YES Problem: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) activate(X) -> X Proof: Arctic Interpretation Processor: dimension: 1 interpretation: [activate](x0) = 1x0, [h](x0) = x0, [g](x0) = x0, [n__h](x0) = x0, [n__f](x0) = x0, [f](x0) = x0 orientation: f(X) = X >= X = g(n__h(n__f(X))) h(X) = X >= X = n__h(X) f(X) = X >= X = n__f(X) activate(n__h(X)) = 1X >= 1X = h(activate(X)) activate(n__f(X)) = 1X >= 1X = f(activate(X)) activate(X) = 1X >= X = X problem: f(X) -> g(n__h(n__f(X))) h(X) -> n__h(X) f(X) -> n__f(X) activate(n__h(X)) -> h(activate(X)) activate(n__f(X)) -> f(activate(X)) String Reversal Processor: f(X) -> n__f(n__h(g(X))) h(X) -> n__h(X) f(X) -> n__f(X) n__h(activate(X)) -> activate(h(X)) n__f(activate(X)) -> activate(f(X)) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [0] [activate](x0) = [0 0 0]x0 + [0] [0 0 1] [1], [1 1 1] [1] [h](x0) = [0 0 0]x0 + [0] [0 0 1] [0], [1 0 0] [g](x0) = [0 0 0]x0 [0 0 0] , [1 0 1] [n__h](x0) = [0 0 0]x0 [0 0 1] , [1 0 0] [n__f](x0) = [0 0 0]x0 [0 0 1] , [f](x0) = x0 orientation: [1 0 0] f(X) = X >= [0 0 0]X = n__f(n__h(g(X))) [0 0 0] [1 1 1] [1] [1 0 1] h(X) = [0 0 0]X + [0] >= [0 0 0]X = n__h(X) [0 0 1] [0] [0 0 1] [1 0 0] f(X) = X >= [0 0 0]X = n__f(X) [0 0 1] [1 1 1] [1] [1 1 1] [1] n__h(activate(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = activate(h(X)) [0 0 1] [1] [0 0 1] [1] [1 1 0] [0] [1 1 0] [0] n__f(activate(X)) = [0 0 0]X + [0] >= [0 0 0]X + [0] = activate(f(X)) [0 0 1] [1] [0 0 1] [1] problem: f(X) -> n__f(n__h(g(X))) f(X) -> n__f(X) n__h(activate(X)) -> activate(h(X)) n__f(activate(X)) -> activate(f(X)) Arctic Interpretation Processor: dimension: 2 interpretation: [0 -&] [activate](x0) = [0 0 ]x0, [0 0] [h](x0) = [0 0]x0, [0 0 ] [g](x0) = [-& -&]x0, [0 1] [n__h](x0) = [0 1]x0, [0 0 ] [n__f](x0) = [-& 2 ]x0, [0 0] [f](x0) = [2 2]x0 orientation: [0 0] [0 0] f(X) = [2 2]X >= [2 2]X = n__f(n__h(g(X))) [0 0] [0 0 ] f(X) = [2 2]X >= [-& 2 ]X = n__f(X) [1 1] [0 0] n__h(activate(X)) = [1 1]X >= [0 0]X = activate(h(X)) [0 0] [0 0] n__f(activate(X)) = [2 2]X >= [2 2]X = activate(f(X)) problem: f(X) -> n__f(n__h(g(X))) f(X) -> n__f(X) n__f(activate(X)) -> activate(f(X)) Arctic Interpretation Processor: dimension: 2 interpretation: [0 0] [activate](x0) = [1 2]x0, [0 -&] [g](x0) = [2 2 ]x0, [0 -&] [n__h](x0) = [-& -&]x0, [0 0 ] [n__f](x0) = [-& 2 ]x0, [1 0] [f](x0) = [0 2]x0 orientation: [1 0] [0 -&] f(X) = [0 2]X >= [-& -&]X = n__f(n__h(g(X))) [1 0] [0 0 ] f(X) = [0 2]X >= [-& 2 ]X = n__f(X) [1 2] [1 2] n__f(activate(X)) = [3 4]X >= [2 4]X = activate(f(X)) problem: f(X) -> n__f(X) n__f(activate(X)) -> activate(f(X)) KBO Processor: weight function: w0 = 1 w(activate) = w(n__f) = w(f) = 1 precedence: f > n__f > activate problem: Qed