YES Problem: active(f(X)) -> mark(g(h(f(X)))) mark(f(X)) -> active(f(mark(X))) mark(g(X)) -> active(g(X)) mark(h(X)) -> active(h(mark(X))) f(mark(X)) -> f(X) f(active(X)) -> f(X) g(mark(X)) -> g(X) g(active(X)) -> g(X) h(mark(X)) -> h(X) h(active(X)) -> h(X) Proof: String Reversal Processor: f(active(X)) -> f(h(g(mark(X)))) f(mark(X)) -> mark(f(active(X))) g(mark(X)) -> g(active(X)) h(mark(X)) -> mark(h(active(X))) mark(f(X)) -> f(X) active(f(X)) -> f(X) mark(g(X)) -> g(X) active(g(X)) -> g(X) mark(h(X)) -> h(X) active(h(X)) -> h(X) Matrix Interpretation Processor: dim=3 interpretation: [1 1 0] [0] [mark](x0) = [0 0 1]x0 + [0] [1 1 0] [1], [1 0 0] [g](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [h](x0) = [0 0 1]x0 [0 0 1] , [1 0 0] [active](x0) = [0 1 0]x0 [0 1 0] , [1 0 1] [f](x0) = [1 0 1]x0 [1 0 1] orientation: [1 1 0] [1 1 0] f(active(X)) = [1 1 0]X >= [1 1 0]X = f(h(g(mark(X)))) [1 1 0] [1 1 0] [2 2 0] [1] [2 2 0] [0] f(mark(X)) = [2 2 0]X + [1] >= [1 1 0]X + [0] = mark(f(active(X))) [2 2 0] [1] [2 2 0] [1] [1 1 0] [1 0 0] g(mark(X)) = [0 0 0]X >= [0 0 0]X = g(active(X)) [0 0 0] [0 0 0] [1 1 0] [0] [1 1 0] [0] h(mark(X)) = [1 1 0]X + [1] >= [0 1 0]X + [0] = mark(h(active(X))) [1 1 0] [1] [1 1 0] [1] [2 0 2] [0] [1 0 1] mark(f(X)) = [1 0 1]X + [0] >= [1 0 1]X = f(X) [2 0 2] [1] [1 0 1] [1 0 1] [1 0 1] active(f(X)) = [1 0 1]X >= [1 0 1]X = f(X) [1 0 1] [1 0 1] [1 0 0] [0] [1 0 0] mark(g(X)) = [0 0 0]X + [0] >= [0 0 0]X = g(X) [1 0 0] [1] [0 0 0] [1 0 0] [1 0 0] active(g(X)) = [0 0 0]X >= [0 0 0]X = g(X) [0 0 0] [0 0 0] [1 0 1] [0] [1 0 0] mark(h(X)) = [0 0 1]X + [0] >= [0 0 1]X = h(X) [1 0 1] [1] [0 0 1] [1 0 0] [1 0 0] active(h(X)) = [0 0 1]X >= [0 0 1]X = h(X) [0 0 1] [0 0 1] problem: f(active(X)) -> f(h(g(mark(X)))) g(mark(X)) -> g(active(X)) h(mark(X)) -> mark(h(active(X))) mark(f(X)) -> f(X) active(f(X)) -> f(X) mark(g(X)) -> g(X) active(g(X)) -> g(X) mark(h(X)) -> h(X) active(h(X)) -> h(X) Matrix Interpretation Processor: dim=3 interpretation: [1 0 0] [mark](x0) = [0 0 0]x0 [0 1 0] , [1 0 0] [g](x0) = [0 0 0]x0 [0 0 0] , [1 0 1] [h](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [0] [active](x0) = [0 0 0]x0 + [1] [0 0 0] [0], [1 1 0] [f](x0) = [0 0 0]x0 [0 0 0] orientation: [1 0 0] [1] [1 0 0] f(active(X)) = [0 0 0]X + [0] >= [0 0 0]X = f(h(g(mark(X)))) [0 0 0] [0] [0 0 0] [1 0 0] [1 0 0] g(mark(X)) = [0 0 0]X >= [0 0 0]X = g(active(X)) [0 0 0] [0 0 0] [1 1 0] [1 0 0] h(mark(X)) = [0 0 0]X >= [0 0 0]X = mark(h(active(X))) [0 0 0] [0 0 0] [1 1 0] [1 1 0] mark(f(X)) = [0 0 0]X >= [0 0 0]X = f(X) [0 0 0] [0 0 0] [1 1 0] [0] [1 1 0] active(f(X)) = [0 0 0]X + [1] >= [0 0 0]X = f(X) [0 0 0] [0] [0 0 0] [1 0 0] [1 0 0] mark(g(X)) = [0 0 0]X >= [0 0 0]X = g(X) [0 0 0] [0 0 0] [1 0 0] [0] [1 0 0] active(g(X)) = [0 0 0]X + [1] >= [0 0 0]X = g(X) [0 0 0] [0] [0 0 0] [1 0 1] [1 0 1] mark(h(X)) = [0 0 0]X >= [0 0 0]X = h(X) [0 0 0] [0 0 0] [1 0 1] [0] [1 0 1] active(h(X)) = [0 0 0]X + [1] >= [0 0 0]X = h(X) [0 0 0] [0] [0 0 0] problem: g(mark(X)) -> g(active(X)) h(mark(X)) -> mark(h(active(X))) mark(f(X)) -> f(X) active(f(X)) -> f(X) mark(g(X)) -> g(X) active(g(X)) -> g(X) mark(h(X)) -> h(X) active(h(X)) -> h(X) Arctic Interpretation Processor: dimension: 1 interpretation: [mark](x0) = 2x0, [g](x0) = 14x0, [h](x0) = x0, [active](x0) = x0, [f](x0) = 8x0 orientation: g(mark(X)) = 16X >= 14X = g(active(X)) h(mark(X)) = 2X >= 2X = mark(h(active(X))) mark(f(X)) = 10X >= 8X = f(X) active(f(X)) = 8X >= 8X = f(X) mark(g(X)) = 16X >= 14X = g(X) active(g(X)) = 14X >= 14X = g(X) mark(h(X)) = 2X >= X = h(X) active(h(X)) = X >= X = h(X) problem: h(mark(X)) -> mark(h(active(X))) active(f(X)) -> f(X) active(g(X)) -> g(X) active(h(X)) -> h(X) KBO Processor: weight function: w0 = 1 w(mark) = w(g) = w(h) = w(f) = 1 w(active) = 0 precedence: active > h > mark ~ g ~ f problem: Qed