = ok(f(X)) g(ok(X)) = 8X + 9 >= 8X + 8 = ok(g(X)) problem: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) DP Processor: DPs: active#(g(X)) -> active#(X) active#(g(X)) -> g#(active(X)) g#(mark(X)) -> g#(X) proper#(f(X)) -> proper#(X) proper#(f(X)) -> f#(proper(X)) proper#(g(X)) -> proper#(X) proper#(g(X)) -> g#(proper(X)) f#(ok(X)) -> f#(X) TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) TDG Processor: DPs: active#(g(X)) -> active#(X) active#(g(X)) -> g#(active(X)) g#(mark(X)) -> g#(X) proper#(f(X)) -> proper#(X) proper#(f(X)) -> f#(proper(X)) proper#(g(X)) -> proper#(X) proper#(g(X)) -> g#(proper(X)) f#(ok(X)) -> f#(X) TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) graph: f#(ok(X)) -> f#(X) -> f#(ok(X)) -> f#(X) proper#(g(X)) -> proper#(X) -> proper#(g(X)) -> g#(proper(X)) proper#(g(X)) -> proper#(X) -> proper#(g(X)) -> proper#(X) proper#(g(X)) -> proper#(X) -> proper#(f(X)) -> f#(proper(X)) proper#(g(X)) -> proper#(X) -> proper#(f(X)) -> proper#(X) proper#(g(X)) -> g#(proper(X)) -> g#(mark(X)) -> g#(X) proper#(f(X)) -> f#(proper(X)) -> f#(ok(X)) -> f#(X) proper#(f(X)) -> proper#(X) -> proper#(g(X)) -> g#(proper(X)) proper#(f(X)) -> proper#(X) -> proper#(g(X)) -> proper#(X) proper#(f(X)) -> proper#(X) -> proper#(f(X)) -> f#(proper(X)) proper#(f(X)) -> proper#(X) -> proper#(f(X)) -> proper#(X) g#(mark(X)) -> g#(X) -> g#(mark(X)) -> g#(X) active#(g(X)) -> g#(active(X)) -> g#(mark(X)) -> g#(X) active#(g(X)) -> active#(X) -> active#(g(X)) -> g#(active(X)) active#(g(X)) -> active#(X) -> active#(g(X)) -> active#(X) SCC Processor: #sccs: 4 #rules: 5 #arcs: 15/64 DPs: active#(g(X)) -> active#(X) TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Subterm Criterion Processor: simple projection: pi(active#) = 0 problem: DPs: TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Qed DPs: proper#(g(X)) -> proper#(X) proper#(f(X)) -> proper#(X) TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Subterm Criterion Processor: simple projection: pi(proper#) = 0 problem: DPs: TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Qed DPs: g#(mark(X)) -> g#(X) TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Subterm Criterion Processor: simple projection: pi(g#) = 0 problem: DPs: TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Qed DPs: f#(ok(X)) -> f#(X) TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Subterm Criterion Processor: simple projection: pi(f#) = 0 problem: DPs: TRS: active(g(X)) -> g(active(X)) g(mark(X)) -> mark(g(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) Qed