YES

Problem:
 a__zeros() -> cons(0(),zeros())
 a__tail(cons(X,XS)) -> mark(XS)
 mark(zeros()) -> a__zeros()
 mark(tail(X)) -> a__tail(mark(X))
 mark(cons(X1,X2)) -> cons(mark(X1),X2)
 mark(0()) -> 0()
 a__zeros() -> zeros()
 a__tail(X) -> tail(X)

Proof:
 Matrix Interpretation Processor: dim=1
  
  interpretation:
   [tail](x0) = 2x0 + 4,
   
   [mark](x0) = 4x0,
   
   [a__tail](x0) = 2x0 + 4,
   
   [cons](x0, x1) = x0 + 4x1,
   
   [zeros] = 0,
   
   [0] = 0,
   
   [a__zeros] = 0
  orientation:
   a__zeros() = 0 >= 0 = cons(0(),zeros())
   
   a__tail(cons(X,XS)) = 2X + 8XS + 4 >= 4XS = mark(XS)
   
   mark(zeros()) = 0 >= 0 = a__zeros()
   
   mark(tail(X)) = 8X + 16 >= 8X + 4 = a__tail(mark(X))
   
   mark(cons(X1,X2)) = 4X1 + 16X2 >= 4X1 + 4X2 = cons(mark(X1),X2)
   
   mark(0()) = 0 >= 0 = 0()
   
   a__zeros() = 0 >= 0 = zeros()
   
   a__tail(X) = 2X + 4 >= 2X + 4 = tail(X)
  problem:
   a__zeros() -> cons(0(),zeros())
   mark(zeros()) -> a__zeros()
   mark(cons(X1,X2)) -> cons(mark(X1),X2)
   mark(0()) -> 0()
   a__zeros() -> zeros()
   a__tail(X) -> tail(X)
  Matrix Interpretation Processor: dim=3
   
   interpretation:
                 [1 0 0]  
    [tail](x0) = [0 0 0]x0
                 [0 0 0]  ,
    
                 [1 1 1]     [0]
    [mark](x0) = [1 1 1]x0 + [0]
                 [0 0 0]     [1],
    
                    [1 0 0]     [0]
    [a__tail](x0) = [0 0 0]x0 + [0]
                    [0 0 0]     [1],
    
                     [1 0 1]     [1 0 0]     [0]
    [cons](x0, x1) = [0 1 0]x0 + [0 0 1]x1 + [0]
                     [0 0 0]     [0 0 0]     [1],
    
              [0]
    [zeros] = [0]
              [1],
    
          [0]
    [0] = [0]
          [0],
    
                 [1]
    [a__zeros] = [1]
                 [1]
   orientation:
                 [1]    [0]                    
    a__zeros() = [1] >= [1] = cons(0(),zeros())
                 [1]    [1]                    
    
                    [1]    [1]             
    mark(zeros()) = [1] >= [1] = a__zeros()
                    [1]    [1]             
    
                        [1 1 1]     [1 0 1]     [1]    [1 1 1]     [1 0 0]     [1]                    
    mark(cons(X1,X2)) = [1 1 1]X1 + [1 0 1]X2 + [1] >= [1 1 1]X1 + [0 0 1]X2 + [0] = cons(mark(X1),X2)
                        [0 0 0]     [0 0 0]     [1]    [0 0 0]     [0 0 0]     [1]                    
    
                [0]    [0]      
    mark(0()) = [0] >= [0] = 0()
                [1]    [0]      
    
                 [1]    [0]          
    a__zeros() = [1] >= [0] = zeros()
                 [1]    [1]          
    
                 [1 0 0]    [0]    [1 0 0]           
    a__tail(X) = [0 0 0]X + [0] >= [0 0 0]X = tail(X)
                 [0 0 0]    [1]    [0 0 0]           
   problem:
    mark(zeros()) -> a__zeros()
    mark(cons(X1,X2)) -> cons(mark(X1),X2)
    mark(0()) -> 0()
    a__tail(X) -> tail(X)
   Matrix Interpretation Processor: dim=1
    
    interpretation:
     [tail](x0) = x0,
     
     [mark](x0) = x0,
     
     [a__tail](x0) = x0 + 1,
     
     [cons](x0, x1) = x0 + x1 + 2,
     
     [zeros] = 0,
     
     [0] = 0,
     
     [a__zeros] = 0
    orientation:
     mark(zeros()) = 0 >= 0 = a__zeros()
     
     mark(cons(X1,X2)) = X1 + X2 + 2 >= X1 + X2 + 2 = cons(mark(X1),X2)
     
     mark(0()) = 0 >= 0 = 0()
     
     a__tail(X) = X + 1 >= X = tail(X)
    problem:
     mark(zeros()) -> a__zeros()
     mark(cons(X1,X2)) -> cons(mark(X1),X2)
     mark(0()) -> 0()
    Matrix Interpretation Processor: dim=1
     
     interpretation:
      [mark](x0) = 2x0,
      
      [cons](x0, x1) = 2x0 + 2x1 + 1,
      
      [zeros] = 0,
      
      [0] = 4,
      
      [a__zeros] = 0
     orientation:
      mark(zeros()) = 0 >= 0 = a__zeros()
      
      mark(cons(X1,X2)) = 4X1 + 4X2 + 2 >= 4X1 + 2X2 + 1 = cons(mark(X1),X2)
      
      mark(0()) = 8 >= 4 = 0()
     problem:
      mark(zeros()) -> a__zeros()
     Matrix Interpretation Processor: dim=3
      
      interpretation:
                    [1 0 0]     [1]
       [mark](x0) = [0 0 0]x0 + [0]
                    [0 0 0]     [0],
       
                 [0]
       [zeros] = [0]
                 [0],
       
                    [0]
       [a__zeros] = [0]
                    [0]
      orientation:
                       [1]    [0]             
       mark(zeros()) = [0] >= [0] = a__zeros()
                       [0]    [0]             
      problem:
       
      Qed