YES Problem: 1(2(1(x1))) -> 2(0(2(x1))) 0(2(1(x1))) -> 1(0(2(x1))) L(2(1(x1))) -> L(1(0(2(x1)))) 1(2(0(x1))) -> 2(0(1(x1))) 1(2(R(x1))) -> 2(0(1(R(x1)))) 0(2(0(x1))) -> 1(0(1(x1))) L(2(0(x1))) -> L(1(0(1(x1)))) 0(2(R(x1))) -> 1(0(1(R(x1)))) Proof: String Reversal Processor: 1(2(1(x1))) -> 2(0(2(x1))) 1(2(0(x1))) -> 2(0(1(x1))) 1(2(L(x1))) -> 2(0(1(L(x1)))) 0(2(1(x1))) -> 1(0(2(x1))) R(2(1(x1))) -> R(1(0(2(x1)))) 0(2(0(x1))) -> 1(0(1(x1))) 0(2(L(x1))) -> 1(0(1(L(x1)))) R(2(0(x1))) -> R(1(0(1(x1)))) Matrix Interpretation Processor: dim=3 interpretation: [1 0 1] [0] [R](x0) = [0 0 1]x0 + [1] [0 0 1] [0], [1 0 0] [1] [L](x0) = [0 0 0]x0 + [0] [0 0 0] [1], [1 0 0] [0](x0) = [0 0 0]x0 [0 0 0] , [1 0 0] [0] [2](x0) = [0 0 0]x0 + [0] [1 0 0] [1], [1 0 0] [1](x0) = [0 0 1]x0 [0 0 1] orientation: [1 0 0] [0] [1 0 0] [0] 1(2(1(x1))) = [1 0 0]x1 + [1] >= [0 0 0]x1 + [0] = 2(0(2(x1))) [1 0 0] [1] [1 0 0] [1] [1 0 0] [0] [1 0 0] [0] 1(2(0(x1))) = [1 0 0]x1 + [1] >= [0 0 0]x1 + [0] = 2(0(1(x1))) [1 0 0] [1] [1 0 0] [1] [1 0 0] [1] [1 0 0] [1] 1(2(L(x1))) = [1 0 0]x1 + [2] >= [0 0 0]x1 + [0] = 2(0(1(L(x1)))) [1 0 0] [2] [1 0 0] [2] [1 0 0] [1 0 0] 0(2(1(x1))) = [0 0 0]x1 >= [0 0 0]x1 = 1(0(2(x1))) [0 0 0] [0 0 0] [2 0 0] [1] [1 0 0] [0] R(2(1(x1))) = [1 0 0]x1 + [2] >= [0 0 0]x1 + [1] = R(1(0(2(x1)))) [1 0 0] [1] [0 0 0] [0] [1 0 0] [1 0 0] 0(2(0(x1))) = [0 0 0]x1 >= [0 0 0]x1 = 1(0(1(x1))) [0 0 0] [0 0 0] [1 0 0] [1] [1 0 0] [1] 0(2(L(x1))) = [0 0 0]x1 + [0] >= [0 0 0]x1 + [0] = 1(0(1(L(x1)))) [0 0 0] [0] [0 0 0] [0] [2 0 0] [1] [1 0 0] [0] R(2(0(x1))) = [1 0 0]x1 + [2] >= [0 0 0]x1 + [1] = R(1(0(1(x1)))) [1 0 0] [1] [0 0 0] [0] problem: 1(2(1(x1))) -> 2(0(2(x1))) 1(2(0(x1))) -> 2(0(1(x1))) 1(2(L(x1))) -> 2(0(1(L(x1)))) 0(2(1(x1))) -> 1(0(2(x1))) 0(2(0(x1))) -> 1(0(1(x1))) 0(2(L(x1))) -> 1(0(1(L(x1)))) String Reversal Processor: 1(2(1(x1))) -> 2(0(2(x1))) 0(2(1(x1))) -> 1(0(2(x1))) L(2(1(x1))) -> L(1(0(2(x1)))) 1(2(0(x1))) -> 2(0(1(x1))) 0(2(0(x1))) -> 1(0(1(x1))) L(2(0(x1))) -> L(1(0(1(x1)))) Matrix Interpretation Processor: dim=3 interpretation: [1 1 1] [L](x0) = [0 0 0]x0 [0 1 1] , [1 0 0] [0](x0) = [0 0 0]x0 [0 1 0] , [1 0 0] [0] [2](x0) = [0 0 1]x0 + [0] [0 0 0] [1], [1](x0) = x0 orientation: [1 0 0] [0] [1 0 0] [0] 1(2(1(x1))) = [0 0 1]x1 + [0] >= [0 0 1]x1 + [0] = 2(0(2(x1))) [0 0 0] [1] [0 0 0] [1] [1 0 0] [1 0 0] 0(2(1(x1))) = [0 0 0]x1 >= [0 0 0]x1 = 1(0(2(x1))) [0 0 1] [0 0 1] [1 0 1] [1] [1 0 1] L(2(1(x1))) = [0 0 0]x1 + [0] >= [0 0 0]x1 = L(1(0(2(x1)))) [0 0 1] [1] [0 0 1] [1 0 0] [0] [1 0 0] [0] 1(2(0(x1))) = [0 1 0]x1 + [0] >= [0 1 0]x1 + [0] = 2(0(1(x1))) [0 0 0] [1] [0 0 0] [1] [1 0 0] [1 0 0] 0(2(0(x1))) = [0 0 0]x1 >= [0 0 0]x1 = 1(0(1(x1))) [0 1 0] [0 1 0] [1 1 0] [1] [1 1 0] L(2(0(x1))) = [0 0 0]x1 + [0] >= [0 0 0]x1 = L(1(0(1(x1)))) [0 1 0] [1] [0 1 0] problem: 1(2(1(x1))) -> 2(0(2(x1))) 0(2(1(x1))) -> 1(0(2(x1))) 1(2(0(x1))) -> 2(0(1(x1))) 0(2(0(x1))) -> 1(0(1(x1))) KBO Processor: weight function: w0 = 1 w(0) = w(2) = w(1) = 1 precedence: 0 > 1 > 2 problem: Qed