YES Problem: active(f(f(a()))) -> mark(f(g(f(a())))) active(f(X)) -> f(active(X)) f(mark(X)) -> mark(f(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Proof: Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [top](x0) = [0 0 0]x0 [1 0 1] , [ok](x0) = x0 , [proper](x0) = x0 , [0] [mark](x0) = x0 + [1] [0], [1 0 0] [g](x0) = [0 0 0]x0 [0 0 0] , [active](x0) = x0 , [1 1 0] [0] [f](x0) = [0 1 1]x0 + [0] [0 0 0] [1], [1] [a] = [0] [0] orientation: [1] [1] active(f(f(a()))) = [1] >= [1] = mark(f(g(f(a())))) [1] [1] [1 1 0] [0] [1 1 0] [0] active(f(X)) = [0 1 1]X + [0] >= [0 1 1]X + [0] = f(active(X)) [0 0 0] [1] [0 0 0] [1] [1 1 0] [1] [1 1 0] [0] f(mark(X)) = [0 1 1]X + [1] >= [0 1 1]X + [1] = mark(f(X)) [0 0 0] [1] [0 0 0] [1] [1 1 0] [0] [1 1 0] [0] proper(f(X)) = [0 1 1]X + [0] >= [0 1 1]X + [0] = f(proper(X)) [0 0 0] [1] [0 0 0] [1] [1] [1] proper(a()) = [0] >= [0] = ok(a()) [0] [0] [1 0 0] [1 0 0] proper(g(X)) = [0 0 0]X >= [0 0 0]X = g(proper(X)) [0 0 0] [0 0 0] [1 1 0] [0] [1 1 0] [0] f(ok(X)) = [0 1 1]X + [0] >= [0 1 1]X + [0] = ok(f(X)) [0 0 0] [1] [0 0 0] [1] [1 0 0] [1 0 0] g(ok(X)) = [0 0 0]X >= [0 0 0]X = ok(g(X)) [0 0 0] [0 0 0] [1 0 0] [1 0 0] top(mark(X)) = [0 0 0]X >= [0 0 0]X = top(proper(X)) [1 0 1] [1 0 1] [1 0 0] [1 0 0] top(ok(X)) = [0 0 0]X >= [0 0 0]X = top(active(X)) [1 0 1] [1 0 1] problem: active(f(f(a()))) -> mark(f(g(f(a())))) active(f(X)) -> f(active(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [0] [top](x0) = [0 0 0]x0 + [1] [1 1 0] [0], [ok](x0) = x0 , [1 0 1] [proper](x0) = [0 1 0]x0 [0 0 0] , [1 0 1] [mark](x0) = [0 1 0]x0 [0 0 0] , [1 0 0] [g](x0) = [0 0 1]x0 [0 0 1] , [1 1 0] [active](x0) = [0 0 0]x0 [0 0 1] , [1 0 1] [f](x0) = [0 1 0]x0 [0 0 0] , [0] [a] = [1] [0] orientation: [1] [0] active(f(f(a()))) = [0] >= [0] = mark(f(g(f(a())))) [0] [0] [1 1 1] [1 1 1] active(f(X)) = [0 0 0]X >= [0 0 0]X = f(active(X)) [0 0 0] [0 0 0] [1 0 1] [1 0 1] proper(f(X)) = [0 1 0]X >= [0 1 0]X = f(proper(X)) [0 0 0] [0 0 0] [0] [0] proper(a()) = [1] >= [1] = ok(a()) [0] [0] [1 0 1] [1 0 1] proper(g(X)) = [0 0 1]X >= [0 0 0]X = g(proper(X)) [0 0 0] [0 0 0] [1 0 1] [1 0 1] f(ok(X)) = [0 1 0]X >= [0 1 0]X = ok(f(X)) [0 0 0] [0 0 0] [1 0 0] [1 0 0] g(ok(X)) = [0 0 1]X >= [0 0 1]X = ok(g(X)) [0 0 1] [0 0 1] [1 1 1] [0] [1 1 1] [0] top(mark(X)) = [0 0 0]X + [1] >= [0 0 0]X + [1] = top(proper(X)) [1 1 1] [0] [1 1 1] [0] [1 1 0] [0] [1 1 0] [0] top(ok(X)) = [0 0 0]X + [1] >= [0 0 0]X + [1] = top(active(X)) [1 1 0] [0] [1 1 0] [0] problem: active(f(X)) -> f(active(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) Matrix