YES Problem: norm(nil()) -> 0() norm(g(x,y)) -> s(norm(x)) f(x,nil()) -> g(nil(),x) f(x,g(y,z)) -> g(f(x,y),z) rem(nil(),y) -> nil() rem(g(x,y),0()) -> g(x,y) rem(g(x,y),s(z)) -> rem(x,z) Proof: DP Processor: DPs: norm#(g(x,y)) -> norm#(x) f#(x,g(y,z)) -> f#(x,y) rem#(g(x,y),s(z)) -> rem#(x,z) TRS: norm(nil()) -> 0() norm(g(x,y)) -> s(norm(x)) f(x,nil()) -> g(nil(),x) f(x,g(y,z)) -> g(f(x,y),z) rem(nil(),y) -> nil() rem(g(x,y),0()) -> g(x,y) rem(g(x,y),s(z)) -> rem(x,z) Usable Rule Processor: DPs: norm#(g(x,y)) -> norm#(x) f#(x,g(y,z)) -> f#(x,y) rem#(g(x,y),s(z)) -> rem#(x,z) TRS: Matrix Interpretation Processor: dim=4 usable rules: interpretation: [rem#](x0, x1) = [0 1 1 1]x0 + [1 1 1 1]x1, [f#](x0, x1) = [1 0 0 0]x1 + [1], [norm#](x0) = [1 0 0 0]x0 + [1], [0 0 1 0] [0 0 1 0] [s](x0) = [0 1 1 1]x0 [1 0 0 0] , [1 0 0 0] [1] [1 1 1 0] [0] [g](x0, x1) = [1 0 1 1]x0 + [1] [1 0 0 0] [0] orientation: norm#(g(x,y)) = [1 0 0 0]x + [2] >= [1 0 0 0]x + [1] = norm#(x) f#(x,g(y,z)) = [1 0 0 0]y + [2] >= [1 0 0 0]y + [1] = f#(x,y) rem#(g(x,y),s(z)) = [3 1 2 1]x + [1 1 3 1]z + [1] >= [0 1 1 1]x + [1 1 1 1]z = rem#(x,z) problem: DPs: TRS: Qed