Interpretation Processor: dim=1 interpretation: [top](x0) = 2x0 + 1, [ok](x0) = 4x0, [proper](x0) = 4x0, [mark](x0) = 4x0 + 5, [g](x0) = 2x0, [active](x0) = x0, [f](x0) = 2x0, [a] = 2 orientation: active(f(X)) = 2X >= 2X = f(active(X)) proper(f(X)) = 8X >= 8X = f(proper(X)) proper(a()) = 8 >= 8 = ok(a()) proper(g(X)) = 8X >= 8X = g(proper(X)) f(ok(X)) = 8X >= 8X = ok(f(X)) g(ok(X)) = 8X >= 8X = ok(g(X)) top(mark(X)) = 8X + 11 >= 8X + 1 = top(proper(X)) top(ok(X)) = 8X + 1 >= 2X + 1 = top(active(X)) problem: active(f(X)) -> f(active(X)) proper(f(X)) -> f(proper(X)) proper(a()) -> ok(a()) proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) top(ok(X)) -> top(active(X)) Matrix Interpretation Processor: dim=1 interpretation: [top](x0) = x0, [ok](x0) = 2x0 + 1, [proper](x0) = 3x0, [g](x0) = x0, [active](x0) = 2x0, [f](x0) = 2x0 + 1, [a] = 4 orientation: active(f(X)) = 4X + 2 >= 4X + 1 = f(active(X)) proper(f(X)) = 6X + 3 >= 6X + 1 = f(proper(X)) proper(a()) = 12 >= 9 = ok(a()) proper(g(X)) = 3X >= 3X = g(proper(X)) f(ok(X)) = 4X + 3 >= 4X + 3 = ok(f(X)) g(ok(X)) = 2X + 1 >= 2X + 1 = ok(g(X)) top(ok(X)) = 2X + 1 >= 2X = top(active(X)) problem: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) DP Processor: DPs: proper#(g(X)) -> proper#(X) proper#(g(X)) -> g#(proper(X)) f#(ok(X)) -> f#(X) g#(ok(X)) -> g#(X) TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) TDG Processor: DPs: proper#(g(X)) -> proper#(X) proper#(g(X)) -> g#(proper(X)) f#(ok(X)) -> f#(X) g#(ok(X)) -> g#(X) TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) graph: f#(ok(X)) -> f#(X) -> f#(ok(X)) -> f#(X) g#(ok(X)) -> g#(X) -> g#(ok(X)) -> g#(X) proper#(g(X)) -> g#(proper(X)) -> g#(ok(X)) -> g#(X) proper#(g(X)) -> proper#(X) -> proper#(g(X)) -> g#(proper(X)) proper#(g(X)) -> proper#(X) -> proper#(g(X)) -> proper#(X) SCC Processor: #sccs: 3 #rules: 3 #arcs: 5/16 DPs: proper#(g(X)) -> proper#(X) TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) Subterm Criterion Processor: simple projection: pi(proper#) = 0 problem: DPs: TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) Qed DPs: g#(ok(X)) -> g#(X) TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) Subterm Criterion Processor: simple projection: pi(g#) = 0 problem: DPs: TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) Qed DPs: f#(ok(X)) -> f#(X) TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) Subterm Criterion Processor: simple projection: pi(f#) = 0 problem: DPs: TRS: proper(g(X)) -> g(proper(X)) f(ok(X)) -> ok(f(X)) g(ok(X)) -> ok(g(X)) Qed